Optical response of Luttinger semimetals in the normal and superconducting states
Igor Boettcher
Phys. Rev. B 99, 125146 — Published 25 March 2019
DOI: 10.1103/PhysRevB.99.125146
Optical response of Luttinger semimetals in the normal and superconducting states

Igor Boettcher

Joint Quantum Institute, University of Maryland, College Park, MD 20742, USA

We investigate the optical response properties of three-dimensional Luttinger semimetals with the Fermi energy close to a quadratic band touching point (QBT) and an inverted quadratic band touching point (QBT) is part of the forefront of both theoretical and experimental research on quantum materials. Already in the noninteracting case these systems are highly compelling, as applying strain or quantum confinement can induce a topological insulator state, which furthermore is robust against weak perturbations. An even richer manifold of possible macroscopic phases emerges when considering the effects of long-range or sufficiently strong short-range interactions. Some of the currently most actively investigated platforms for exploring interactions in QBT systems are Pyrochlore Iridates and half-Heusler superconductors. In particular, two recent measurements of their intriguing conductance properties constitute the motivation for the present work.

What makes the study of many-body physics and interactions in Luttinger semimetals so fascinating can be attributed to two main features. Firstly, as realized by Abrikosov, the long-range Coulomb repulsion between electrons at the QBT point induces a non-Fermi liquid (NFL) phase of the system. Although the ultimate stability of this phase is currently still debated, as emergent strong short-range interactions may eventually drive the system into a topological Mott insulator state, it is fairly certain that correlation functions will show anomalous scaling over some extended range of experimental parameters such as temperature, momentum, and frequency. Secondly, since the electrons occupying the QBT point carry an effective spin of $3/2$, many novel and often tensorial order parameters can be constructed close to the touching point. Fortunately both magnetic and superconducting orders of this type are, respectively, covered by the Pyrochlore Iridates and half-Heusler compounds in experiment.

Pyrochlore Iridates, having structural formula $R_2Ir_2O_7$ (denoted R-227 for short) with R a rare-earth element, have been shown to host a QBT point at the Fermi energy both via theoretical calculations and experimental ARPES studies. Most members of the material class show a transition to an insulating phase with octupolar magnetic order at temperatures around 100 K. However, the critical temperature is reduced for Nd-227, and no finite-temperature transition has been observed in Pr-227. Furthermore, Pr-227 may be close to a quantum critical point as a function of ionic radius of R, implying that its high temperature phase lies in the corresponding critical fan and thus shows nontrivial scaling of observables as a function of temperature.

A recent THz spectroscopy study by the Armitage group on the optical response of Pr-227 in the normal phase revealed a large additive anomalous contribution to the dielectric function compared to the Drude formula, which can be traced theoretically to originate from interband transitions between the upper and lower bands of the QBT point by Broerman’s formula. The determination of the scattering rate shows a $\tau^{-1} \propto T^2$ temperature dependence, however, with an unusually large prefactor indicating that the system may be strongly coupled in the normal phase. The presence of a finite Fermi energy $E_F > 0$ (measured from the QBT point) in the experiment sets a limit on the intermediate frequency and temperature ranges where nontrivial scaling such as Abrikosov’s NFL behavior could be observed. Measuring at larger frequencies or higher temperatures (both compared to E_F), or minimizing E_F directly, will allow to experimentally test whether the NFL phase is achieved in the normal phase of Pr-227, and thus shedding light onto other QBT systems where long-range interactions are important. This clearly calls for a fresh and extended view on the frequency and temperature dependence of the optical conductivity in Luttinger semimetals. Note that the existence of plasmon excitations in the normal state has
sidered high and seem to require a more complex mechanism for the effects of disorder in the present work. Conducting YPtBi are in the clean limit and apply them to the s-wave singlet superconductor as response functions in superconductors with a QBT point. We derive general formulas for the transverse response, and momentum dependence of response functions. We address anisotropic corrections, gauge invariance, the low-density in these materials, reflected by a small value of E_F, such critical temperatures need to be considered high and seem to require a more complex mechanisms than phonon mediated attraction.

The case for unconventional superconductivity in the half-Heuslers was strengthened enormously by a recent measurement of the London penetration depth in YPtB[2] by the Paglione group, which shows an almost linear temperature dependence of the observable at low temperatures $T/T_c \sim 0.1$, and thereby indicates the presence of line nodes in the gap. Whereas this eliminates the possibility for a pure s-wave gap, the spin-3/2 nature of the fermions at the QBT point allows to construct many other pairing channels (with or without even-odd-parity mixing) that feature line nodes. Since the associated orders are typically tensorial in nature, an angular resolved measurement of the optical properties appears to be a first step towards eliminating certain candidate orders. More generally, a solid understanding of how distinct superconducting orders contribute to the frequency and directional dependence of the optical conductivity in Luttinger semimetals could be central to discerning which pattern is realized in a given material in future experiments.

The scope of this work is therefore to set up a framework for studying the optical response of Luttinger semimetals in the normal and superconducting phase that allows to address the challenges described above and support future experimental explorations of QBT systems. We use a purely field theoretic approach starting from the path integral to arrive at the optical conductivity in the linear response regime within the random phase approximation (RPA). In particular, we formulate the theory such as to allow for the complex and unconventional superconducting orders that are possible in the system. We recover the expressions for the longitudinal response in normal state of Ref.[20] and extend these works by addressing anisotropic corrections, gauge invariance, transverse response, and momentum dependence of response functions. We derive general formulas for the response functions in superconductors with a QBT point and apply them to the s-wave singlet superconductor as a proof of principle. Since the experiments for superconducting YPtBi are in the clean limit[21], we do not consider the effects of disorder in the present work.

The picture that appears on the RPA level, and which underlies the interpretation of the experiments in Ref[2], is illustrated in Fig. 1. The optical response functions, given by the dielectric tensor $\varepsilon_{ij}(\omega, \mathbf{p})$ or conductivity tensor $\sigma_{ij}(\omega, \mathbf{p})$, decompose into a sum of intraband and interband contributions. The intraband contribution can be obtained from knowledge of the optical response of a single parabolic band, for instance by the usual Drude or Lindhard formulas in the normal state. The interband contribution, on the other hand, is a genuine contribution due to the QBT that cannot be captured by the theory for a single band. (We therefore also refer to it as “QBT contribution”.) It also constitutes the anomalous contribution observed in Ref[2]. We write

$$\varepsilon(\omega, \mathbf{p}) = 1 + \varepsilon^{(\text{intra})}(\omega, \mathbf{p}) + \varepsilon^{(\text{QBT})}(\omega, \mathbf{p}),$$

$$\varepsilon^{(\text{intra})}(\omega, \mathbf{p}) = \varepsilon^{(\text{upper})}(\omega, \mathbf{p}) + \varepsilon^{(\text{lower})}(\omega, \mathbf{p}).$$

For nonzero E_F, one may expect only the band that is pierced by the chemical potential to contribute significantly to the response, whereas all other filled or empty bands are irrelevant. In Luttinger semimetals the QBT contribution quantifies how inaccurate this picture can be. On a more technical level, the interband contribution is conveniently incorporated by keeping the full 4×4 structure of the underlying Luttinger Hamiltonian[24] instead of projecting it onto the two-dimensional basis spaces for the upper and lower band. This conveniently incorporates interband. This also accounts for presence of Bogoliubov Fermi surfaces in certain time-reversal symmetry breaking superconducting states in QBT systems[25,26].

This work consists of two major parts. In the first or main part, after a review of the Luttinger Hamiltonian and optical response functions, we present the relevant formulas for the dielectric function and optical conductivity in the normal and s-wave superconducting phase and discuss their features. This presentation is intentionally left concise and does not illuminate any details how the results were obtained. The formulas are either
given in fully analytic form or as one-dimensional integrals. In order to facilitate the comparison with experiment, results are presented in SI units, displaying the effective band mass \(m^* \) explicitly in all formula. (We employ \(\hbar = E_B = 1 \) throughout the manuscript though.)

In the supplemental material (SM) we give a self-contained derivation of the optical response of QBT Hamiltonians starting from the path integral, and then present the detailed calculation of the response functions presented in the main part. This extensive discussion of the setup also allows us to fix our notation and conventions, and set the stage for future works. Sections and equations in the SM are indicated by a prefix “S”. The results for the normal state are derived in Sec. S.III and the results for the superconducting state in S.IV. We show that the QBT contribution satisfies gauge invariance in the normal state in Sec. S.III.C and derive the transverse homogeneous response functions in the normal state at the end of Sec. IV B.

