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Coherent excitation of materials via ultrafast laser pulses can have interesting, observable dy-
namics in time-resolved photoemission measurements. The broad spectral width of ultrafast pump
pulses can coherently excite multiple exciton energy levels. When such coherently excited states are
probed by means of photoemission spectroscopy, interference between the polarization of different
exciton levels can lead to observable coherent exciton beats. Here, we present the theoretical formal-
ism for evaluating the Time- and Angle- Resolved Photoemission Spectra (tr-ARPES) arising from
the coherently excited exciton states in the regime of zero overlap between the pump and probe
pulses. We subsequently apply our formalism to a simple model example of hydrogenic exciton
energy levels to identify the dependencies that control the quantum beats. Our findings indicate
that the most pronounced effect of coherent quantum excitonic beats is seen midway between the
excited exciton energy levels and the central energy of the pump pulse provides tunability of this
effect.

I. INTRODUCTION

Light-matter interaction is fundamental to probe the
properties of materials both in and out of equilibrium.
Light induced polarization in matter leads to interesting
and relevant coherent and incoherent phenomena. Stud-
ies based on this interaction has revealed a plethora of
information in regards to the excited quantum states1,2,
the coupling between various degrees of freedom3, and
the dynamical time scales associated with fundamental
processes in materials4. While this interaction is signif-
icant to explaining fundamental coherent phenomena
like entanglement5, inversion-less lasing6, and Rabi
oscillations of excitons7, it also has applications in
optoelectronics8.

Coherent quantum beats is an important spectroscopic
signature, providing information about excited quantum
states. These are coherent in the sense of simultaneously
excitating two or more discrete excited energy levels,
thereby creating a superposition quantum state, which
in turn leads to interference between the time-dependent
polarizations of these excited levels. These quantum
beats are observed as periodic oscillations (with period
given by the inverse transition energy between the
excited levels) in time-domain measurements and are
particularly useful in the understanding of coherent
light-matter interaction. Quantum beats have been
observed for different time resolutions through control
of the excitation pump pulse duration and has been par-
ticularly important in measuring molecular constants.
Shorter temporal pulses with wider frequency spectrum
have been useful in monitoring the real time vibrational
dynamics9, and the transition states in molecules10. On
the other hand, longer temporal pulses with narrower
frequency spectrum has applications in determining
molecular structural parameters like spin orbit coupling
constant11, and dipole moments in excited states12,13.
Typically, coherent excitonic quantum beats have been

observed in diffraction/absorption/transmission based
optical measurements like Four Wave Mixing (FWM)
and photon echo experiments on semiconductor quan-
tum wells following photoexcitation by a ultrafast laser
pulse14–17, in hybrid organic-inorganic perovskites18,
and most recently in atomically thin layer of RSe2

19.

One of the disadvantages of the diffrac-
tion/absorption/transmission based optical mea-
surements is that the observations made are momentum
averaged. Time- and Angle- Resolved Photoemission
Spectroscopy (tr-ARPES) is known to provide en-
ergy, momentum, and time resolution20. This novel
experimental technique thus provides complimentary
information to the conventional optical methods. Fem-
tosecond ultrafast laser pulses can simultaneously excite
multiple exciton states into a coherent state. The
photoemission intensity from the coherent state can
show exciton beats with frequency set by the difference
in exciton energies. Transient exciton creation and their
subsequent dynamics have been observed in both metals
and semiconductors21,22. Analogous coherent beat
oscillations in time-resolved Two-photon photoemission
(2PPE) on metal surface has been observed23, where
the photoelectron couples to its image charge partner
forming a bound state.

Recent studies on the signatures of both coherent and
incoherent excitons via tr-ARPES at varying levels of
complexity have raised interesting possibilities24–27. The
potential of resolving excitons through tr-ARPES opens
up interesting opportunities of characterizing them
by means of the momentum resolved photoemission
spectrum. The coherent excitation of the exciton states
has raised the possibility of observing the coherent
excitonic quantum beats via photoelectron spectroscopy
and is the focus of this paper.

