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Optical response of Luttinger semimetals in the normal and superconducting states

Igor Boettcher∗

Joint Quantum Institute, University of Maryland, College Park, MD 20742, USA

We investigate the optical response properties of three-dimensional Luttinger semimetals with the
Fermi energy close to a quadratic band touching point. In particular, in order to address recent
experiments on the spectroscopy of Pyrochlore Iridates and half-Heusler superconductors, we derive
expressions for the optical conductivity in both the normal and general superconducting states in
the linear response regime within the random phase approximation. The response functions can
be decomposed into contributions from intraband and interband transitions, the latter compris-
ing a genuine signature of the quadratic band touching point. We demonstrate the importance
of interband transitions in the optical response in the normal state both in the homogeneous and
quasi-static limit. Our analysis reveals a factorization property of the homogeneous conductivity in
the spatially anisotropic case and the divergence of the conductivity for strong spatial anisotropy. In
the quasi-static limit, the response is dominated by interband transitions and significantly different
from systems with a single parabolic band. As an applications of the formalism in the supercon-
ducting state we compute the optical conductivity and superfluid density for the s-wave singlet
superconducting case for both finite and vanishing chemical potential.

I. INTRODUCTION

Ignited by recent advances in growth and character-
ization of novel classes of spin-orbit coupled materials,
the study of many-body physics in three-dimensional
Luttinger semimetals with the Fermi energy close to an
inverted quadratic band touching point (QBT) is part
of the forefront of both theoretical and experimental
research on quantum materials. Already in the non-
interacting case these systems are highly compelling,
as applying strain or quantum confinement can induce
a topological insulator state, which furthermore is ro-
bust against weak perturbations1. An even richer man-
ifold of possible macroscopic phases emerges when con-
sidering the effects of long-range or sufficiently strong
short-range interactions. Some of the currently most ac-
tively investigated platforms for exploring interactions in
QBT systems are Pyrochlore Iridates2 and half-Heusler
superconductors3,4. In particular, two recent measure-
ments of their intriguing conductance properties consti-
tute the motivation for the present work5,6.

What makes the study of many-body physics and in-
teractions in Luttinger semimetals so fascinating can be
attributed to two main features. Firstly, as realized by
Abrikosov, the long-range Coulomb repulsion between
electrons at the QBT point induces a non-Fermi liquid
(NFL) phase of the system7–9. Although the ultimate
stability of this phase is currently still debated, as emer-
gent strong short-range interactions may eventually drive
the system into a topological Mott insulator state10–13,
it is fairly certain that correlation functions will show
anomalous scaling over some extended range of experi-
mental parameters such as temperature, momentum, and
frequency. Secondly, since the electrons occupying the
QBT point carry an effective spin of 3/2, many novel and
often tensorial order parameters can be constructed close
to the touching point14–35. Fortunately both magnetic
and superconducting orders of this type are, respectively,
covered by the Pyrochlore Iridates and half-Heusler com-

pounds in experiment.

Pyrochlore Iridates, having structural formulaR2Ir2O7

(denoted R-227 for short) with R a rare-earth element,
have been shown to host a QBT point at the Fermi en-
ergy both via theoretical calculations2 and experimental
ARPES studies36,37. Most members of the material class
show a transition to an insulating phase with octupolar
magnetic order at temperatures around 100 K38. How-
ever, the critical temperature is reduced for Nd-227, and
no finite-temperature transition has been observed in Pr-
227. Furthermore, Pr-227 may be close to a quantum
critical point as a function of ionic radius of R, implying
that its high temperature phase lies in the corresponding
critical fan and thus shows nontrivial scaling of observ-
ables as a function of temperature.

A recent THz spectroscopy study5 by the Armitage
group on the optical response of Pr-227 in the normal
phase revealed a large additive anomalous contribution
to the dielectric function compared to the Drude formula,
which can be traced theoretically to originate from inter-
band transitions between the upper and lower bands of
the QBT point by Broerman’s formula39. The determi-
nation of the scattering rate shows a τ−1 ∝ T 2 tem-
perature dependence, however, with an unusually large
prefactor indicating that the system may be strongly cou-
pled in the normal phase. The presence of a finite Fermi
energy EF > 0 (measured from the QBT point) in the
experiment sets a limit on the intermediate frequency
and temperature ranges where nontrivial scaling such as
Abrikosov’s NFL behavior could be observed. Measuring
at larger frequencies or higher temperatures (both com-
pared to EF), or minimizing EF directly, will allow to ex-
perimentally test whether the NFL phase is achieved in
the normal phase of Pr-227, and thus shedding light onto
other QBT systems where long-range interactions are im-
portant. This clearly calls for a fresh and extended view
on the frequency and temperature dependence of the op-
tical conductivity in Luttinger semimetals. Note that the
existence of plasmon excitations in the normal state has
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recently been addressed in Ref.40.

In half-Heusler superconductors the presence of a QBT
point close to the Fermi energy is supported by extensive
density functional calculations of the band structure4. (A
small linear admixture to the QBT is generally expected
due to the noncentrosymmetric crystal structure20, but
its effect on the low-energy physics can be estimated to be
subleading for realistic EF

27.) Importantly, several com-
pounds have an inverted band structure and become su-
perconducting at temperatures around 1 K3,41–43. Given
the low-density in these materials, reflected by a small
value of EF, such critical temperatures need to be con-
sidered high and seem to require a more complex mech-
anisms than phonon mediated attraction19.

The case for unconventional superconductivity in the
half-Heuslers was strengthened enormously by a recent
measurement of the London penetration depth in YPtBi6

by the Paglione group, which shows an almost linear tem-
perature dependence of the observable at low tempera-
tures T/Tc ∼ 0.1, and thereby indicates the presence
of line nodes in the gap. Whereas this eliminates the
possibility for a pure s-wave gap, the spin-3/2 nature
of the fermions at the QBT point allows to construct
many other pairing channels (with or without even-odd-
parity mixing) that feature line nodes. Since the associ-
ated orders are typically tensorial in nature, an angular
resolved measurement of the optical properties appears
to be a first step towards eliminating certain candidate
orders. More generally, a solid understanding of how dis-
tinct superconducting orders contribute to the frequency
and directional dependence of the optical conductivity
in Luttinger semimetals could be central to discerning
which pattern is realized in a given material in future
experiments.

The scope of this work is therefore to set up a frame-
work for studying the optical response of Luttinger
semimetals in the normal and superconducting phase
that allows to address the challenges described above and
support future experimental explorations of QBT sys-
tems. We use a purely field theoretic approach starting
from the path integral to arrive at the optical conduc-
tivity in the linear response regime within the random
phase approximation (RPA). In particular, we formulate
the theory such as to allow for the complex and uncon-
ventional superconducting orders that are possible in the
system. We recover the expressions for the longitudinal
response in normal state of Ref.39 and extend these works
by addressing anisotropic corrections, gauge invariance,
transverse response, and momentum dependence of re-
sponse functions. We derive general formulas for the re-
sponse functions in superconductors with a QBT point
and apply them to the s-wave singlet superconductor as
a proof of principle. Since the experiments for supercon-
ducting YPtBi are in the clean limit41, we do not consider
the effects of disorder in the present work.