II. LUTTINGER SEMIMETALS

We assume the band structure of the QBT point to be described by the Luttinger model. The corresponding \(4 \times 4 \) electronic single-particle Hamiltonian\(^{[24]} \) reads

\[
\hat{H} = \left(\alpha_1 + \frac{5}{2} \alpha_2 \right) \hat{p}^2 \pm 2 \alpha_3 (\hat{\mathbf{p}} \cdot \hat{J})^2 + 2(\alpha_3 - \alpha_2) \sum_{i=1}^{3} \hat{p}_i^2 J_i^2.
\]

(3)

Here \(\hat{\mathbf{p}} = -i \nabla \) is the momentum operator and \(\hat{J} = (J_1, J_2, J_3)^T \) encompasses the spin-3/2 matrices. The Luttinger parameters \(\alpha_1, \alpha_2, \alpha_3 \) characterize the specific details of the QBT in a given material and may be determined experimentally or from first principle electronic band structure calculations. The number of independent parameters is dictated by the symmetries that govern the low-energy excitations. Equation (3) captures the most general QBT Hamiltonian in the presence of time-reversal, inversion, and cubic point group symmetry. The number of independent parameters decreases upon imposing further symmetry constraints.

In order to elucidate the interplay between symmetry and band structure in the Luttinger model, we define the effective band mass \(m^* \) by

\[
\frac{1}{2m^*} = |\alpha_2 + \alpha_3|,
\]

(4)

the particle-hole asymmetry parameter by

\[
x = \frac{\alpha_1}{\alpha_2 + \alpha_3},
\]

(5)

and the spatial anisotropy parameter by

\[
\delta = \frac{\alpha_3 - \alpha_2}{\alpha_2 + \alpha_3} \in [-1, 1].
\]

(6)

The single-particle energies that follow from the Luttinger Hamiltonian then take the form

\[
E_{\pm}(\mathbf{p}) = \alpha_1 \mathbf{p}^2 \pm \left[4 \alpha_2^2 \mathbf{p}^4 + 12 \left(\alpha_3^2 - \alpha_2^2 \right) \sum_{i<j} \hat{p}_i^2 \hat{p}_j^2 \right]^{1/2}
\]

\[
= \frac{1}{2m^*} \left(x \mathbf{p}^2 \pm \left[(1 - \delta)^2 \mathbf{p}^4 + 12 \delta \sum_{i<j} \hat{p}_i^2 \hat{p}_j^2 \right]^{1/2} \right).
\]

(7)

Each eigenvalue is doubly degenerate due to time-reversal and inversion symmetry. We consider here the band inverted case which corresponds to

\[
|x| < 1.
\]

(8)

The band structure then features an upper band with positive energies \(E_+ \) and a lower band with negative energies \(E_- \) for nonzero momenta. Furthermore, for \(x = 0 \) the spectrum of excitations becomes particle-hole symmetric, whereas \(\delta = 0 \) implies a spatially isotropic band structure with

\[
E_{\pm}(\mathbf{p}) = \frac{(x \pm 1)}{2m^*} \mathbf{p}^2,
\]

(9)

corresponding to an effective upper and lower band mass of

\[
m_{\text{up}}^* = \frac{m^*}{1 + x}, \quad m_{\text{low}}^* = \frac{m^*}{1 - x},
\]

(10)

respectively. Although in a given material at hand these symmetries may not be realized exactly, it is a useful simplification to neglect \(x \) and \(\delta \) in calculations as long as these parameters are small compared to unity. Therefore, unless stated otherwise we set \(x = \delta = 0 \) in this work, but discuss the influence of nonvanishing \(x \) and \(\delta \) on the homogeneous response functions in the normal state at the end of Sec. IV B.

A particularly important role for the faithful description of experimental data by means of the Luttinger model is played by the chemical potential \(\mu \). For our investigation we allow \(\mu \) to have either sign, and define the Fermi energy and Fermi momentum from its modulus according to

\[
E_F := \frac{p_F^2}{2m^*} := |\mu|.
\]

(11)

The condition that the low-energy physics are captured by the QBT in the band dispersion then implies that \(E_F \ll E_\kappa \), where \(E_\kappa = \kappa^2 / (2m^*) \) is an “ultraviolet” energy scale where either the electronic band structure deviates significantly from the quadratic dispersion for \(q > \kappa \), or where other low-energy degrees of freedom such as phonons become relevant. On the other hand, the parabolic band structure may be screened by a linear band structure at low momenta that results, for instance, from adding \(\hat{H}_{\text{lin}} = \beta_1 (\hat{\mathbf{p}} \cdot \hat{J}) + \beta_2 \sum_i \hat{p}_i J_i^2 \) to the Hamiltonian in Eq. (3). Such contributions arise in
non-centrosymmetric materials due to asymmetric spin-orbit coupling, and their presence implies a typical “infrared” energy scale $E_{\text{in}} \sim |\beta_{1,2}| p_F$. Consequently, the linear terms can be neglected if the chemical potential is sufficiently large so that $E_{\text{in}} \ll E_F$ and, therefore, the relevant excitations at the Fermi level are dominated by the quadratic terms. Consequently, in the following the limit $\mu \to 0$ needs to be understood within the Luttinger model, meaning that the Fermi level is close enough to the QBT point so that $\mu \approx 0$ is a good approximation, but the chemical potential is still large enough so that linearly dispersing terms at even lower energies (if present) are irrelevant.

III. OPTICAL RESPONSE FUNCTIONS

The electrodynamic properties of solids in the linear response regime are encoded in the dielectric tensor ε_{ij} relating electric displacement field \vec{D} and electric field \vec{E} according to

$$D_i(\omega, p) = \varepsilon_0 \varepsilon_{ij}(\omega, p) E_j(\omega, p).$$

Here ε_0 is the vacuum permittivity, ω and p constitute (angular) frequency and momentum of the incident electromagnetic field, and we have defined ε_{ij} to be a dimensionless quantity. Throughout this work we use the Einstein sum convention that we sum over repeated indices. In the following we consider nonmagnetic materials with permeability equal to 1. The linear response is then equivalently expressed in terms of the conductivity σ_{ij} given by

$$\sigma_{ij}(\omega, p) = i \omega \varepsilon_0 \left[\delta_{ij} - \varepsilon_{ij}(\omega, p) \right],$$

which relates the internal current density \vec{j}_int and electric field according to

$$j_{\text{int},i}(\omega, p) = \sigma_{ij}(\omega, p) E_j(\omega, p).$$

In a spatially isotropic medium, the tensorial response functions for nonzero p can be decomposed into longitudinal (L) and transverse (T) components according to

$$\sigma_{ij}(\omega, p) = \sigma_L(\omega, p) \frac{p_i p_j}{p^2} + \sigma_T(\omega, p) \left(\delta_{ij} - \frac{p_i p_j}{p^2} \right).$$

Crucially, a longitudinal (transverse) electromagnetic probe field can only induce a longitudinal (transverse) response, i.e.

$$j_{\text{int},L}(\omega, p) = \sigma_L(\omega, p) \vec{E}_L(\omega, p),$$

$$j_{\text{int},T}(\omega, p) = \sigma_T(\omega, p) \vec{E}_T(\omega, p),$$

with the usual definition of the longitudinal and transverse parts of the vector fields. Equation (13) implies

$$\sigma_L(\omega, p) = i \omega \varepsilon_0 \left[1 - \varepsilon_L(\omega, p) \right],$$

$$\sigma_T(\omega, p) = i \omega \varepsilon_0 \left[1 - \varepsilon_T(\omega, p) \right].$$

The advantage of studying $\sigma_{L,T}(\omega, p)$ over $\sigma_{ij}(\omega, p)$ lies in the fact that the L and T components are scalar functions of $p = |p|$, and so the limit $p \to 0$ is defined unambiguously.