Here, we present our work evaluating the signatures
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of coherent exciton beats observed in tr-ARPES. This
paper is organized as follows: In Sec. II A, we set up
the formalism for coherent exciton state generation by
the pump pulse. Following which, Sec. II B applies the
semi-perturbative theory of photoemission to the coher-
ent exciton state. In Sec.III, we apply the developed
theory to a model example calculation where the low-
est two Rydberg exciton states are excited by the pump
and subsequently probed by photoemission spectroscopy.
Finally, we summarize our conclusions in Sec. IV.

II. THEORETICAL FORMALISM

FIG. 1. Schematic of the excited exciton levels by the ultra-
short pump pulse (large spectral width).

Excitons are bound states of electron-hole pairs, which
dominate the sub-band gap optical spectrum of a semi-
conductor in addition to the unbound electron-hole pairs
at energies above the band gap. These bound composite
particles along with the unbound electron-hole pairs form
the excitation spectrum of the semiconductor. The com-
posite Bosonic excitations can be directly excited by the
pump pulse for appropriate choice of laser energy (sub-
band gap). In such a scenario, we can effectively describe
the system by an effective system of excitons coupling to
the optical pump field. Such an effective Bosonic model
describing a system of interacting Fermions works well in
the limit of low density and temperature28,29.

A. Coherent Exciton State

With the advent of ultrashort femtosecond pulses
which have a broad energy spectrum, it is possible to
coherently excite multiple exciton levels simultaneously
(see Fig. 1). For simplicity we can assume that there are
two exciton states |1〉 and |2〉 with energies ω1 and ω2.
The Hamiltonian describing the sub-band gap composite
Bosonic excitons coupling to the electromagnetic (EM)
field is30–33

H = H0 − V E(t)P (1)

where the unperturbed Hamiltonian describes the exci-
ton energy levels and the unbound electrons and holes in
the Conduction and Valence bands (Heh)

H0 = ω1A
†
1A1 + ω2A

†
2A2 +Heh (2)

The polarization P that couples to the applied EM field
considering that the optical field energy is sub-band gap,
is

P =
G1√
V

(
A†1 +A1

)
+

G2√
V

(
A†2 +A2

)
(3)

where V is the volume of the system. Here A†i/Ai cor-
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FIG. 2. Timeline of the pump-probe photoemission measure-
ment. The pump acts at earlier times creating a coherent
state at time t = 0, following which the probe pulse is used
for measurements.

respond to the creation/annihilation of the composite
Bosonic exciton i = {1, 2}, and G1/G2 is the electric
dipole matrix element corresponding to coupling of pho-
tons to excitons labeled ‘1/2’. Since we are considering
coherent optical excitation of excitons by photons, the
excited excitons are predominantly the ones with zero
center of mass momenta. Thus the composite exciton
operators can be written in terms of the fundamental
electron-hole operators34

A†i =
∑
p

φipb
†
pap (4)

where b†p corresponds to the creation of electron in con-
duction band (CB), ap corresponds to the annihilation of
electron in valence band (VB) i.e. creation of a hole, and
φip is the envelope wavefunction for the exciton eigen-
state. The solution to the time-dependent Schrodinger
equation with Hamiltonian H when the pump excites
only exciton states is expressed as35

|Ψ(t)〉 = e−iH0t
∏

i={1,2}

eiKi(t)A
†
i e−|Ki(t)|2/2|0〉 (5)

where Ki(t) =
√
V Gi

∫ t
−∞ dt′E(t′)eiωit

′
.
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The pump pulse of temporal width σp and central fre-
quency Ω, centered around time tp is

E(t′) = E0e
−(t′−tp)2/2σ2

p cos[Ω(t′ − tp)] (6)

Following the timeline shown in Fig. 2, the pump acts
at some earlier time tp (such that there is no overlap with
the probe pulse) and forms the coherent state. Since the
pump is narrow, Ki are constant for all positive times

Ki(t = 0) =
√
V Gi

∫ 0

−∞
dt′E(t′)eiωit

′

≈
√
V Gi

∫ ∞
−∞

dt′E(t′)eiωit
′

≈
√
π

2
E0

√
V Giσpe

iωitpe−σ
2
p(ωi−Ω)2/2

(7)

where we have neglected the negligibly small exponential

term ∼ e−σ
2
p(ωi+Ω)2/2. Since we consider the coherent

signatures of exciton in time-resolved photoemission
measurements, we do not consider any loss of coherence.