The picture that appears on the RPA level, and which
underlies the interpretation of the experiments in Ref.5,
is illustrated in Fig. 1. The optical response functions,
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FIG. 1. The contributions to the dielectric tensor εij(ω,p)
can be split into three parts. The first two arise from in-
traband transitions within, respectively, the upper or lower
band, and as such can be computed without knowledge of the
other bands. In contrast, interband transitions or genuine
QBT contributions are not captured by a single-band model.
They encode, however, many important physical features of
Luttinger semimetals. For instance, in the normal state they
lead to a divergent contribution at low frequency as EF → 0,
or they contain the response from Bogoliubov Fermi surfaces
in certain time-reversal symmetry breaking superconducting
states—a feature entirely absent in single band systems.

given by the dielectric tensor εij(ω,p) or conductivity
tensor σij(ω,p), decompose into a sum of intraband and
interband transitions. The intraband contribution can
be obtained from knowledge of the optical response of a
single parabolic band, for instance by the usual Drude or
Lindhard formulas in the normal state. The interband
contribution, on the other hand, is a genuine contribu-
tion due to the QBT that cannot be captured by the
theory for a single band. (We therefore also refer to it as
“QBT contribution”.) It also constitutes the anomalous
contribution observed in Ref.5. We write

ε(ω,p) = 1 + ε(intra)(ω,p) + ε(QBT)(ω,p), (1)

ε(intra)(ω,p) = ε(upper)(ω,p) + ε(lower)(ω,p). (2)

For nonzero EF, one may expect only the band that
is pierced by the chemical potential to contribute signif-
icantly to the response, whereas all other filled or empty
bands are irrelevant. In Luttinger semimetals the QBT
contribution quantifies how inaccurate this picture can
be. On a more technical level, the interband contri-
bution is conveniently incorporated by keeping the full
4×4 structure of the underlying Luttinger Hamiltonian44

instead of projecting it onto the two-dimensional ba-
sis spaces for the upper and lower band. This conve-
niently incorporates interband. This also accounts for
presence of Bogoliubov Fermi surfaces in certain time-
reversal symmetry breaking superconducting states in
QBT systems23,45,46.

This work consists of two major parts. In the first or
main part, after a review of the Luttinger Hamiltonian
and optical response functions, we present the relevant
formulas for the dielectric function and optical conduc-
tivity in the normal and s-wave superconducting phase
and discuss their features. This presentation is inten-
tionally left concise and does not illuminate any details
how the results were obtained. The formulas are either
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given in fully analytic form or as one-dimensional inte-
grals. In order to facilitate the comparison with exper-
iment, results are presented in SI units, displaying the
effective band mass m∗ explicitly in all formula. (We
employ ~ = kB = 1 throughout the manuscript though.)

In the supplemental material (SM,47) we give a self-
contained derivation of the optical response of QBT
Hamiltonians starting from the path integral, and then
present the detailed calculation of the response functions
presented in the main part. This extensive discussion of
the setup also allows us to fix our notation and conven-
tions, and set the stage for future works. Sections and
equations in the SM are indicated by a prefix “S”. The re-
sults for the normal state are derived in Sec. S.III and the
results for the superconducting state in S.IV. We show
that the QBT contribution satisfies gauge invariance in
the normal state in Sec. S.III.C and derive the transverse
current response in Sec. S.III.D. Algebraic conventions
and matrix representations are specified in Sec. S.II. In
the SM we work with Gauss units and set 2m∗ = 1.

II. LUTTINGER SEMIMETALS

We assume the band structure of the QBT point to
be described by the Luttinger model. The corresponding
4× 4 electronic single-particle Hamiltonian44 reads

Ĥ =
(
α1 +

5

2
α2

)
p̂214 − 2α3(p̂ · ~J)2

+ 2(α3 − α2)

3∑
i=1

p̂2
iJ

2
i . (3)

Here p̂ = −i∇ is the momentum operator and ~J =
(J1, J2, J3)T encompasses the spin-3/2 matrices. The
Luttinger parameters α1, α2, α3 characterize the specific
details of the QBT in a given material and may be de-
termined experimentally or from first principle electronic
band structure calculations. The number of such inde-
pendent parameters is dictated by the symmetries that
govern the low-energy excitations. Equation (3) captures
the most general QBT Hamiltonian in the presence of
time-reversal, inversion, and cubic point group symme-
try. The number of independent parameters decreases
upon imposing further symmetry constraints.

In order to elucidate the interplay between symmetry
and band structure in the Luttinger model, we define the
effective band mass m∗ by

1

2m∗
= |α2 + α3|, (4)

the particle-hole asymmetry parameter by

x =
α1

|α2 + α3|
, (5)

and the spatial anisotropy parameter by

δ =
α3 − α2

α2 + α3
∈ [−1, 1]. (6)

The single-particle energies that follow from the Lut-
tinger Hamiltonian then take the form

E±(p) = α1p
2 ±

[
4α2

2p
4 + 12(α2

3 − α2
2)
∑
i<j

p2
i p

2
j

]1/2
(7)

=
1

2m∗

(
xp2 ±

[
(1− δ)2p4 + 12δ

∑
i<j

p2
i p

2
j

]1/2)
.

Each eigenvalue is doubly degenerate due to time-reversal
and inversion symmetry. We consider here the band in-
verted case which corresponds to

|x| < 1. (8)

The band structure then features an upper band with
positive energies E+ and a lower band with negative en-
ergies E− for nonzero momenta. Furthermore, for x = 0
the spectrum of excitations becomes particle-hole sym-
metric, whereas δ = 0 implies a spatially isotropic band
structure with

E±(p) =
(x± 1)

2m∗
p2, (9)

corresponding to an effective upper and lower band mass
of

m∗up =
m∗

1 + x
, m∗low =

m∗

1− x
, (10)

respectively. Although in a given material at hand these
symmetries may not be realized exactly, it is a useful
simplification to neglect x and δ in calculations as long as
these parameters are small compared to unity. Therefore,
unless stated otherwise we set x = δ = 0 in this work,
but discuss the influence of nonvanishing x and δ on the
homogeneous response functions in the normal state at
the end of Sec. IV B.

A particularly important role for the faithful descrip-
tion of experimental data by means of the Luttinger
model is played by the chemical potential µ. For our
investigation we allow µ to have either sign, and define
the Fermi energy and Fermi momentum from its modulus
according to

EF :=
p2

F

2m∗
:= |µ|. (11)

The condition that the low-energy physics are captured
by the QBT in the band dispersion then implies that
EF � Eκ, where Eκ = κ2/(2m∗) is an “ultraviolet”
energy scale where either the electronic band structure
deviates significantly from the quadratic dispersion for
q > κ, or where other low-energy degrees of freedom
such as phonons become relevant. On the other hand,
the parabolic band structure may be screened by a lin-
ear band structure at low momenta that results, for in-

stance, from adding Ĥlin = β1(p̂ · ~J) + β2

∑
i piJ

3
i to

the Hamiltonian in Eq. (3). Such contributions arise in
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non-centrosymmetric materials due to asymmetric spin-
orbit coupling, and their presence implies a typical “in-
frared” energy scale Elin ∼ |β1,2|pF. Consequently, the
linear terms can be neglected if the chemical potential is
sufficiently large so that Elin � EF and, therefore, the
relevant excitations at the Fermi level are dominated by
the quadratic terms. Consequently, in the following the
limit µ→ 0 needs to be understood within the Luttinger
model, meaning that the Fermi level is close enough to
the QBT point so that µ ≈ 0 is a good approximation,
but the chemical potential is still large enough so that lin-
early dispersing terms at even lower energies (if present)
are irrelevant.