The experiments we attempt to quantify with our analysis are such that the spatial inhomogeneity of the external probe fields is irrelevant so that setting $p = 0$ is a valid approximation. In this limit, the distinction between L and T components is meaningless and Eq. (14) provides a definition of $\sigma_{ij}(\omega, 0)$ that does not require referencing to an external momentum. The tensorial character of this quantity is necessarily trivial and so

$$\sigma_{ij}(\omega, 0) = \sigma(\omega) \delta_{ij},$$

which defines the homogeneous conductivity $\sigma(\omega)$. This quantity also coincides with the $p \to 0$ limit of the L and T contributions when the limit is taken for $\omega > 0$, as generally the limits $p \to 0$ and $\omega \to 0$ do not commute. In fact, although any spatial dependence of the electric field is unimportant, in practice it will not be strictly zero. We can then perform the limit $p \to 0$ in Eq. (13) explicitly by assuming (without loss of generality) that the strongest spatial inhomogeneity of p is in the z-direction, hence $p = (0, 0, p)^T$. Then, by computing the individual components $\sigma_{ij}(\omega, p)$ in the limit $p \to 0$ and comparing to Eq. (20) we deduce that

$$\varepsilon(\omega) = \varepsilon_L(\omega, 0) = \varepsilon_T(\omega, 0),$$

$$\sigma(\omega) = \sigma_L(\omega, 0) = \sigma_T(\omega, 0).$$

Equations (21) and (22) allow us to conveniently discuss the optical response of materials in terms of a single frequency-dependent function.

In order to facilitate the comparison with experiment we employ SI units here with $\varepsilon_0 = 8.854 \times 10^{-12} \text{F m}^{-1}$ and electric charge $e = 1.602 \times 10^{-19} \text{C}$. For computing the response functions from the underlying microscopic model, as it is presented in the SM[1], we conveniently use Gauss units. The corresponding electric charge in Gauss units will be denoted by an overbar, and is given by $\bar{e} = 1.519 \times 10^{-11} \text{m}^2/\text{N s} \text{kg}^{1/2} \text{s}^{-1}$. Both quantities are related by

$$\bar{e}^2 = \frac{e^2}{4\pi\varepsilon_0}.$$

Further, the dielectric function and conductivity in Gauss units, denoted as $\bar{\varepsilon}$ and $\bar{\sigma}$ with an overbar, are defined from $\bar{D}(\omega, p) = \bar{\varepsilon}(\omega, p) \bar{E}(\omega, p)$ and $\bar{j}_{\text{int}}(\omega, p) = \bar{\sigma}(\omega, p) \bar{E}(\omega, p)$. They are mutually related by $\bar{\sigma}(\omega, p) = \frac{i\omega}{4\pi\varepsilon_0} [1 - \bar{\varepsilon}(\omega, p)]$, and are obtained from the response function in SI units by means of

$$\bar{\varepsilon}(\omega, p) = \varepsilon(\omega, p),$$

$$\bar{\sigma}(\omega, p) = \frac{1}{4\pi\varepsilon_0} \sigma(\omega, p),$$

with the charge translated according to Eq. (23).
Our approach to computing the optical response lies in a field theoretic determination of the density-density response function $\chi(\omega, p)$ and current-current response function $-K_{ij}(\omega, p)$ within RPA. We refer to the SM for their definition, and limit ourselves here to a brief discussion of their key properties. We first note that gauge invariance implies

$$\omega^2 \chi(\omega, p) = -p^2 K_L(\omega, p). \quad (26)$$

The L component of the dielectric function is given by

$$\varepsilon_L(\omega, p) = 1 + 4\pi \frac{\chi(\omega, p)}{p^2}, \quad (27)$$

and the conductivity reads

$$\sigma_{ij}(\omega, p) = -\frac{4\pi\epsilon_0}{i\omega} K_{ij}(\omega, p). \quad (28)$$

Equation (26) guarantees that the L components satisfy $\sigma_L = i\omega\epsilon_0(1 - \varepsilon_L)$. Furthermore, it implies that $\chi(\omega, 0) = 0$ for $\omega > 0$. For small momenta we may then expand the density response in power of p and obtain

$$\chi(\omega, p) = Z(\omega)p^2 + O(p^4). \quad (29)$$

Consequently, in the limit $p = 0$ the dielectric function is given by

$$\varepsilon(\omega) = 1 + 4\pi Z(\omega), \quad (30)$$

and we have $\sigma(\omega) = -i\omega\cdot 4\pi\epsilon_0\cdot Z(\omega)$ for the conductivity.

The function $K_{ij}(\omega, p)$ is useful for studying several important conceptual aspects of the optical response of media. First note that gauge invariance through Eq. (26) implies $K_L(0, p) = 0$. Hence the static response (meaning $\omega = 0$) is purely transverse. On a technical level, the absence of the static L component requires a perfect cancellation between the diamagnetic (“d”) and paramagnetic (“p”) contributions to the current-current response. Referring to the SM for details of their definition, we note here that the response function is naturally split into the diamagnetic and paramagnetic contributions according to

$$K_{ij}(\omega, p) = K^{(d)}_{ij}(\omega, p) + K^{(p)}_{ij}(\omega, p). \quad (31)$$

Whereas the perfect cancellation is also valid for the static T component in the normal state, this situation is fundamentally altered in the superconducting state. Intuitively, the diamagnetic contribution comes from all electrons of the system, whereas only electrons on the Fermi surface contribute to the paramagnetic term. Since electron excitations at the Fermi surface are gapped (hence only thermally populated) in a superconductor, the diamagnetic term then dominates over the paramagnetic one. In this context, the superfluid density n_s is defined according to

$$\lim_{p \to 0} K_T(0, p) = \frac{\epsilon^2 n_s}{4\pi\epsilon_0 m^*}. \quad (32)$$

Clearly we have $n_s = 0$ in the normal state. For a clean single-band superconductor in the mean-field approximation, we find that the paramagnetic contribution vanishes completely at zero temperature, and the transverse response is entirely given by the diamagnetic term $K_T^{(d)}(\omega, p) = \frac{\epsilon^2 n}{4\pi\epsilon_0 m^*}$, and so the superfluid density agrees with the electron density: $n_s = n$. In a more realistic setup, considering interaction and impurity effects, we generally have $n_s < n$ even at zero temperature.

IV. NORMAL STATE RESPONSE

We begin our analysis of optical response in Luttinger semimetals by considering systems in the normal state. Unless explicitly stated we consider the particle-hole and rotationally symmetric case with $x = \delta = 0$, which encompasses the key qualitative features of the optical response within the Luttinger model as long as these parameters are small compared to unity. The formulas presented here are derived in Sec. III of the SM.

A. Scales and limits

The optical response in the normal state is determined by the frequency and momentum of the probe field, ω and p, and the thermodynamic parameters μ and T. The density of charge carriers within RPA reads

$$n = 2 \int q \left[n_F \left(\frac{q^2}{2m^*} - \mu \right) + n_F \left(\frac{q^2}{2m^*} + \mu \right) \right], \quad (33)$$

where we denote $\int q = \int \frac{d^3 q}{(2\pi)^3}$ and $n_F(E) = (e^{E/T} + 1)^{-1}$. At zero temperature we obtain

$$n_0 := \frac{p^3_F}{3\pi^2} = \frac{(2m^*|\mu|)^{3/2}}{3\pi^2}. \quad (34)$$

This coincides with the density of carriers of a single parabolic band at zero temperature since fluctuation effects between electrons on distinct bands are suppressed in our mean field approximation.

In the following we consider two ways of taking the low-momentum limit $p^2/(2m^*\omega) \to 0$, which is typically well-satisfied for spectroscopic experiments. The first approach, which we refer to as the homogeneous limit, corresponds to taking the limit for a fixed ratio of ω/μ. This basically corresponds to setting $p = 0$ in the response functions. Importantly, in the homogeneous limit, longitudinal and transverse response coincide. The second way to perform the limit, which we refer to as quasi-static limit, corresponds to keeping the ratio ω/vp fixed, where

$$v := \frac{p_F}{m^*} = \sqrt{\frac{2|\mu|}{m^*}} \quad (35)$$

is the Fermi velocity. Clearly, $\frac{p^2}{2m^*\omega} \to 0$ while $\frac{\omega}{vp} < \infty$ implies that $\omega \ll \mu$. The dominance of the chemical
low-momentum approximation \(\frac{p^2}{2m^*\omega} \to 0 \)

homogeneous limit:
\[
\frac{\omega}{\mu} > 0 \quad (\text{implies } \frac{\omega}{vp} \to \infty)
\]
\[
\varepsilon_1(\omega, 0) = \varepsilon_T(\omega, 0)
\]
\[
\varepsilon_1(\omega, p) \neq \varepsilon_T(\omega, p)
\]

quasi-static limit:
\[
\frac{\omega}{vp} < \infty \quad (\text{implies } \frac{\omega}{\mu} \to 0)
\]
\[
\varepsilon_1(\omega, 0) = \varepsilon_T(\omega, 0)
\]