The coherent state formed by the pump is our starting
point for the photoemission spectrum evaluation. Thus,
the wavefunction of the exciton coherent state at any
finite time t > 0 is

|Ψ(t)〉 = Ne−iH0teiK1A
†
1eiK2A

†
2 |0〉 (8)

where the normalization N = e−|K1|2/2e−|K2|2/2. The
wavefunction can be further simplified by expressing the
coherent state in number-basis

|Ψ(t)〉 = Ne−iH0teiK1A
†
1eiK2A

†
2 |0〉

= N
∑
n1,n2

(iK̄1(t))n1

√
n1!

(iK̄2(t))n2

√
n2!

|n1;n2〉

= NeiK̄1(t)A†1eiK̄2(t)A†2 |0〉

(9)

where K̄1/2(t) = K1/2e
−iω1/2t.

B. Photoemission Theory

The theory of photoemission36 which was previously
applied to study the contribution of incoherent excitons
in photoemission measurements25 is now used to evaluate
the tr-ARPES spectra for coherent excitons.

|Ψ(t)〉 = U(t, t0)|Ψ(t0)〉 (10)

is the time dependent wavefunction due to the effect of
the pump governed by the time-evolution operator

U(t, t0) = Tt exp

(
− i
~

∫ t

t0

dt′Hpump(t
′)

)
(11)

In presence of both pump and probe, the wavefunction
is given by

|ΨF (t)〉 = Ū(t, t0)|Ψ(t0)〉 (12)

where the time-evolution operator for pump + probe
fields

Ū(t, t0) = Tt exp

(
− i
~

∫ t

t0

dt′[Hpump(t
′) +Hprobe(t

′)]

)
(13)

Assuming the probe pulse to be weak and linearizing the
time-evolution operator

Ū(t, t0) ≈ U(t, t0)− i

~

∫ t

t0

dt′ U(t, t′)Hprobe(t
′)U(t′, t0)

(14)
where for photoemission, the probe Hamiltonian annihi-
lates a CB electron (bk′) and creates a free photoelectron

(f†k)

Hprobe(t) = s(t)e−iω0tMk,k′f
†
kbk′ (15)

where k = {k||, kz} and k′ = {k||, k′z}, thereby conserving
the parallel component of momenta but not the perpen-
dicular one. Given the uncertainty in the z-component
of momentum, there is an unknown offset in the per-
pendicular momentum. Therefore, we set k′z = 0 noting
that with variations of the probe photon energy, the c-
axis dispersion can be mapped given the unknown offset.
The probe pulse is centered around energy ω0 and has
a temporal profile s(t). To probe the time evolution of
the non-equilibrium system, the probe pulse is applied
at different delay times and the photoemission intensity
is measured. The probability to find the photoemitted
electron with momentum k in a solid angle dΩk

I(t) = lim
t→∞

k2dkdΩk
(2π)3

P (t); P (t) =
∑
m

|〈Ψ1<
m ;k|ΨF (t)〉|2

(16)
Therefore

P (t) =
∑
m

|〈Ψ1<
m ;k|ΨF (t)〉|2

=
∑
m

〈ΨF (t)|Ψ1<
m ;k〉〈Ψ1<

m ;k|ΨF (t)〉

=

∫ t

t0

dt1

∫ t

t0

dt2 s(t1)s(t2)eiω0(t2−t1)e−i(ωe+W )(t2−t1)

× |Mk,k′ |2〈Ψ(t2)|b†k′U(t2, t1)bk′ |Ψ(t1)〉
(17)

where ωe is the kinetic energy of the photoemitted
electron while W is the energy lost in overcoming
the work function of the material. We consider the
photoemission process to be instantaneous which is
a valid assumption for high energy photons causing
photoemitted electrons with high kinetic energies i.e.
the sudden approximation20. The sudden approximation
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justifies the absence of renormalization of the outgoing
photoelectron. The state |Ψ1<

m ;k〉 = |Ψ1<
m 〉 ⊗ |k〉 is the

direct product of the material wavefunction with one
less electron |Ψ1<

m 〉 and the free photoemitted electron
with momenta k.