III. OPTICAL RESPONSE FUNCTIONS

The electrodynamic properties of solids in the linear
response regime are encoded in the dielectric tensor εij
relating electric displacement field ~D and electric field ~E
according to48–50

Di(ω,p) = ε0εij(ω,p)Ej(ω,p). (12)

Here ε0 is the vacuum permittivity, ω and p constitute
(angular) frequency and momentum of the incident elec-
tromagnetic field, and we have defined εij to be a di-
mensionless quantity. Throughout this work we use the
Einstein sum convention that we sum over repeated in-
dices. In the following we consider nonmagnetic materi-
als with permeability equal to 1. The linear response is
then equivalently expressed in terms of the conductivity
σij given by

σij(ω,p) = iωε0

[
δij − εij(ω,p)

]
, (13)

which relates the internal current density ~jint and electric
field according to

jint,i(ω,p) = σij(ω,p)Ej(ω,p). (14)

In a spatially isotropic medium, the tensorial response
functions for nonzero p can be decomposed into longitu-
dinal (L) and transverse (T) components according to

σij(ω,p) = σL(ω, p)
pipj
p2

+ σT(ω, p)
(
δij −

pipj
p2

)
. (15)

Crucially, a longitudinal (transverse) electromagnetic
probe field can only induce a longitudinal (transverse)
response, i.e.

~jint,L(ω,p) = σL(ω, p) ~EL(ω,p), (16)

~jint,T(ω,p) = σT(ω, p) ~ET(ω,p), (17)

with the usual definition of the longitudinal and trans-
verse parts of the vector fields. Equation (13) implies

σL(ω, p) = iωε0

[
1− εL(ω, p)

]
, (18)

σT(ω, p) = iωε0

[
1− εT(ω, p)

]
. (19)

The advantage of studying σL,T(ω, p) over σij(ω,p) lies
in the fact that the L and T components are scalar func-
tions of p = |p|, and so the limit p→ 0 is defined unam-
biguously.

The experiments we attempt to quantify with our anal-
ysis are such that the spatial inhomogeneity of the exter-
nal probe fields is irrelevant so that setting p = 0 is a
valid approximation. In this limit, the distinction be-
tween L and T components is meaningless and Eq. (14)
provides a definition of σij(ω,0) that does not require ref-
erencing to an external momentum. The tensorial char-
acter of this quantity is necessarily trivial and so

σij(ω,0) = σ(ω)δij , (20)

which defines the homogeneous conductivity σ(ω). This
quantity also coincides with the p → 0 limit of the L
and T contributions when the limit is taken for ω > 0,
as generally the limits p → 0 and ω → 0 do not com-
mute. In fact, although any spatial dependence of the
electric field is unimportant, in practice it will not be
strictly zero. We can then perform the limit p → 0 in
Eq. (15) explicitly by assuming (without loss of gener-
ality) that the strongest spatial inhomogeneity of p is
in the z-direction, hence p ≈ (0, 0, p)T. Then, by com-
puting the individual components σij(ω,p) in the limit
p→ 0 and comparing to Eq. (20) we deduce that

ε(ω) = εL(ω, 0) = εT(ω, 0), (21)

σ(ω) = σL(ω, 0) = σT(ω, 0). (22)

Equations (21) and (22) allow us to conveniently dis-
cuss the optical response of materials in terms of a single
frequency-dependent function.

In order to facilitate the comparison with experiment
we employ SI units here with ε0 = 8.854 × 10−12F m−1

and electric charge e = 1.602 × 10−19C. For computing
the response functions from the underlying microscopic
model, as it is presented in the SM47, we conveniently
use Gauss units. The corresponding electric charge in
Gauss units will be denoted by an overbar, and is given

by ē = 1.519 × 10−14m3/2kg1/2s−1. Both quantities are
related by

ē2 =
e2

4πε0
. (23)

Further, the dielectric function and conductivity in Gauss
units, denoted as ε̄ and σ̄ with an overbar, are de-

fined from ~D(ω,p) = ε̄(ω,p) ~E(ω,p) and ~jint(ω,p) =

σ̄(ω,p) ~E(ω,p). They are mutually related by σ̄(ω,p) =
iω
4π [1− ε̄(ω,p)], and are obtained from the response func-
tion in SI units by means of

ε̄(ω,p) = ε(ω,p), (24)

σ̄(ω,p) =
1

4πε0
σ(ω,p), (25)

with the charge translated according to Eq. (23).
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Our approach to computing the optical response lies
in a field theoretic determination of the density-density
response function −χ(ω, p) and current-current response
function −Kij(ω,p) within RPA. We refer to the SM47

for their definition, and limit ourselves here to a brief
discussion of their key properties. We first note that
gauge invariance implies

ω2χ(ω, p) = −p2KL(ω, p). (26)

The L component of the dielectric function is given by

εL(ω, p) = 1 + 4π
χ(ω, p)

p2
, (27)

and the conductivity reads

σij(ω,p) = −4πε0
iω

Kij(ω,p). (28)

Equation (26) guarantees that the L components satisfy
σL = iωε0(1−εL). Furthermore, it implies that χ(ω, 0) =
0 for ω > 0. For small momenta we may then expand
the density response in power of p and obtain

χ(ω, p) = Z(ω)p2 +O(p4). (29)

Consequently, in the limit p = 0 the dielectric function
is given by

ε(ω) = 1 + 4πZ(ω), (30)

and we have σ(ω) = −iω ·4πε0 ·Z(ω) for the conductivity.
The function Kij(ω,p) is useful for studying several

important conceptual aspects of the optical response of
media51. First note that gauge invariance through Eq.
(26) implies KL(0, p) = 0. Hence the static response
(meaning ω = 0) is purely transverse. On a technical
level, the absence of the static L component requires a
perfect cancellation between the diamagnetic (”d”) and
paramagnetic (”p”) contributions to the current-current
response. Referring to the SM47 for details of their defini-
tion, we note here that the response function is naturally
split into the diamagnetic and paramagnetic contribu-
tions according to

Kij(ω,p) = K
(d)
ij (ω,p) +K

(p)
ij (ω,p). (31)

Whereas the perfect cancellation is also valid for the
static T component in the normal state, this situation
is fundamentally altered in the superconducting state.
Intuitively, the diamagnetic contribution comes from all
electrons of the system, whereas only electrons on the
Fermi surface contribute to the paramagnetic term. Since
electron excitations at the Fermi surface are gapped
(hence only thermally populated) in a superconductor,
the diamagnetic term then dominates over the paramag-
netic one. In this context, the superfluid density ns is
defined according to

lim
p→0

KT(0, p) =
e2ns

4πε0m∗
. (32)

Clearly we have ns = 0 in the normal state. For a
clean single-band superconductor in the mean-field ap-
proximation, we find that the paramagnetic contribution
vanishes completely at zero temperature, and the trans-
verse response is entirely given by the diamagnetic term

K
(d)
T (ω, p) = e2n

4πε0m∗
, and so the superfluid density agrees

with the electron density: ns = n. In a more realistic
setup, considering interaction and impurity effects, we
generally have ns < n even at zero temperature.

IV. NORMAL STATE RESPONSE

We begin our analysis of optical response in Luttinger
semimetals by considering systems in the normal state.
Unless explicitly stated we consider the particle-hole and
rotationally symmetric case with x = δ = 0, which en-
compasses the key qualitative features of the optical re-
sponse within the Luttinger model as long as these pa-
rameters are small compared to unity. The formulas pre-
sented here are derived in Sec. S.III of the SM47.