FIG. 2. The low-momentum regime with \(p^2/(2m^*) \ll \omega \) naturally decomposes into two sectors depending on whether the product \(vp \) with Fermi velocity \(v \propto \sqrt{E_F} \) is dominating or irrelevant compared to the remaining energy scales such as \(\omega \) or \(T \). For \(vp \ll \omega \), which amounts to setting \(p = 0 \) in practice, we obtain the homogeneous limit, where L and T response coincide. For \(vp \gtrsim \omega \), on the other hand, frequencies are necessarily small compared to \(\mu \) and hence this regime is labelled the quasi-static limit. The inherent momentum dependence of the response then implies that L and T contributions differ.

potential over all other scales, on the other hand, is a common scenario in solid state systems and thus clearly deserves consideration here. If in addition \(\omega/vp \ll 1 \) we are in a regime such that
\[
\frac{p^2}{2m^*} \ll \omega \ll vp.
\]

These inequalities are often taken as the definition of the quasi-static limit\(^{[18]}\), so our definition is slightly more generous. We summarize the setup in Fig. 2

B. Homogeneous limit

The intraband contribution from the upper and lower bands in the clean limit takes the usual form
\[
\varepsilon^{(\text{intra})}(\omega) = -\frac{\omega_p^2}{\omega(\omega + i0)},
\]
\[\quad (37)\]
\[
\sigma^{(\text{intra})}(\omega) = -\frac{\epsilon_0\omega_p^2}{i(\omega + i0)},
\]
\[\quad (38)\]
with the Plasma frequency \(\omega_p \) defined from the carrier density \(n \) according to
\[
\omega_p^2 = \frac{ne^2}{\epsilon_0m^*}.
\]
\[\quad (39)\]
The individual contributions from the upper and lower bands to the conductivity are given by
\[
\varepsilon^{(\text{upper})}(\omega) = -\frac{2e^2}{\epsilon_0m^*\omega} \int_q n_F \left(\frac{q^2}{2m^*} - \mu \right),
\]
\[\quad (40)\]
\[
\varepsilon^{(\text{lower})}(\omega) = -\frac{2e^2}{\epsilon_0m^*\omega} \int_q n_F \left(\frac{q^2}{2m^*} + \mu \right).
\]
\[\quad (41)\]

The effect of nonmagnetic impurities can be included in Eqs. (37) and (38) by a shift \(\omega \to \omega + i/\tau \) with scattering time \(\tau \), or scattering rate \(\Gamma = 1/\tau \). Assuming for simplicity that the scattering rates for the upper and lower band are equal we obtain
\[
\varepsilon^{(\text{intra})}(\omega) = -\frac{\omega_p^2}{\omega(\omega + i/\tau)},
\]
\[\quad (42)\]
\[
\sigma^{(\text{intra})}(\omega) = \frac{\epsilon_0\omega_p^2\tau}{1 - i\omega\tau}.
\]
\[\quad (43)\]

For large scattering rate, the conductivity is approximately real and frequency independent. For small scattering rate \(\tau^{-1} \to 0 \), on the other hand, Eq. (38) implies
\[
\sigma^{(\text{intra})}_1(\omega) = \frac{\pi ne^2}{2m^*} \delta(\omega),
\]
\[\quad (44)\]
\[
\sigma^{(\text{intra})}_2(\omega) = \frac{ne^2}{m^*\omega}
\]
\[\quad (45)\]
for the real and imaginary parts. The \(\delta \)-function in \(\sigma_1(\omega) \) is restricted to non-negative frequencies, hence the normalization with \(\pi/2 \).

The interband or QBT contribution to the dielectric function in the clean limit is given by\(^{[29]}\)
\[
\varepsilon^{(\text{QBT})}(\omega) = \frac{e^2}{4\pi\epsilon_0} \sqrt{\frac{m^*}{\omega}} (1 + i)
\]
\[\quad (46)\]
\[
-\frac{2e^2}{\epsilon_0m^*} \int_q n_F \left(\frac{q^2}{2m^*} - \mu \right) - \omega(\omega + i0)^2 + \frac{q^2/(m^*)^2}{(\omega + i0)^2 + q^2/(m^*)^2}.
\]

Here the first contribution is of particular significance. Its peculiar form originates from the appearance of the square root of \(\omega \) after analytic continuation from Matsubara frequencies \(p_0 \), \(ip_0 \to \omega + i0 \), according to
\[
\frac{1}{\sqrt{p_0}} \to \frac{1}{\sqrt{-\omega}} = \frac{1}{\sqrt{2\omega}} (1 + i).
\]
\[\quad (47)\]

In the limit \(\mu, T \to 0 \), only the first line of Eq. (46) contributes to the response, and we obtain a \(1/\sqrt{\omega} \)-divergent low-energy response according to
\[
\lim_{\mu, T \to 0} \varepsilon^{(\text{QBT})}(\omega) = \frac{e^2}{4\pi\epsilon_0} \sqrt{\frac{m^*}{\omega}} (1 + i).
\]
\[\quad (48)\]
Since the intraband contribution from the upper and lower bands vanishes in this limit, the optical response is then entirely dominated by the interband transitions, and thus genuinely different from a single band system.

For general \(\mu \) and \(T \), the imaginary part of Eq. (46) can be computed analytically and reads
\[
\varepsilon_2^{(\text{QBT})}(\omega) = \frac{e^2}{4\pi\epsilon_0} \sqrt{\frac{m^*}{\omega}} \left[1 - n_F \left(\frac{\omega}{2} - \mu \right) - n_F \left(\frac{\omega}{2} + \mu \right) \right].
\]
\[\quad (49)\]

In particular, at zero temperature we arrive at
\[
\varepsilon_2^{(\text{QBT})}(\omega) = \frac{e^2}{4\pi\epsilon_0} \sqrt{\frac{m^*}{\omega}} \theta(\omega - 2E_F).
\]
\[\quad (50)\]
In order to compute the real part of Eq. [46] for nonzero temperatures, the integral can be evaluated for a small finite value of \(\epsilon_0 \) or in terms of the principal value. At zero temperature we have

\[
\varepsilon_1^{(\text{QBT})}(\omega) = \frac{e^2}{4\pi\epsilon_0} \sqrt{\frac{m^*}{\omega}} \left[1 - \frac{2}{\pi} \arctan \left(\frac{\sqrt{2}\epsilon}{\omega} \right) \right] - \frac{1}{\pi} \ln \left(\frac{1 - \sqrt{\omega/(2\epsilon)}}{1 + \sqrt{\omega/(2\epsilon)}} \right).
\]

Equation (51)

In the limit \(\omega \to 0 \) we are left with a real response given by

\[
\varepsilon^{(\text{QBT})}(0) = \frac{e^2}{2\pi^2\epsilon_0} \sqrt{\frac{2m^*}{\epsilon}}.
\]

We observe that a nonzero Fermi energy regularizes the \(1/\sqrt{\omega} \)-divergence of both the real and imaginary parts of the low-frequency response. We display the temperature dependence of the QBT contribution in Fig. 3.

In the spatially anisotropic case with \(\delta \neq 0 \) (while still keeping particle-hole symmetry so that \(x = 0 \)), the intraband and interband contributions to the response functions factorize into the isotropic formula and a \(\delta \)-dependent prefactor. In particular, this prefactor is identical for the individual terms, and so we have an overall factorization according to

\[
\sigma(\omega) = \frac{\lambda(\delta)}{\sqrt{1 - \delta^2}} \times \sigma(\omega)|_{\delta=0}.
\]

The factorization also holds for nonzero temperatures. Here \(\lambda(\delta) \) is a regular function for all values of \(\delta \) and can be computed numerically to arbitrary precision in terms of the two-dimensional angular integral given in Eq. (S.164) in the SM. For all practical purposes the quadratic approximation

\[
\lambda(\delta) = 1 - \frac{1}{10} \delta + \frac{229}{280} \delta^2 + \mathcal{O}(\delta^3)
\]

should be to be sufficient, which captures the exact function with 10\% accuracy. Equation (53) then implies a divergent response in the strongly anisotropic limits \(\delta \to \pm 1 \), resulting in an increase of conductivity. We display \(\lambda(\delta) \) together with the quadratic approximation in Fig. 4.