It is important to highlight that in the following
evaluation of the photoemission spectra, the coherent
state eigenvalue Ki is taken to be constant since we
have considered that the pump acts at earlier times.
This makes it easier to calculate the spectra, however
we should note that the results of the subsequent
calculations with time-independent eigenvalue Ki are
valid only when the probe pulse acts after the duration
of the pump pulse and there is no overlap between the
two. The expression for the photoemission intensity
involves the probe temporal profile which is centered
about tpr > 0, thus we can simply move forward with
the calculation assuming t1, t2 > 0. We now consider
the evaluation of the ARPES spectra by evaluating the
action of the CB electron annihilation from the coherent
exciton state, given by

bk′ |Ψ(t1)〉 = iN
[
K̄2(t1)φ2k′ + K̄1(t1)φ1k′

]
× ak′eiK̄1(t1)A†1eiK̄2(t1)A†2 |0〉

(18)

using the commutation relation

[bk′ , e
iK̄i(t)A

†
i ] = iK̄i(t)φik′e

iK̄i(t)A
†
i ak′ i = {1, 2}.

(19)

Now we consider the next step in evaluation of the re-
quired matrix element to get the action of time-evolution
operator U(t2, t1) on the CB electron annihilated coher-
ent exciton state bk′ |Ψ(t1)〉. Here we note that the choice
of no overlap between the pump and probe pulses and the
temporal profile dependence of the photoemission inten-
sity implies that U(t2, t1) = e−iH0(t2−t1) since t1, t2 > 0.
Therefore

U(t2, t1)bk′ |Ψ(t1)〉 = iN
[
K̄2(t1)φ2k′ + K̄1(t1)φ1k′

]
× eiεv,k′ (t2−t1)eiK̄1(t2)A†1eiK̄2(t2)A†2ak′ |0〉

(20)

where the state ak′ |n1;n2〉 has n1/n2 excitons in level 1/2
and an absence of electron with momentum k′ from the
VB. Thus, we set the unperturbed energy of this state to
be n1ω1 +n2ω2−εv,k′ where εv,k′ is the energy of the VB
state with the absent electron. Hence the matrix element
is

〈Ψ(t2)|b†k′U(t2, t1)bk′ |Ψ(t1)〉 = N2
[
K̄∗2 (t2)φ∗2k′ + K̄∗1 (t2)φ∗1k′

] [
K̄2(t1)φ2k′ + K̄1(t1)φ1k′

]
eiεv,k′ (t2−t1)

× 〈0|a†k′e
−iK̄∗2 (t2)A2e−iK̄

∗
1 (t2)A1eiK̄1(t2)A†1eiK̄2(t2)A†2ak′ |0〉

(21)

Using the commutation relation

[e−iK̄
∗
i (t2)Ai , ak′ ] = iK̄∗i (t2)φ∗ik′e

−iK̄∗i (t2)Aibk′ (22)

and the Baker-Campbell-Hausdorff formula

e−iK̄
∗
i (t2)AieiK̄i(t2)A†i = eiK̄i(t2)A†i e−iK̄

∗
i (t2)Aie|K̄i(t2)|2

(23)

we can find the matrix element in photoemission intensity
to be

〈Ψ(t2)|b†k′U(t2, t1)bk′ |Ψ(t1)〉 = eiεv,k′ (t2−t1)

×
[
K̄2(t1)φ2k′ + K̄1(t1)φ1k′

] [
K̄∗2 (t2)φ∗2k′ + K̄∗1 (t2)φ∗1k′

]
(24)

which clearly indicates four contributing terms to the
photoemission intensity. The two terms of the form
K̄∗2 (t2)K̄2(t1)|φ2k′ |2 and K̄∗1 (t2)K̄1(t1)|φ1k′ |2 capture the
individual contributions from the exciton levels where
the mixing terms of the form K̄∗2 (t2)K̄1(t1)φ∗2k′φ1k′ and

K̄∗1 (t2)K̄2(t1)φ∗1k′φ2k′ capture the interference between
the polarizations of the two excited exciton levels.