A. Scales and limits

The optical response in the normal state is determined
by the frequency and momentum of the probe field, ω
and p, and the thermodynamic parameters µ and T . The
density of charge carriers within RPA reads

n = 2

ˆ
q

[
nF

( q2

2m∗
− µ

)
+ nF

( q2

2m∗
+ µ

)]
, (33)

where we denote
´
q

=
´

d3q
(2π)3 and nF(E) = (eE/T +1)−1.

At zero temperature we obtain

n0 :=
p3

F

3π2
=

(2m∗|µ|)3/2

3π2
. (34)

This coincides with the density of carriers of a single
parabolic band at zero temperature since fluctuation ef-
fects between electrons on distinct bands are suppressed
in our mean field approximation.

In the following we consider two ways of taking the
low-momentum limit p2/(2m∗ω) → 0, which is typically
well-satisfied for spectroscopic experiments. The first ap-
proach, which we refer to as the homogeneous limit, corre-
sponds to taking the limit for a fixed ratio of ω/µ. This
basically corresponds to setting p = 0 in the response
functions. Importantly, in the homogeneous limit, lon-
gitudinal and transverse response coincide. The second
way to perform the limit, which we refer to as quasi-static
limit, corresponds to keeping the ratio ω/vp fixed, where

v :=
pF

m∗
=

√
2|µ|
m∗

(35)

is the Fermi velocity. Clearly, p2

2m∗ω → 0 while ω
vp < ∞

implies that ω � µ. The dominance of the chemical



6

  

FIG. 2. The low-momentum regime with p2/(2m∗)� ω nat-
urally decomposes into two sectors depending on whether the
product vp with Fermi velocity v ∝

√
EF is dominating or ir-

relevant compared to the remaining energy scales such as ω or
T . For vp � ω, which amounts to setting p = 0 in practice,
we obtain the homogeneous limit, where L and T response
coincide. For vp & ω, on the other hand, frequencies are nec-
essarily small compared to µ and hence this regime is labelled
the quasi-static limit. The inherent momentum dependence
of the response then implies that L and T contributions differ.

potential over all other scales, on the other hand, is a
common scenario in solid state systems and thus clearly
deserves consideration here. If in addition ω/vp � 1 we
are in a regime such that

p2

2m∗
� ω � vp. (36)

These inequalities are often taken as the definition of
the quasi-static limit49, so our definition is slightly more
generous. We summarize the setup in Fig. 2.

B. Homogeneous limit

The intraband contribution from the upper and lower
bands in the clean limit takes the usual form

ε(intra)(ω) = −
ω2

p

ω(ω + i0)
, (37)

σ(intra)(ω) = −
ε0ω

2
p

i(ω + i0)
, (38)

with the Plasma frequency ωp defined from the carrier
density n according to

ω2
p =

ne2

ε0m∗
. (39)

The individual contributions from the upper and lower
bands to the conductivity are given by

ε(upper)(ω) = − 2e2

ε0m∗
1

ω2

ˆ
q

nF

( q2

2m∗
− µ

)
, (40)

ε(lower)(ω) = − 2e2

ε0m∗
1

ω2

ˆ
q

nF

( q2

2m∗
+ µ

)
. (41)

The effect of nonmagnetic impurities can be included in
Eqs. (37) and (38) by a shift ω → ω+i/τ with scattering
time τ , or scattering rate Γ = τ−1. Assuming for sim-
plicity that the scattering rates for the upper and lower
band are equal we obtain

ε(intra)(ω) = −
ω2

p

ω(ω + i/τ)
, (42)

σ(intra)(ω) =
ε0ω

2
pτ

1− iωτ
. (43)

For large scattering rate, the conductivity is approxi-
mately real and frequency independent. For small scat-
tering rate τ−1 → 0, on the other hand, Eq. (38) implies

σ
(intra)
1 (ω) =

π

2

ne2

m∗
δ(ω), (44)

σ
(intra)
2 (ω) =

ne2

m∗ω
(45)

for the real and imaginary parts. The δ-function in σ1(ω)
is restricted to non-negative frequencies, hence the nor-
malization with π/2.

The interband or QBT contribution to the dielectric
function in the clean limit is given by39

ε(QBT)(ω) =
e2

4πε0

√
m∗

ω
(1 + i) (46)

− 2e2

ε0m∗

ˆ
q

nF( q2

2m∗ − µ) + nF( q2

2m∗ + µ)

−(ω + i0)2 + q4/(m∗)2
.

Here the first contribution is of particular significance.
Its peculiar form originates from the appearance of the
square root of iω after analytic continuation from Mat-
subara frequencies p0, ip0 → ω + i0, according to

1
√
p0
→ 1√

−iω
=

1√
2ω

(1 + i). (47)

In the limit µ, T → 0, only the first line of Eq. (46) con-
tributes to the response, and we obtain a 1/

√
ω-divergent

low-energy response according to

lim
µ,T→0

ε(QBT)(ω) =
e2

4πε0

√
m∗

ω
(1 + i). (48)

Since the intraband contribution from the upper and
lower bands vanishes in this limit, the optical response
is then entirely dominated by the interband transitions,
and thus genuinely different from a single band system.

For general µ and T , the imaginary part of Eq. (46)
can be computed analytically and reads

ε
(QBT)
2 (ω) =

e2

4πε0

√
m∗

ω

[
1− nF

(ω
2
− µ

)
− nF

(ω
2

+ µ
)]
.

(49)

In particular, at zero temperature we arrive at

ε
(QBT)
2 (ω) =

e2

4πε0

√
m∗

ω
θ(ω − 2EF). (50)
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In order to compute the real part of Eq. (46) for nonzero
temperatures, the integral can be evaluated for a small
finite value of i0 or in terms of the principal value. At
zero temperature we have

ε
(QBT)
1 (ω) =

e2

4πε0

√
m∗

ω

[
1− 2

π
arctan

(√2EF

ω

)
− 1

π
ln
( |1−√ω/(2EF)|

1 +
√
ω/(2EF)

)]
. (51)

In the limit ω → 0 we are left with a real response given
by

ε(QBT)(0) =
e2

2π2ε0

√
2m∗

EF
. (52)

We observe that a nonzero Fermi energy regularizes the
1/
√
ω-divergence of both the real and imaginary parts of

the low-frequency response. We display the temperature
dependence of the QBT contribution in Fig. 3.

In the spatially anisotropic case with δ 6= 0 (while
still keeping particle-hole symmetry so that x = 0), the
intraband and interband contributions to the response
functions factorize into the isotropic formula and a δ-
dependent prefactor. In particular, this prefactor is iden-
tical for the individual terms, and so we have an overall
factorization according to

σ(ω) =
λ(δ)√
1− δ2

× σ(ω)|δ=0. (53)

The factorization also holds for nonzero temperatures.
Here λ(δ) is a regular function for all values of δ and
can be computed numerically to arbitrary precision in
terms of the two-dimensional angular integral given in
Eq. (S.164) in the SM47. For all practical purposes the
quadratic approximation

λ(δ) = 1− 1

10
δ +

229

280
δ2 +O(δ3) (54)

should be to be sufficient, which captures the exact func-
tion with 10% accuracy. Equation (53) then implies
a divergent response in the strongly anisotropic limits
δ → ±1, resulting in an increase of conductivity. We dis-
play λ(δ) together with the quadratic approximation in
Fig. 4.