In the particle-hole asymmetric case with \(x \neq 0 \) (while maintaining spatial isotropy \(\delta = 0 \) for simplicity), the intraband contributions are obtained by replacing the mass \(m^* \) with the effective band masses from Eq. (10) and thus read

\[
\varepsilon^{(\text{upper})}(\omega) = -\frac{2\epsilon^2}{\epsilon_0 m_{\text{up}}^* \omega^2} \int_{\bf q} n_F \left(\frac{\epsilon^2}{2m_{\text{up}}^*} - \mu \right), \quad (55)
\]

\[
\varepsilon^{(\text{lower})}(\omega) = -\frac{2\epsilon^2}{\epsilon_0 m_{\text{low}}^* \omega^2} \int_{\bf q} n_F \left(\frac{\epsilon^2}{2m_{\text{low}}^*} + \mu \right). \quad (56)
\]

The corresponding QBT contribution in the absence of particle-hole symmetry is given by

\[
\varepsilon^{(\text{QBT})}(\omega) = \frac{e^2}{4\pi\epsilon_0} \sqrt{\frac{m^*}{\omega}} (1 + i)
\]

\[
- \frac{2e^2}{\epsilon_0 m^*} \int_{\bf q} n_F \left(\frac{\epsilon^2}{2m_{\text{up}}^*} - \mu \right) + n_F \left(\frac{\epsilon^2}{2m_{\text{low}}^*} + \mu \right)
\]

\[
- \frac{\epsilon^2}{\epsilon_0 m^*} \int_{\bf q} n_F \left(\frac{\epsilon^2}{2m_{\text{up}}^*} \right) - (\omega + i0)^2 + \epsilon^2/(m^*)^2,
\]

see our discussion at the end of Sec. III.A of the SM. Therein we also describe how \(x \neq 0 \) can be implemented easily when needed, which is necessary for studying the optical response of materials with sizeable \(x \), while still keeping \(|x| < 1 \) in order to have an inverted band structure. For the half-Heusler material YPtBi, however, \(x \approx 0.17 \) is estimated to be small. Furthermore, \(x \) is an irrelevant parameter in the sense of the renormalization group so that \(x \to 0 \) for \(\mu = 0 \) and very low frequencies. Hence for the rest of the paper we as-
FIG. 4. The homogeneous optical response for nonvanishing spatial anisotropy δ gets renormalized by a prefactor $\lambda(\delta)/\sqrt{1-\delta^2}$ that diverges for strong anisotropy. This statement is true for both the intraband and interband contributions, at both zero and nonzero temperature, for $x = 0$. For $\delta = 0$ we have, of course, $\lambda(0) = 1$. The solid line shows the function $\lambda(\delta)$ computed from the two-dimensional integral in Eq. (S.164) in the SM [54], whereas the dashed line corresponds to the expansion around $\delta = 0$ to quadratic order from Eq. (54). The latter should be sufficient for all practical purposes.

sume $x = 0$, which additionally implies an appealingly symmetric structure of the results.

C. Quasi-static limit

We now discuss the intraband and interband contributions in the quasi-static limit, where longitudinal and transverse components differ. We begin with the zero temperature case as it allows to give analytical expressions for the response functions. We assume $x = \delta = 0$. The intraband contributions to the longitudinal and transverse response functions in the limit $p^2/(2m^*\omega) \to 0$ with ω/vp held fixed read

$$\varepsilon^{(\text{intra})}_L(\omega, p) = \frac{n_0 e^2}{\epsilon_0 m^* v^2 p^2} \left[1 - \frac{\omega}{2vp} \ln \left(\frac{\omega + vp + i0}{\omega - vp + i0} \right) \right].$$

(58)

$$\varepsilon^{(\text{intra})}_T(\omega, p) = -\frac{n_0 e^2}{\epsilon_0 m^* 2v^2 p^2} \left[1 + \frac{vp}{2\omega} \left(1 - \left(\frac{\omega}{vp} \right) ^2 \right) \right]$$

$$\times \ln \left(\frac{\omega + vp + i0}{\omega - vp + i0} \right).$$

(59)

Here the logarithm for nonzero $0 \neq r \in \mathbb{R}$ is defined as

$$\ln(r \pm i0) = \begin{cases}
\ln r & (r > 0) \\
\ln(-r) \pm i\pi & (r < 0)
\end{cases}.$$

(60)

Note that the longitudinal contribution is logarithmically divergent for $\omega = vp$, whereas the transverse contributions remains finite for this frequency. We plot the functions, together with the finite temperature results presented below, in Fig. 5.

It is instructive to expand the response as a function of ω/vp in the asymptotic regimes. For $\omega \ll vp$ we obtain

$$\varepsilon^{(\text{intra})}_L(\omega, p) = -\frac{n_0 e^2}{\epsilon_0 m^* \omega^2} \left[1 + 3 \frac{3}{5} \left(\frac{vp}{\omega} \right) ^2 + \ldots \right].$$

(61)

$$\varepsilon^{(\text{intra})}_T(\omega, p) = -\frac{n_0 e^2}{\epsilon_0 m^* \omega^2} \left[1 + \frac{4}{5} \left(\frac{vp}{\omega} \right) ^2 + \ldots \right].$$

(62)

We observe that the leading L contribution is real, whereas the T contribution is predominantly imaginary. Furthermore, the L component is subleading compared to the T component, as it is suppressed by an additional power of ω/vp. The response functions in the quasi-static limit can also be expanded for $vp/\omega \ll 1$, which yields

$$\varepsilon^{(\text{intra})}_L(\omega, p) = -\frac{n_0 e^2}{\epsilon_0 m^* \omega^2} \left[1 + 3 \frac{3}{5} \left(\frac{vp}{\omega} \right) ^2 + \ldots \right].$$

(63)

$$\varepsilon^{(\text{intra})}_T(\omega, p) = -\frac{n_0 e^2}{\epsilon_0 m^* \omega^2} \left[1 + \frac{4}{5} \left(\frac{vp}{\omega} \right) ^2 + \ldots \right].$$

(64)

We observe to recover the homogeneous result in the limit $vp/\omega \to 0$.

The interband or QBT contributions at zero temperature in the quasi-static limit read

$$\varepsilon^{(\text{QBT})}_L(\omega, p) = \frac{e^2}{4\pi^2 \epsilon_0} \sqrt{\frac{2m^*}{E_F}} \left(1 + 3 \frac{3}{2} \left(\frac{vp}{\omega} \right) ^2 \right.$$

$$+ \frac{3\omega}{4vp} \ln \left(\frac{\omega + vp + i0}{\omega - vp + i0} \right).$$

(55)

$$\varepsilon^{(\text{QBT})}_T(\omega, p) = \frac{5e^2}{8\pi^2 \epsilon_0} \sqrt{\frac{2m^*}{E_F}} \left(1 + 3 \frac{3}{4} \left(\frac{vp}{\omega} \right) ^2 \right.$$

$$\times \left(1 - 3 \frac{3}{10} \left(\frac{vp}{\omega} \right) ^2 \right.$$

$$- \frac{3\omega}{20vp} \ln \left(\frac{\omega + vp + i0}{\omega - vp + i0} \right).$$

(56)

The corresponding real and imaginary parts are shown in Fig. 6, together with the finite temperature results. Both longitudinal and transverse response, although singular at $\omega = vp$, remain finite at this frequency. Expanding
the QBT contribution in powers of ω/v_p we obtain

$$
\varepsilon^{\text{QBT}}_L(\omega, p) = \frac{e^2}{4\pi^2\epsilon_0} \sqrt{\frac{2m^*}{E_F}} \left[1 - \frac{3\pi i \omega}{4v_p} + \frac{3}{2} \left(\frac{\omega}{v_p} \right)^2 + \ldots \right],
$$

(67)

$$
\varepsilon^{\text{QBT}}_T(\omega, p) = \frac{15e^2}{32\pi^2\epsilon_0} \sqrt{\frac{2m^*}{E_F}} \frac{\omega}{v_p} \left[1 + \frac{3\pi i \omega}{20v_p} + \frac{11}{15} \left(\frac{\omega}{v_p} \right)^2 + \ldots \right].
$$

(68)

In contrast to the intraband response, both leading contributions are real. Furthermore, as $\omega/v_p \to 0$ we observe that the longitudinal response becomes frequency-independent and settles at half the homogeneous value for $\omega \ll \mu$ given by $\varepsilon^{\text{QBT}}(0) = \frac{e^2}{4\pi^2\epsilon_0} \sqrt{\frac{2m^*}{E_F}}$. In contrast, the transverse contribution is divergent as $\omega/v_p \to 0$.