Assuming the probe temporal profile to be Gaussian
center around time tpr with temporal width σ,

s(t) = e
−

(t− tpr)2

2σ2 (25)

We can take the long time limit for the integrals t = ∞
and the initial time t0 = −∞ since the probe pulse is
narrow and the integral measure will be predominantly
zero excluding the region tpr − 5σ < t1/2 < tpr + 5σ. We
can evaluate the time integrals by Wigner transforming
the time arguments into average time ta = (t2 + t1)/2
and relative time tr = t2 − t1.

The probe pulse profile can be expressed as

s(t1)s(t2) = e
−

(ta − tpr)2

σ2 e
−

(tr)
2

4σ2 (26)
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FIG. 3. ARPES Spectra at different delay times. The different time snapshots display the time dynamics of the coherent
exciton state. The region where the beat oscillations are most pronounced is at the energies between the two exciton energies
marked by dashed horizontal lines.

FIG. 4. Momentum-integrated spectra at different delay times displaying the oscillation in the ARPES intensity which is most
prominent in the energy range between the two exciton energies.

Hence

P (td) =

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 s(t1)s(t2)eiω0(t2−t1)e−i(ωe+W )(t2−t1)|Mk,k′ |2〈Ψ(t2)|b†k′U(t2, t1)bk′ |Ψ(t1)〉 ≡
∑

i,j=1,2

Pij (27)

where Pij is the contribution to photoemission spectra
from the individual exciton levels (i = j) and the cross-

terms i.e. interference terms (i 6= j). These are given
by

Pij =

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 s(t1)s(t2)eiω0(t2−t1)e−i(ωe+W )(t2−t1)|Mk,k′ |2K̄∗i (t2)K̄j(t1)φ∗ik′φjk′

= 2πσ|Mk,k′ |2K∗iKjφ
∗
ik′φjk′e

i(ωi−ωj)tpre−σ
2(ωi−ωj)2/4e−σ

2(ω0−ωe−W+εv,k′+(ωi+ωj)/2)2
(28)

The interference between the polarizations of the two ex-
citon levels leads to cross terms P12 and P21. The sig-
nificance of the interference comes in the harmonic time

dependence with frequency set by the energy difference
of the exciton levels. There are two linewidth like decay-
ing exponential factors suggesting two physical implica-
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tions. The exponential with the difference in the exciton
energies incorporates the fact that the interference effect
probed is suppressed when the exciton levels are far apart
in energy. The other exponential that looks like energy
conservation suggests that the most pronounced effect
of the interference term is midway between the exciton
levels.

The incoherent exciton contributions to the photoe-
mission spectra are accounted for by the terms P11 and
P22. These were discussed in previous theoretical studies
on the exciton contribution to ARPES in semiconduct-
ing materials25,27. The key aspects of the contributions
is that they have spectral intensity below the conduction
band displaced by the exciton binding energy and their

width in momentum is controlled by their corresponding
wavefunction spread.

The cross term contributions are from the interference
of polarizations between the two exciton levels. Since
the two cross terms involve different exciton levels i 6= j,
there is a harmonic time dependence as seen in Eq. 28.

The coherent state eigenvalues Ki={1,2} (Eq.7) can be
expressed as

Ki={1,2} ≡ κi={1,2}eiωitp (29)

and assuming that the wavefunctions are real, then the
photoemission spectrum is

P (td) =
∑
i=1,2

2πσ|Mk,k′ |κ2
iφ

2
ik′e
−σ2(ω0−ωe−W+εv,k′+ωi)