In the particle-hole asymmetric case with x 6= 0 (while
maintaining spatial isotropy δ = 0 for simplicity), the in-
traband contributions are obtained by replacing the mass
m∗ with the effective band masses from Eq. (10) and thus
read

ε(upper)(ω) = − 2e2

ε0m∗up

1

ω2

ˆ
q

nF

( q2

2m∗up

− µ
)
, (55)

ε(lower)(ω) = − 2e2

ε0m∗low

1

ω2

ˆ
q

nF

( q2

2m∗low

+ µ
)
. (56)

0 1 2 3 4 5 6

0.6
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FIG. 3. QBT contribution to the homogeneous dielectric
function ε(ω). We show the real and imaginary part in the up-
per and lower plot, respectively, as a function of ω/EF. Here
we normalize the expressions by the zero temperature limit

ε(0) = e2

2π2ε0

√
2m∗/EF. The distinct curves (from bottom to

top along the zero frequency axis) correspond to T/EF-values
of 0 (black), 0.1 (orange), 0.3 (blue), 0.5 (magenta). At zero
temperature we observe singular behavior at ω = 2EF, which
extends to an anomalously large, 1/

√
ω-divergent contribu-

tion to both the real and imaginary parts of the optical re-
sponse as EF → 0. At nonzero temperature the functions
remain regular.

The corresponding QBT contribution in the absence of
particle-hole symmetry is given by

ε(QBT)(ω) =
e2

4πε0

√
m∗

ω
(1 + i) (57)

− 2e2

ε0m∗

ˆ
q

nF( q2

2m∗up
− µ) + nF( q2

2m∗low
+ µ)

−(ω + i0)2 + q4/(m∗)2
,

see our discussion at the end of Sec. S.III.A of the SM47.
Therein we also describe how x 6= 0 can be implemented
easily when needed, which is necessary for studying the
optical response of materials with sizeable x, while still
keeping |x| < 1 in order to have an inverted band struc-
ture. For the half-Heusler material YPtBi, however,
x ' 0.17 is estimated to be small6,27. Furthermore, x
is an irrelevant parameter in the sense of the renormal-
ization group so that x → 0 for µ = 0 and very low
frequencies18,22. Hence for the rest of the paper we as-
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2.2

∆
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FIG. 4. The homogeneous optical response for nonvanish-
ing spatial anisotropy δ gets renormalized by a prefactor
λ(δ)/

√
1− δ2 that diverges for strong anisotropy. This state-

ment is true for both the intraband and interband contribu-
tions, at both zero and nonzero temperature, for x = 0. For
δ = 0 we have, of course, λ(0) = 1. The solid line shows the
function λ(δ) computed from the two-dimensional integral in
Eq. (S.164) in the SM47, whereas the dashed line corresponds
to the expansion around δ = 0 to quadratic order from Eq.
(54). The latter should be sufficient for all practical purposes.

sume x = 0, which additionally implies an appealingly
symmetric structure of the results.

C. Quasi-static limit

We now discuss the intraband and interband contri-
butions in the quasi-static limit, where longitudinal and
transverse components differ. We begin with the zero
temperature case as it allows to give analytical expres-
sions for the response functions. We assume x = δ =
0. The intraband contributions to the longitudinal and
transverse response functions in the limit p2/(2m∗ω)→ 0
with ω/vp held fixed read

ε
(intra)
L (ω, p) =

n0e
2

ε0m∗
3

v2p2

[
1− ω

2vp
ln
(ω + vp+ i0

ω − vp+ i0

)]
,

(58)

ε
(intra)
T (ω, p) = − n0e

2

ε0m∗
3

2v2p2

[
1 +

vp

2ω

[
1−

( ω
vp

)2]
× ln

(ω + vp+ i0

ω − vp+ i0

)]
. (59)

Here the logarithm for nonzero 0 6= r ∈ R is defined as

ln(r ± i0) =

{
ln r (r > 0)

ln(−r)± iπ (r < 0)
. (60)

Note that the longitudinal contribution is logarithmically
divergent for ω = vp, whereas the transverse contribu-
tions remains finite for this frequency. We plot the func-

tions, together with the finite temperature results pre-
sented below, in Fig. 5.

It is instructive to expand the response as a function of
ω/vp in the asymptotic regimes. For ω � vp we obtain

ε
(intra)
L (ω, p) =

n0e
2

ε0m∗
3

p2v2

[
1 +

π

2

iω

vp
−
( ω
vp

)2]
, (61)

ε
(intra)
T (ω, p) =

n0e
2

ε0m∗
3π

4ω2

iω

vp

[
1 +

4

π

iω

vp
−
( ω
vp

)2

+ . . .
]
.

(62)

We observe that the leading L contribution is real,
whereas the T contribution is predominantly imaginary.
Furthermore, the L component is subleading compared
to the T component, as it is suppressed by an additional
power of ω/vp. The response functions in the quasi-static
limit can also be expanded for vp/ω � 1, which yields

ε
(intra)
L (ω, p) = − n0e

2

ε0m∗
1

ω2

[
1 +

3

5

(vp
ω

)2

+ . . .
]
, (63)

ε
(intra)
T (ω, p) = − n0e

2

ε0m∗
1

ω2

[
1 +

1

5

(vp
ω

)2

+ . . .
]
. (64)

We observe to recover the homogeneous result in the limit
vp/ω → 0.

The interband or QBT contributions at zero tempera-
ture in the quasi-static limit read

ε
(QBT)
L (ω, p) =

e2

4π2ε0

√
2m∗

EF

(
1 +

3

2

( ω
vp

)2

+
3ω

4vp

[
1−

( ω
vp

)2]
ln
(ω + vp+ i0

ω − vp+ i0

))
,

(65)

ε
(QBT)
T (ω, p) =

5e2

8π2ε0

√
2m∗

EF

(
1 +

3

4

( ω
vp

)−2)
×

(
1− 3

10

( ω
vp

)2

− 3ω

20vp

[
1−

( ω
vp

)2]
ln
(ω + vp+ i0

ω − vp+ i0

))
.

(66)

The corresponding real and imaginary parts are shown in
Fig. 6, together with the finite temperature results. Both
longitudinal and transverse response, although singular
at ω = vp, remain finite at this frequency. Expanding
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FIG. 5. Intraband contributions to the dielectric tensor in the
quasi-static limit as a function of ω/vp. Results are plotted in

units of n0e
2

ε0m∗
3

p2v2
, the solid lines constitute the longitudinal

response, the dashed lines the transverse response. The zero
temperature results, shown in black, display singular behavior
at ω = vp. In particular, the real longitudinal component di-
verges logarithmically at this point. At nonzero temperature
the functions are regular, shown here for T/EF = 0.1 (orange)
and T/EF = 0.3 (blue). We observe the leading contribution
at small frequencies to be imaginary and transverse. For large
ω/vp � 1, longitudinal and transverse response converge to
the homogeneous limit.

the QBT contribution in powers of ω/vp we obtain

ε
(QBT)
L (ω, p) =

e2

4π2ε0

√
2m∗

EF

×
[
1− 3π

4

iω

vp
+ 3
( ω
vp

)2

+ . . .
]
, (67)

ε
(QBT)
T (ω, p) =

15e2

32π2ε0

√
2m∗

EF

( ω
vp

)−2

×
[
1 +

3πi

20

ω

vp
+

11

15

( ω
vp

)2

+ . . .
]
.