The quasi-static limit expressions for $v_p/\omega \ll 1$ read

$$
\varepsilon^{\text{QBT}}_L(\omega, p) = \frac{e^2}{2\pi^2\epsilon_0} \sqrt{\frac{2m^*}{E_F}} \left[1 + \frac{1}{10} \left(\frac{v_p}{\omega} \right)^2 + \ldots \right],
$$

(69)

$$
\varepsilon^{\text{QBT}}_T(\omega, p) = \frac{e^2}{2\pi^2\epsilon_0} \sqrt{\frac{2m^*}{E_F}} \left[1 + \frac{7}{10} \left(\frac{v_p}{\omega} \right)^2 + \ldots \right].
$$

(70)

In particular, for $v_p/\omega \to 0$ we obtain the homogeneous result for $\omega \ll \mu$, whereas the non-trivial frequency dependence of the homogeneous QBT contribution is lost in the quasi-static limit at zero temperature.

The very distinct behavior of the intraband and interband contributions as a function of ω/v_p is striking.
large ω/v_p, and so in the homogeneous limit, the QBT contribution is frequency independent and amounts to the constant anomalous contribution adding to the real part of $\varepsilon(\omega)$. For small ω/v_p, on the other hand, the intraband contributions are suppressed by powers of ω/v_p or $(\omega/v_p)^2$. The QBT contributions, on the other hand, are real and remain constant (longitudinal component) or diverge like $(\omega/v_p)^{-2}$ (transverse component). Hence the quasi-static limit is entirely dominated by the interband transitions and so genuinely different from systems with a single parabolic band.

At nonzero temperature the intraband contributions to the longitudinal and transverse response in the quasistatic limit are given by

$$
\varepsilon_L^{(\text{intra})}(\omega, p) = \frac{2e^2}{\epsilon_0 m^*} \int \frac{n_F(\frac{q^2}{2m^*} - \mu) + n_F(\frac{q^2}{2m^*} + \mu)}{-(\omega + i0)^2 + q^2p^2/(m^*)^2},
$$

(71)

$$
\varepsilon_T^{(\text{intra})}(\omega, p) = -\frac{e^2}{\epsilon_0 \omega} \int \frac{n_F(\frac{q^2}{2m^*} - \mu) + n_F(\frac{q^2}{2m^*} + \mu)}{q p} \times \ln \left(\frac{\omega + qp^* + i0}{\omega - qp^* + i0} \right),
$$

(72)

with $p^* = p/m^*$. We observe that a finite temperature regularizes the logarithmic divergence of the longitudinal contribution at $\omega = v_p$. The temperature dependence of the transverse response is weak. The QBT contributions at finite temperature read

$$
\varepsilon_L^{(\text{QBT})}(\omega, p) = \varepsilon_L^{(\text{QBT})}(\omega)
$$

$$+ \frac{e^2 m^*}{\epsilon_0} \int \frac{n_F(\frac{q^2}{2m^*} - \mu) + n_F(\frac{q^2}{2m^*} + \mu)}{q^4} \times \left[1 - 6 \left(\frac{\omega}{qp^*} \right)^2 \right] \ln \left(\frac{\omega + qp^* + i0}{\omega - qp^* + i0} \right),
$$

(73)

and

$$
\varepsilon_T^{(\text{QBT})}(\omega, p) = \varepsilon_T^{(\text{QBT})}(\omega)
$$

$$+ \frac{16e^2 m^*}{8\epsilon_0} \int \frac{n_F(\frac{q^2}{2m^*} - \mu) + n_F(\frac{q^2}{2m^*} + \mu)}{q^4} \times \left[\left(\frac{\omega}{qp^*} \right)^{-2} + \frac{1}{3} + \frac{8}{5} \left(\frac{\omega}{qp^*} \right)^2 \right] \log \left(\frac{\omega + qp^* + i0}{\omega - qp^* + i0} \right).
$$

(74)

The complexity of the quadratic band touching point in Luttinger semimetals allows for a rich variety of possible superconducting ordered states. The corresponding Bogoliubov–de Gennes (BdG) Hamiltonian is given by

$$
H_{\text{BdG}}(p) = \left(\begin{array}{cc} \hat{H}(p) - \mu & \hat{\Delta}(p) \hat{\Delta}^+(p) \vspace{1mm} \\ \hat{\Delta}^+(p) \hat{\Delta}(p) & -\hat{H}(p)^T + \mu \end{array} \right),
$$

(76)

with $\hat{H}(p)$ the Luttinger Hamiltonian from Eq. \[\text{(3)}\] and $\hat{\Delta}(p)$ a 4×4 gap matrix, so that the order parameter is given by $\langle \hat{\Delta}(p) \rangle$. In the simplest yet far from trivial case, the ordering is local and the gap matrix momentum independent. It can then be written as a sum of two parts according to

$$
\langle \hat{\Delta} \rangle = \left(\hat{\Delta}_{14} + \phi_{ij}J_iJ_j \right) \mathbf{T},
$$

(77)
where \mathcal{T} is the unitary part of the time-reversal operator (see Sec. S.I of the SM for an explicit definition). The first term in Eq. (77) describes s-wave singlet superconducting order with order parameter Δ, whereas ϕ_{ij} is a symmetric and traceless complex tensor order parameter which represents Cooper pairs having spin $\frac{1}{2}$. The onset of complex tensor order leads to very nontrivial momentum structures of the gap, having either line nodes or inflated Bogoliubov Fermi surfaces, that should manifest in nontrivial signatures in the optical conductivity. We do not explore this highly promising direction in this work, but refer to the next section for an outlook on aspects that should be addressed in the future.

For the present work we focus on the s-wave singlet superconducting order and assume without loss of generality that the order parameter is real, $\Delta \in \mathbb{R}$. The presence of a nonzero expectation value $\Delta \neq 0$ then leads to a full gap in the excitation spectrum. For $\mu = 0$, the opening of this gap requires sufficiently strong short-range interactions in the s-wave channel. At the critical coupling, the system features a quantum critical point at zero temperature, with non-Fermi liquid scaling of correlation functions and several other unusual scaling properties. For $\mu \neq 0$, an infinitesimally small attraction in the s-wave channel is sufficient for ordering below an (exponentially small) critical temperature due to the Cooper instability. We therefore refer to the superconducting states that arise for $\mu = 0$ and $\mu \neq 0$ as strong coupling and weak coupling superconductors, respectively. In both cases the transition is of second order and the gap $\Delta(T)$ vanishes continuously at the critical temperature. The temperature dependence of the order parameter $\Delta(T)$ follows from the solution to an appropriate gap equation, which, however, requires knowledge of the coupling constant of the material. Since this quantity is generally not known in practice, we present our results as a function of independent parameters Δ and T, which comprises the same information and seems more accessible.

The RPA is known to yield an insufficient description of the optical response of superconductors in the single band case as it leads to expressions that violate gauge invariance. In particular, Eq. (28) for the longitudinal response is not satisfied by the RPA expressions and thus leads to the question on how to interpret the outcome of the approximate calculation. It turns out that the RPA expression for the transverse response can be used to define the optical conductivity, whereas gauge invariance of the longitudinal components is restored by including vertex corrections (see e.g. Ref. 53 for a comprehensive discussion). We adopt this strategy for our analysis here as well and define the conductivity in the homogeneous case by

$$\sigma(\omega) := -\frac{4\pi \varepsilon_0}{i(\omega + 10)} K_T(\omega, 0).$$

For small frequencies the conductivity behaves like

$$\sigma_1(\omega) = \frac{\pi}{2} \delta(\omega) \frac{n^e e^2}{m^*},$$

$$\sigma_2(\omega) = \frac{n^e e^2}{m^* \omega}$$

with Drude weight factor $n' := \frac{4\pi \varepsilon_0 m^*}{e^2} \lim_{\omega \to 0} K_T(\omega, 0).$ Note that just like in Eq. (44) we define the δ-function to be restricted to $\omega \geq 0$, which explains the prefactor of $\frac{\pi}{2}$ when going from Eq. (78) to (79). A quantity closely related to n' is the superfluid density defined by

$$n_s := \frac{4\pi \varepsilon_0 m^*}{e^2} \lim_{p \to 0} K_T(0, p).$$

The superfluid density allows for computing the London penetration depth.