2

+ 4πσ|Mk,k′ |2κ1κ2φ1k′φ2k′ cos [(ω2 − ω1)(tpr − tp)] e−σ
2(ω1−ω2)2/4e−σ

2(ω0−ωe−W+εv,k′+(ω1+ω2)/2)2
(30)

where the oscillatory term depends on the difference be-
tween the probe and the pump tpr − tp ≡ tdelay i.e. the
delay time between the pump and probe. It is clear that
the beating frequency is given by the energy difference
between the two exciton energies ω2 − ω1. The expres-
sion for the factors κi implies that the pump energy Ω
being closer to one exciton or the other can determine the
relative weight of the contribution of exciton levels and
thus provides tunability of the strength of coherent quan-
tum excitonic beats. We note that the energy/frequency
ω in the the ARPES spectrum is the difference in en-
ergy of the material before and after photoemission i.e.
ω = ωe + W − ω0 i.e. the energy that remains in the
system.

III. APPLICATION TO A SIMPLE EXAMPLE

To determine the signature of coherent exciton state,
we assume that the coupling of excitons to the pump field
is the same for both exciton levels. Considering the ‘1s’
and ‘2s’ wavefunctions with close by energies

φ1s(r) =
1

√
πa

3/2
B

e−r/aB

φ2s(r) =
1

4
√

2πa
3/2
B

(
2− r

aB

)
e−r/2aB

(31)

where aB is the exciton Bohr radius and their correspond-
ing energies in terms of excitonic Rydberg

ω1s = Eg − Ry ω2s = Eg −
Ry

4
(32)

In Fourier space, the wavefunctions are

φ1s,k =
8
√
πa

3/2
B

(1 + k2a2
B)2

φ2s,k = −32
√

2πa
3/2
B

1− 4k2a2
B

(1 + 4k2a2
B)2

(33)

Choosing the parameters typical for transition metal
dichalcogenides - Energy gap Eg = 0.8 eV, exciton Ryd-
berg Ry = 100 meV, pump energy Ω = 0.73 eV, electron
mass me = 0.4794 m0, hole mass mh = 0.8184 m0, exci-
ton Bohr radius aB = 11.2 Å, and the pump and probe
temporal width σp = σ = 30 fs. It is clear from Eq. 30
that the excitonic beat frequency is set by the difference
between the exciton energy levels ωbeat = ω1 − ω2. Thus
the time period of the oscillation is T = 2π/ωbeat.

We note that since the larger quantum number wave-
functions are more spread in real space, thus keeping
the normalization of wavefunction in mind implies that
the larger quantum number wavefunction are narrower in
momentum and consequently have larger amplitude. We
can therefore use the laser pump energy to be closer to
the lower exciton level such that the contribution from
the second exciton is suppressed as seen by the expression
for κi

κi={1,2} ≈
√
πV

2
E0Giσpe

−σ2
p(ωi−Ω)2/2 (34)

With these two exciton levels, we apply the formalism
developed in Sec. II B. We have consistent signatures of
excitons to ARPES as highlighted recently25 as seen in
Fig. 3. However due the coherent excitation of the two
exciton levels, there is additional interesting oscillations
seen in the photoemission intensity (see Fig. 3). The
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FIG. 5. False color plot of the momentum-integrated spectra.
The horizontal dashed lines are at the exciton energy levels
considered. The momentum-integrated spectra clearly shows
coherent excitonic quantum beats in the energy range between
the exciton levels.

most pronounced effect of the oscillations is in the
energy range between the two exciton energies. This
can be seen more explicitly in the momentum-integrated
ARPES spectra as shown in Fig. 4 and Fig. 5.

In this work, we have implicitly assumed the existence
of one or more coherent excitons, and have not included
the presence of the electrons and holes in the conduction
and valence bands. The generation of excitons and the
transfer of spectral weight between the free and bound
states remains an open question which may be addressed
in a future work.

IV. CONCLUSIONS

In conclusion, we have considered the signatures of
coherent exciton states in photoemission measurements.
The ultrashort pump pulse allows for simultaneous exci-
tation of energetically close exciton levels, the interfer-
ence of whose polarizations show up as beats. The exci-
ton beat shows up as oscillations in photoemission inten-
sity and this signature is most pronounced in the energy
range between the two exciton energies. With coherent
control of these oscillations in mind, the tunability of the
pump laser pulse energy allows for dominantly exciting
one exciton over the other.
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