(68)

In contrast to the intraband response, both leading con-
tributions are real. Furthermore, as ω/vp → 0 we ob-
serve that the longitudinal response becomes frequency-
independent and settles at half the homogeneous value

for ω � µ given by ε(QBT)(0) = e2

2π2ε0

√
2m∗

EF
. In contrast,

the transverse contribution is divergent as ω/vp → 0.
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FIG. 6. QBT contribution to the dielectric tensor in the
quasi-static limit as a function of ω/vp. Curves are nor-

malized by e2

4π2ε0

√
2m∗/EF, and longitudinal (solid lines)

and transverse (dashed lines) contributions are shown for
T/EF = 0 (black), T/EF = 0.1 (orange), T/EF = 0.3 (blue).
The interband contributions remain finite at ω = vp, al-
though showing singular behavior at zero temperature. For
large ω/vp we recover the large additive contribution to the
real part of ε(ω). For small ω/vp, the longitudinal contri-
bution settles at a real value which is half the homogeneous
limit. The transverse component diverges in both the real
and imaginary parts with the real part being most dominant.
As a result, the limit ω/vp → 0 of εL,T(ω, p) is fully dom-
inated by the QBT contribution, see the discussion in the
main text.

The quasi-static limit expressions for vp/ω � 1 read

ε
(QBT)
L (ω, p) =

e2

2π2ε0

√
2m∗

EF

[
1 +

1

10

(vp
ω

)2

+ . . .
]
,

(69)

ε
(QBT)
T (ω, p) =

e2

2π2ε0

√
2m∗

EF

[
1 +

7

10

(vp
ω

)2

+ . . .
]
.

(70)

In particular, for vp/ω → 0 we obtain the homogeneous
result for ω � µ, whereas the non-trivial frequency de-
pendence of the homogeneous QBT contribution is lost
in the quasi-static limit at zero temperature.

The very distinct behavior of the intraband and inter-
band contributions as a function of ω/vp is striking. For
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large ω/vp, and so in the homogeneous limit, the QBT
contribution is frequency independent and amounts to
the constant anomalous contribution adding to the real
part of ε(ω). For small ω/vp, on the other hand, the in-
traband contributions are suppressed by powers of ω/vp
or (ω/vp)2. The QBT contributions, on the other hand,
are real and remain constant (longitudinal component)
or diverge like (ω/vp)−2 (transverse component). Hence
the quasi-static limit is entirely dominated by the inter-
band transitions and so genuinely different from systems
with a single parabolic band.

At nonzero temperature the intraband contributions
to the longitudinal and transverse response in the quasi-
static limit are given by

ε
(intra)
L (ω, p) =

2e2

ε0m∗

ˆ
q

nF( q2

2m∗ − µ) + nF( q2

2m∗ + µ)

−(ω + i0)2 + q2p2/(m∗)2
,

(71)

ε
(intra)
T (ω, p) = − e2

ε0ω

ˆ
q

nF( q2

2m∗ − µ) + nF( q2

2m∗ + µ)

qp

× ln
(ω + qp∗ + i0

ω − qp∗ + i0

)
, (72)

with p∗ = p/m∗. We observe that a finite temperature
regularizes the logarithmic divergence of the longitudinal
contribution at ω = vp. The temperature dependence of
the transverse response is weak. The QBT contributions
at finite temperature read

ε
(QBT)
L (ω, p) = ε(QBT)(ω)

+
e2m∗

ε0

ˆ
q

nF( q2

2m∗ − µ) + nF( q2

2m∗ + µ)

q4

×

[
1− 6

( ω

qp∗

)2

− 3ω

2qp∗

[
1− 2

( ω

qp∗

)2]
ln
(ω + qp∗ + i0

ω − qp∗ + i0

)]
(73)

and

ε
(QBT)
T (ω, p) = ε(QBT)(ω)

+
15e2m∗

8ε0

ˆ
q

nF ( q2

2m∗ − µ) + nF ( q2

2m∗ + µ)

q4

×

[( ω

qp∗

)−2

+
1

3
+

8

5

( ω

qp∗

)2

+
ω

10qp∗

[
1− 8

( ω

qp∗

)2]
log
(ω + qp∗ + i0

ω − qp∗ + i0

)]
.

(74)

Here ε(QBT)(ω) is the homogeneous contribution from
Eq. (46). For nonzero temperature this term can have a
residual (non-universal) dependence on ω/EF. For this

note that for a generic value of ω/vp ∼ 1, we have
ω/EF ∼ p2/(2m∗ω). Hence, although ω/EF → 0 in
the strict quasi-static limit, a finite value of p implies
a nonzero value of ω/EF. This small value of ω/EF does
not affect the zero temperature value of ε(QBT)(0) in Eq.
(49). In fact, although the integrand has a singularity at
q2 = m∗ω, this singularity is not resolved at T = 0 due to
the infrared cutoff provided from the Fermi–Dirac distri-
bution, which limits the integration to q > pF. In striking
contrast, for T/EF > 0 the whole range of momenta is
supported due to the Fermi–Dirac distribution, and so
every small ω/EF 6= 0 contributes to the integral. In the
curves shown in Fig. 6 we suppress this non-universal
contribution by assuming p2/(2m∗ω) to be small enough
so that ω/EF ≈ 0, and so

ε(QBT)(ω) ≈ ε(QBT)(0)

=
2e2

ε0m∗

ˆ
q

1− nF( q2

2m∗ − µ)− nF( q2

2m∗ + µ)

q4/(m∗)2
,

(75)

which is a universal function of T/EF.

V. SUPERCONDUCTING STATE RESPONSE

In this section, after reviewing some general facts
about superconductivity in Luttinger semimetals, we
compute the intraband and interband contributions to
the homogeneous optical response in the s-wave super-
conducting state. In particular, we derive explicit ex-
pressions for the QBT contribution to the Drude weight
factor and superfluid density within RPA for both finite
and zero chemical potential, which comprises weak and
strong coupling superconductors. The result presented
here are derived in Sec. S.IV of the SM47.

A. Superconductivity in Luttinger semimetals

The complexity of the quadratic band touching point
in Luttinger semimetals allows for a rich variety of pos-
sible superconducting ordered states. The corresponding
Bogoliubov–de Gennes (BdG) Hamiltonian is given by

HBdG(p) =

(
Ĥ(p)− µ ∆̂(p)

∆̂(p)† −Ĥ(p)T + µ

)
, (76)

with Ĥ(p) the Luttinger Hamiltonian from Eq. (3) and

∆̂(p) a 4 × 4 gap matrix, so that the order parameter

is given by 〈∆̂(p)〉. In the simplest yet far from trivial
case, the ordering is local and the gap matrix momentum
independent. It can then be written as a sum of two parts
according to

〈∆̂〉 =
(

∆14 + φijJiJj

)
T , (77)
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where T is the unitary part of the time-reversal opera-
tor (see Sec. S.I of the SM47 for an explicit definition).
The first term in Eq. (77) describes s-wave singlet super-
conducting order with order parameter ∆, whereas φij is
a symmetric and traceless complex tensor order param-
eter which represents Cooper pairs having spin 227,52.
The onset of complex tensor order leads to very nontriv-
ial momentum structures of the gap, having either line
nodes or inflated Bogoliubov Fermi surfaces, that should
manifest in nontrivial signatures in the optical conduc-
tivity. We do not explore this highly promising direction
in this work, but refer to the next section for an outlook
on aspects that should be addressed in the future.