B. s-wave singlet superconductor

Let us first discuss the superconductor with $\mu \neq 0$ and typically $\mu \gg \omega, T, \Delta$ for weak coupling, although we do not impose the latter restriction on our formulas. The intraband contribution to the conductivity is of the form of Eqs. (79) and (80) for all frequencies with Drude weight factor $n'(\text{intra}) = \int \left(2 - \frac{\varepsilon_q}{E_q} \left[1 - 2n_F(E_q)\right] + \frac{f_q}{F_q} \left[1 - 2n_F(F_q)\right]\right)$, with upper and lower band quasiparticle dispersions

$$\varepsilon_q = \frac{q^2}{2m^*} - \mu, \quad E_q = \sqrt{\varepsilon_q^2 + \Delta^2},$$

$$f_q = -\frac{q^2}{2m^*} - \mu, \quad F_q = \sqrt{f_q^2 + \Delta^2}.$$

Note that the paramagnetic term $K_T^{(p,\text{intra})}(\omega, 0)$ vanishes within RPA, and so only the diamagnetic term contributes to Eq. (81). Furthermore, for $\Delta \neq 0$ the cancelation between diamagnetic and paramagnetic contribution to $\lim_{p \to 0} K_T^{(\text{intra})}(0, p)$ is not perfect, and we obtain a finite contribution to the superfluid density given by

$$n_s^{(\text{intra})} = n'(\text{intra}) + \frac{4}{3} \int q \frac{q^2}{2m^*} \left[\frac{\partial}{\partial E_q} n_F(E_q) + \frac{\partial}{\partial F_q} n_F(F_q)\right].$$

Notice that the term in the second line is negative and so we have $n'(\text{intra}) \geq n_s^{(\text{intra})}$, with equality at zero temperature. For vanishing gap, $\Delta \to 0$, the intraband contribution to the Drude weight reproduces n from Eq. (33) and the superfluid density vanishes.

The QBT contribution to the optical conductivity is given by
For $\omega \gg \Delta$ the response function resembles the features of the normal state response, whereas for smaller $\omega \sim \Delta$ the conductivity has the form of Eqs. (79) and (80) with

$$n'(\text{QBT}) = \frac{\Delta^2}{\mu} \int_q \left(\frac{1}{E_q[1 - 2n_F(E_q)]} - \frac{1}{F_q[1 - 2n_F(F_q)]} \right).$$

(88)

This expression is positive for either sign of μ. Remarkably, the QBT contributions to n' and n_μ coincide for all temperatures,

$$n'(\text{QBT}) = n_s'(\text{QBT}) \text{ for } \mu \neq 0,$$

(89)

due to

$$\lim_{p \to 0} K_T^{(\text{QBT})}(0, p) = \lim_{\omega \to 0} K_T^{(\text{QBT})}(\omega, 0)$$

(90)

for $\mu \neq 0$. This also holds in the normal phase, where $n'(\text{QBT}) = n_s'(\text{QBT}) = 0$. Indeed, the normal state QBT contribution is finite for $\omega = 0$ and $\mu \neq 0$, and the singular part of the optical response purely stems from the intraband terms. Note that both the intraband and QBT contributions to the Drude weight and superfluid density satisfy $n' \geq n_\mu$. (This is also true in the case of $\mu = 0$ discussed in the next section.) Consequently, there is no violation of the necessary requirement that the superfluid density must not exceed the density of charge carriers. In Fig. 7 we show the crossover of the conductivity from the normal state behavior for $\omega \gg \Delta$ to the superfluid behavior for small $\omega \sim \Delta$.

Equation (89) implies the usual exponentially weak temperature dependence $\sim e^{-\Delta/T}$ of the superfluid density and penetration depth for small temperatures that is characteristic for s-wave superconductors. In particular, for small temperatures $T \ll T_c$ such as in the experiments of Ref. 55 the temperature dependence of the gap $\Delta_0(T)$ that solves the corresponding gap equation is weak for an s-wave superconductor and so we can assume $\Delta_0(T) \approx \Delta_0(0)$ to be constant at low temperatures.

C. Strong coupling superconductor

A conceptually interesting limit of the formulas from the previous section consists in considering the case of $\mu = 0$. Such a superconductor with $\Delta \neq 0$ can obviously not be caused by the Cooper instability and requires very strong coupling between fermions, but as a theoretical limit it is still worthwhile to study. The gap Δ then constitutes the only energy scale of the system at zero temperature, and thus is the only quantity that alters the universal long-dashed line corresponds to the low-frequency behavior $n'(\text{QBT})e^2/(m^*\omega)$ with QBT contribution to the Drude weight from Eq. (88). We observe that $\sigma_2(\omega)$ changes sign and so connects the negative normal state limit for $\omega \gg \Delta$ to the positive Drude like scaling at low frequencies $\omega \sim \Delta$. The same behavior is found in the strong coupling case with $\mu = 0$, see Fig. 5.

![FIG. 7. Crossover from normal to superfluid behavior in the QBT contribution to the optical conductivity at $T = 0$. The black solid line shows the result in the s-wave superconducting case with gap $\Delta/E_F = 0.1$, whereas the black dashed line shows the corresponding normal state result. The orange long-dashed line corresponds to the low-frequency behavior $n'(\text{QBT})e^2/(m^*\omega)$ with QBT contribution to the Drude weight from Eq. (88). We observe that $\sigma_2(\omega)$ changes sign and so connects the negative normal state limit for $\omega \gg \Delta$ to the positive Drude like scaling at low frequencies $\omega \sim \Delta$. The same behavior is found in the strong coupling case with $\mu = 0$, see Fig. 5.](image-url)
The transverse response function for $\mu = 0$ is given by
\[
K_T^{(QBT)}(\omega, 0) = \frac{e^2(4\Delta^2 - \omega^2)}{2\pi\epsilon_0m^*} \int \frac{q^2}{2m^*} \frac{[1 - 2n_F(E_q)]}{E_q[-(\omega + i\Gamma)^2 + 4E_q^2]} \tag{91}
\]
with $E_q = \sqrt{q^4/(2m^*)^2 + \Delta^2}$. We define $\sigma(\omega)$ through $K_T^{(QBT)}(\omega, 0)$ by Eq. (78). The corresponding optical conductivity is plotted in Fig. 8 for a representative set of temperatures. The real part is given by
\[
\sigma_1^{(QBT)}(\omega) = \frac{\pi}{2} \delta(\omega) \frac{n'(QBT)e^2}{m^*} + \frac{e^2}{4\pi}(\omega - 2\Delta)\sqrt{m^*}\omega \left(1 - \frac{4\Delta^2}{\omega^2}\right)^{5/4} [1 - 2n_F(\omega/2)] \tag{92}
\]
with Drude weight factor
\[
n'^{(QBT)} = 2\Delta^2 \int \frac{q^2}{2m^*} \frac{1}{E_q}[1 - 2n_F(E_q)]. \tag{93}
\]
Similarly, the imaginary part for small ω follows Eq. (80) with $n'(QBT)$. Importantly, the conductivity is finite at $\omega = 2\Delta$. The contribution to the superfluid density is given by
\[
n_s^{(QBT)} = 2\Delta^2 \int \frac{q^2}{2m^*} \frac{1}{E_q}[1 - 2n_F(E_q)] + \frac{2}{E_q} \frac{\partial}{\partial E_q} n_F(E_q), \tag{94}
\]
which is the $\mu \to 0$ limit of Eq. (88). We conclude that $n'(QBT) > n_s^{(QBT)}$ for the superconductor with $\mu = 0$ at finite temperature. At zero temperature we find the explicit expression
\[
n'(QBT) = n_s^{(QBT)} = \frac{2\Gamma(\frac{5}{4})^2}{\pi^{5/2}(2m^*)^{3/2}} \tag{95}
\]
with Euler’s Γ-function $\Gamma(z)$.