For the present work we focus on the s-wave singlet su-
perconducting order and assume without loss of general-
ity that the order parameter is real, ∆ ∈ R. The presence
of a nonzero expectation value ∆ 6= 0 then leads to a full
gap in the excitation spectrum. For µ = 0, the opening of
this gap requires sufficiently strong short-range interac-
tions in the s-wave channel. At the critical coupling, the
system features a quantum critical point at zero temper-
ature, with non-Fermi liquid scaling of correlation func-
tions and several other unusual scaling properties18. For
µ 6= 0, an infinitesimally small attraction in the s-wave
channel is sufficient for ordering below an (exponentially
small) critical temperature due to the Cooper instabil-
ity. We therefore refer to the superconducting states that
arise for µ = 0 and µ 6= 0 as strong coupling and weak
coupling superconductors, respectively. In both cases the
transition is of second order and the gap ∆(T ) vanishes
continuously at the critical temperature. The temper-
ature dependence of the order parameter ∆(T ) follows
from the solution to an appropriate gap equation, which,
however, requires knowledge of the coupling constant of
the material. Since this quantity is generally not known
in practice, we present our results as a function of inde-
pendent parameters ∆ and T , which comprises the same
information and seems more accessible.

The RPA is known to yield an insufficient description
of the optical response of superconductors in the single
band case as it leads to expressions that violate gauge
invariance. In particular, Eq. (26) for the longitudinal
response is not satisfied by the RPA expressions and thus
leads to the question on how to interpret the outcome of
the approximate calculation. It turns out that the RPA
expression for the transverse response can be used to de-
fine the optical conductivity, whereas gauge invariance
of the longitudinal components is restored by including
vertex corrections (see e.g. Ref.53 for a comprehensive
discussion). We adopt this strategy for our analysis here
as well and define the conductivity in the homogeneous
case by

σ(ω) := − 4πε0

i(ω + i0)
KT(ω, 0). (78)

For small frequencies the conductivity behaves like51,54

σ1(ω) =
π

2
δ(ω)

n′e2

m∗
, (79)

σ2(ω) =
n′e2

m∗ω
(80)

with Drude weight factor

n′ :=
4πε0m

∗

e2
lim
ω→0

KT(ω, 0). (81)

Note that just like in Eq. (44) we define the δ-function
to be restricted to ω ≥ 0, which explains the prefactor of
π
2 when going from Eq. (78) to (79). A quantity closely
related to n′ is the superfluid density defined by

ns :=
4πε0m

∗

e2
lim
p→0

KT(0, p). (82)

The superfluid density allows for computing the London
penetration depth.

B. s-wave singlet superconductor

Let us first discuss the superconductor with µ 6= 0
and typically µ � ω, T,∆ for weak coupling, although
we do not impose the latter restriction on our formulas.
The intraband contribution to the conductivity is of the
form of Eqs. (79) and (80) for all frequencies with Drude
weight factor

n′(intra) =

ˆ
q

(
2− εq

Eq
[1− 2nF(Eq)] +

fq
Fq

[1− 2nF(Fq)]
)
,

(83)

with upper and lower band quasiparticle dispersions

εq =
q2

2m∗
− µ, Eq =

√
ε2
q + ∆2, (84)

fq = − q2

2m∗
− µ, Fq =

√
f2
q + ∆2. (85)

Note that the paramagnetic term K
(p,intra)
T (ω, 0) van-

ishes within RPA, and so only the diamagnetic term con-
tributes to Eq. (81). Furthermore, for ∆ 6= 0 the cancel-
lation between diamagnetic and paramagnetic contribu-

tion to limp→0K
(intra)
T (0, p) is not perfect, and we obtain

a finite contribution to the superfluid density given by

n(intra)
s = n′(intra)

+
4

3

ˆ
q

q2

2m∗

[ ∂

∂Eq
nF(Eq) +

∂

∂Fq
nF(Fq)

]
.

(86)

Notice that the term in the second line is negative and so

we have n′(intra) ≥ n(intra)
s , with equality at zero temper-

ature. For vanishing gap, ∆ → 0, the intraband contri-
bution to the Drude weight reproduces n from Eq. (33)
and the superfluid density vanishes.

The QBT contribution to the optical conductivity is
given by
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σ(QBT)(ω) = − e2/m∗

i(ω + i0)

ˆ
q

1

(ω + i0)4 − 4(ω + i0)2[ q4

(2m∗)2 + µ2 + ∆2] + 16µ2 q4

(2m∗)2

×

([
ω4εq − 4ω2εq(µ

2 + ∆2) + 16µ∆2 q4

(2m∗)2

] 1

Eq
[1− 2nF(Eq)]

−
[
ω4fq − 4ω2fq(µ

2 + ∆2) + 16µ∆2 q4

(2m∗)2

] 1

Fq
[1− 2nF(Fq)]

)
. (87)

For ω � ∆ the response function resembles the features
of the normal state response, whereas for smaller ω ∼ ∆
the conductivity has the form of Eqs. (79) and (80) with

n′(QBT) =
∆2

µ

ˆ
q

( 1

Eq
[1− 2nF(Eq)]−

1

Fq
[1− 2nF(Fq)]

)
.

(88)

This expression is positive for either sign of µ. Remark-
ably, the QBT contributions to n′ and ns coincide for all
temperatures,

n′(QBT) = n(QBT)
s for µ 6= 0, (89)

due to

lim
p→0

K
(QBT)
T (0, p) = lim

ω→0
K

(QBT)
T (ω, 0) (90)

for µ 6= 0. This also holds in the normal phase, where

n′(QBT) = n
(QBT)
s = 0. Indeed, the normal state QBT

contribution is finite for ω = 0 and µ 6= 0, and the sin-
gular part of the optical response purely stems from the
intraband terms. Note that both the intraband and QBT
contributions to the Drude weight and superfluid density
satisfy n′ ≥ ns. (This is also true in the case of µ = 0
discussed in the next section.) Consequently, there is no
violation of the necessary requirement that the superfluid
density must not exceed the density of charge carriers. In
Fig. 7 we show the crossover of the conductivity from the
normal state behavior for ω � ∆ to the superfluid be-
havior for small ω ∼ ∆.

Equation (89) implies the usual exponentially weak
temperature dependence ∼ e−∆/T of the superfluid den-
sity and penetration depth for small temperatures that
is characteristic for s-wave superconductors. In partic-
ular, for small temperatures T � Tc such as in the ex-
periments of Ref.6, the temperature dependence of the
gap ∆0(T ) that solves the corresponding gap equation is
weak for an s-wave superconductor and so we can assume
∆0(T ) ≈ ∆0(0) to be constant at low temperatures.

C. Strong coupling superconductor

A conceptually interesting limit of the formulas from
the previous section consists in considering the case of
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FIG. 7. Crossover from normal to superfluid behavior in the
QBT contribution to the optical conductivity at T = 0. The
black solid line shows the result in the s-wave superconduct-
ing case with gap ∆/EF = 0.1, whereas the black dashed
line shows the corresponding normal state result. The orange
long-dashed line corresponds to the low-frequency behavior
n′(QBT)e2/(m∗ω) with QBT contribution to the Drude weight
from Eq. (88). We observe that σ2(ω) changes sign and so
connects the negative normal state limit for ω � ∆ to the pos-
itive Drude like scaling at low frequencies ω ∼ ∆. The same
behavior is found in the strong coupling case with µ = 0, see
Fig. 8.