The case of $\mu = 0$ allows us to make the short-comings of the RPA with respect to gauge invariance particularly visible. In fact, Eq. (26) implies that gauge invariance requires
\[
K_L^{(QBT)}(\omega, 0) = -\omega^2 Z_{QBT}(\omega). \tag{96}
\]
However, the RPA equations for $\mu = 0$ result in
\[
K_L^{(QBT,RPA)}(\omega, 0) = (4\Delta^2 - \omega^2) Z^{(RPA)}_{QBT}(\omega), \tag{97}
\]
which also holds at finite temperature, see Eq. (S.336) in the SM. We added the superscript RPA to emphasize that these quantities deviate from the physical or measurable observable which satisfy gauge invariance. If we use $Z_{QBT}^{(RPA)}(\omega)$ to define a conductivity by means of
\[
\tilde{\sigma}^{(QBT)}(\omega) := -4\pi\epsilon_0i\omega Z_{QBT}^{(RPA)}(\omega),
\]
then
\[
\tilde{\sigma}^{(QBT)}(\omega) = \frac{\omega^2}{\omega^2 - 4\Delta^2} \sigma^{(QBT)}(\omega). \tag{98}
\]
This quantity differs from $\sigma^{(QBT)}(\omega)$ in two crucial aspects: First, the imaginary part $\tilde{\sigma}^{(QBT)}(\omega)$ has a divergence at $\omega = 2\Delta$. Second, for $\omega \to 0$ we have $\tilde{\sigma}^{(QBT)}(\omega) \sim -\frac{4}{3m^*\Delta^3} \omega \to 0$, and so there is no Drude-like behavior at small frequencies. We leave it for future work to study how gauge invariance can be restored by including corrections that go beyond the RPA.

VI. SUMMARY AND OUTLOOK

In this work we have explored the optical conductivity of Luttinger semimetals in the normal and superconduct-
ing states. The motivation for this investigation is, on the one hand, recent experiments on the optical properties of Pyrochlore Iridates and half-Heusler superconductors, and, on the other hand, the recent theoretical discovery of a plethora of possible novel unconventional superconducting orders in QBT materials. Thus, although the optical properties of QBT systems in the normal state have been studied before in the context of \(\alpha\)-Sn \cite{[47]}, \(\chi \) is absent at the RPA level in the superconducting state, the density or current response functions.

\(\varepsilon \) us with a consistent picture in the normal state, where \(\chi \) satisfies the gauge invariance condition (26) for all values of \(\omega \). Consequently an ambiguity arises when defining, for instance, the homogeneous conductivity condition (26). Consequently an ambiguity arises when defining, for instance, the homogeneous conductivity condition (26). Consequently an ambiguity arises when defining, for instance, the homogeneous conductivity condition (26). Consequently an ambiguity arises when defining, for instance, the homogeneous conductivity condition (26). Consequently an ambiguity arises when defining, for instance, the homogeneous conductivity condition (26).

Our analysis has been built on the RPA, which constitutes the natural first step towards understanding the optical response functions. Crucially, in our analysis we have kept the full internal 4 \(\times \) 4-structure of the Luttinger Hamiltonian, which results in considerably unwieldy computations, but allows to identify both intraband and interband contributions in an unbiased way. In the normal state, the genuine QBT contribution from interband transitions is large at low-frequencies in the homogeneous limit, and it dominates the quasi-static limit. Furthermore, in the superconducting state the contribution from interband transitions is important to capture effects that are absent for single band systems. In particular, this includes Bogoliubov Fermi surfaces of certain superconducting orders in Luttinger semimetals. In the present work we have derived the general expression for the optical response in the superconducting state and applied it to the s-wave singlet superconducting case, where we find a genuine QBT contribution to the superfluid density and Drude weight.

The results that are shown in the main text of this work are either analytically evaluated or in terms of simple one-dimensional integrals. To achieve this simplicity we have restricted the presentation to the homogeneous and quasi-static limits, which are by far the most practically relevant ones. However, the full frequency and momentum dependence for the normal state response can be inferred from Eq. (S.225) for \(K_1^{(\text{QBT})} \) and Eq. (S.262) for \(\chi^{(\text{QBT})} \) in the SM \cite{[47]}. In particular, in Sec. S.III.G we show that the longitudinal QBT component satisfies the gauge invariance condition (26) for all values of \(\omega \) and \(p \), and so \(K_1^{(\text{QBT})} \) can be derived from \(\chi^{(\text{QBT})} \). This leaves us with a consistent picture in the normal state, where the L component \(e_{ij}^{(\text{QBT})} \) can be computed from either the density or current response functions.

The consistent picture of the normal state response is absent at the RPA level in the superconducting state, where \(\chi^{(\text{RPA})} \) and \(K_1^{(\text{RPA})} \) do not satisfy the gauge invariance condition (26). Consequently an ambiguity arises when defining, for instance, the homogeneous conductivity \(\sigma(\omega) \) from either of the two functions. This is a well-known feature for the single parabolic band, and a way around consists in either including vertex corrections to restore gauge invariance, or to use the transverse component of the current response function to define \(\sigma(\omega) \). We applied the second strategy here to infer the QBT contribution in the superconducting state, which gives the conveniently short expression for the conductivity in Eq. (77), but since we have not considered the effect of vertex corrections it is too early to conclude whether this approach is correct. For the superconductor with \(\mu = 0 \) we discussed in Eqs. (96)-(98) how the conductivity in the homogeneous limit differs qualitatively when defined from either \(K_1 \) or \(\chi \).

The present work can be extended in several directions, out of which we name a few in the following. One application in the normal and superconducting state is to quantify the anomalous skin effect in Luttinger semimetals, both in the normal and superconducting phase. In fact, the quasi-static limit \(q^2/(2m^* \omega) \ll \omega \ll v_F \) considered above is typically referred to as “extreme anomalous limit” in superconductors. The corresponding intraband contribution from the upper band has been derived in the seminal works by Mattis, Bardeen \cite{[62]} and by Abrikosov, Gor’kov, Khalatnikov \cite{[63]}. Since we have found the normal state response in the quasi-static limit to be dominated by the QBT contribution, the behavior of Luttinger semimetals is likely to be distinctively different from single band systems in the anomalous limit, with striking observable effects in both the normal and superconducting states.

The optical response in other than s-wave singlet superconducting states can be obtained by using the general expression for the fermion propagator in the mean-field approximation in Eq. (S.102) in the SM \cite{[47]} with a suitable gap matrix \(\Delta \) and repeating the steps outlined in Sec. S.IV. In fact, two very interesting and important cases are covered by the local gap matrix from Eq. (77) with \(\phi_{ij} \neq 0 \): (i) By choosing a real tensor \(\phi \neq 0 \), the effect of nematic superconducting order on the optical response can be probed. In particular, the nematic orders feature line nodes of the gap and a spontaneous breaking of rotation symmetry. It will be exciting to see how both effects manifest in the optical response and how they relate to the measurements on half-Heusler superconductors. (ii) Choosing a genuinely complex tensor \(\phi \) such that \(\text{tr}(\phi^2) = 0 \) we can study superconducting orders that spontaneously break time-reversal symmetry and lead to Bogoliubov surfaces in the gap \cite{[23],[18],[19]}. Again, this very intriguing finding calls to be explored within the framework of electromagnetic response functions.

In order to study the effects of strong interactions and critical fluctuations on the optical response of Luttinger semimetals, it is mandatory to go beyond the RPA. First, Coulomb interactions between the electrons are relevant and famously lead to Abrikosov’s non-Fermi liquid scaling of correlation functions (at least within certain regimes). Second, in the vicinity of a quantum critical point, as may be the case for Pr-227 as discussed in the Introduction, critical fluctuations of the order parameter can modify the nature of fermionic excitations. To solve such a setup self-consistently is a very challenging task.
and worth exploring. In a less ambitious attempt, however, it will also be interesting to assume that the mentioned strong interactions merely result in a renormalization of the fermion propagator and then use the renormalized propagator to estimate the optical response function from the fermionic one-loop diagram. Furthermore, the infrared regime can be addressed self-consistently by a scaling or renormalization group approach to infer the scaling exponents. These theoretical studies will help to design and interpret future experiments on Luttinger semimetals.

Acknowledgements

The author thanks Igor Herbut and Steve Dodge for inspiring discussions. This work was supported by the NSERC of Canada, the DoE BES Materials and Chemical Sciences Research for Quantum Information Science program, NSF Ideas Lab on Quantum Computing, DoE ASCR Quantum Testbed Pathfinder program, ARO MURI, ARL CDQI, and NSF PFC at JQI.

See Supplemental Material for algebraic conventions, a self-contained derivation of response functions from the path integral, and the computation of response functions for QBT systems in the normal and superconducting states.