µ = 0. Such a superconductor with ∆ 6= 0 can obviously
not be caused by the Cooper instability and requires very
strong coupling between fermions, but as a theoretic limit
it is still worthwhile to study. The gap ∆ then constitutes
the only energy scale of the system at zero temperature,
and thus is the only quantity that alters the universal

limit ε(ω) = e2

4πε0

√
m∗

ω (1 + i) in Eq. (48). Note that the

strong coupling required here to form the superconduc-
tor is reminiscent of the critical coupling for the existence
of a bound state or dimer of two-component fermions in
vacuum (i.e. for µ = 0)55,56, which leads to the phe-
nomenology of the BCS-BEC crossover for µ > 0 and
is realized with Feshbach resonances in ultracold Fermi
gases57–59.
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The transverse response function for µ = 0 is given by

K
(QBT)
T (ω, 0) =

e2(4∆2 − ω2)

2πε0m∗

ˆ
q

q2

2m∗ [1− 2nF(Eq)]

Eq[−(ω + i0)2 + 4E2
q ]

(91)

with Eq =
√
q4/(2m∗)2 + ∆2. We define σ(ω) through

K
(QBT)
T (ω, 0) by Eq. (78). The corresponding optical

conductivity is plotted in Fig. 8 for a representative set
of temperatures. The real part is given by

σ
(QBT)
1 (ω) =

π

2
δ(ω)

n′(QBT)e2

m∗

+
e2

4π
θ(ω − 2∆)

√
m∗ω

(
1− 4∆2

ω2

)5/4

[1− 2nF(ω/2)]

(92)

with Drude weight factor

n′(QBT) = 2∆2

ˆ
q

q2

2m∗
1

E3
q

[1− 2nF(Eq)]. (93)

Similarly, the imaginary part for small ω follows Eq. (80)
with n′(QBT). Importantly, the conductivity is finite at
ω = 2∆. The contribution to the superfluid density is
given by

n(QBT)
s = 2∆2

ˆ
q

q2

2m∗

( 1

E3
q

[1− 2nF(Eq)]

+
2

E2
q

∂

∂Eq
nF(Eq)

)
, (94)

which is the µ → 0 limit of Eq. (88). We conclude that

n′(QBT) > n
(QBT)
s for the superconductor with µ = 0

at finite temperature. At zero temperature we find the
explicit expression

n′(QBT) = n(QBT)
s =

2Γ( 5
4 )2

π5/2
(2m∗∆)3/2 (95)

with Euler’s Γ-function Γ(z).
The case of µ = 0 allows us to make the short-comings

of the RPA with respect to gauge invariance particularly
visible. In fact, Eq. (26) implies that gauge invariance
requires

K
(QBT)
L (ω, 0)

!
= −ω2ZQBT(ω). (96)

However, the RPA equations for µ = 0 result in

K
(QBT,RPA)
L (ω, 0) = (4∆2 − ω2)Z

(RPA)
QBT (ω), (97)

which also holds at finite temperature, see Eq. (S.336)
in the SM47. We added the superscript RPA to empha-
size that these quantities deviate from the physical or
measurable observable which satisfy gauge invariance. If
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FIG. 8. QBT contribution to the optical conductivity of a
strong coupling superconductor with µ = 0. The solid lines in
the upper and lower panel show the real and imaginary part,
respectively, for T = 0 (black), T/∆ = 1 (orange), T/∆ = 2
(blue). We only plot the regular part of σ1(ω), see Eq. (92).
The dashed lines show the corresponding normal state limit

σ(ω) = e2

4π

√
m∗ω(1− i) for µ = T = 0. The real part displays

threshold behavior at ω = 2∆, whereas the imaginary part
changes sign at this frequency. As a result, the imaginary
part is negative for large frequencies—in agreement with the
negative normal state limit—and it is positive with Drude-
like behavior as in Eq. (80) for small frequencies.

we use Z
(RPA)
QBT (ω) to define a conductivity by means of

σ̃(QBT)(ω) := −4πε0iωZ
(RPA)
QBT (ω), then

σ̃(QBT)(ω) =
ω2

ω2 − 4∆2
σ(QBT)(ω). (98)

This quantity differs from σ(QBT)(ω) in two crucial as-

pects: First, the imaginary part σ̃
(QBT)
2 (ω) has a di-

vergence at ω = 2∆. Second, for ω → 0 we have

σ̃
(QBT)
2 (ω) ∼ −n

′(QBT)e2

4m∗∆2 ω → 0, and so there is no Drude-
like behavior at small frequencies. We leave it for future
work to study how gauge invariance can be restored by
including corrections that go beyond the RPA.

VI. SUMMARY AND OUTLOOK

In this work we have explored the optical conductivity
of Luttinger semimetals in the normal and superconduct-
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ing states. The motivation for this investigation is, on the
one hand, recent experiments on the optical properties
of Pyrochlore Iridates and half-Heusler superconductors,
and, on the other hand, the recent theoretical discovery
of a plethora of possible novel unconventional supercon-
ducting orders in QBT materials. Thus, although the
optical properties of QBT systems in the normal state
have been studied before in the context of α-Sn39,60,61,
these current experimental and theoretical developments
call for a more refined understanding of the electromag-
netic properties of Luttinger semimetals, especially when
interactions are strong or the material is in the supercon-
ducting state.

Our analysis has been built on the RPA, which con-
stitutes the natural first step towards understanding the
optical response functions. Crucially, in our analysis we
have kept the full internal 4 × 4-structure of the Lut-
tinger Hamiltonian, which results in considerably un-
wieldy computations, but allows to identify both intra-
band and interband contributions in an unbiased way.
In the normal state, the genuine QBT contribution from
interband transitions is large at low-frequencies in the ho-
mogeneous limit, and it dominates the quasi-static limit.
Furthermore, in the superconducting state the contribu-
tion from interband transitions is important to capture
effects that are absent for single band systems. In partic-
ular, this includes Bogoliubov Fermi surfaces of certain
superconducting orders in Luttinger semimetals. In the
present work we have derived the general expression for
the optical response in the superconducting state and ap-
plied it to the s-wave singlet superconducting case, where
we find a genuine QBT contribution to the superfluid
density and Drude weight.

The results that are shown in the main text of this
work are either analytically evaluated or in terms of sim-
ple one-dimensional integrals. To achieve this simplicity
we have restricted the presentation to the homogeneous
and quasi-static limits, which are by far the most practi-
cally relevant ones. However, the full frequency and mo-
mentum dependence for the normal state response can

be inferred from Eq. (S.225) for K
(QBT)
T and Eq. (S.262)

for χQBT in the SM47. In particular, in Sec. S.III.C47 we
show that the longitudinal QBT component satisfies the
gauge invariance condition (26) for all values of ω and p,

and so K
(QBT)
L can be deduced from χQBT. This leaves

us with a consistent picture in the normal state, where

the L component of ε
(QBT)
ij can be computed from either

the density or current response functions.

The consistent picture of the normal state response
is absent at the RPA level in the superconducting state,

where χ(RPA) and K
(RPA)
L do not satisfy the gauge invari-

ance condition (26). Consequently an ambiguity arises
when defining, for instance, the homogeneous conduc-
tivity σ(ω) from either of the two functions. This is a
well-known feature for the single parabolic band, and a
way around consists in either including vertex corrections
to restore gauge invariance, or to use the transverse com-

ponent of the current response function to define σ(ω).
We applied the second strategy here to infer the QBT
contribution in the superconducting state, which gives
the conveniently short expression for the conductivity in
Eq. (87), but since we have not considered the effect of
vertex corrections it is too early to conclude whether this
approach is correct. For the superconductor with µ = 0
we discussed in Eqs. (96)-(98) how the conductivity in
the homogeneous limit differs qualitatively when defined
from either KT or χ.

The present work can be extended in several directions,
out of which we name a few in the following. One ap-
plication in the normal and superconducting state is to
quantify the anomalous skin effect in Luttinger semimet-
als, both in the normal and superconducting phase. In
fact, the quasi-static limit q2/(2m∗) � ω � vp consid-
ered above is typically referred to as “extreme anomalous
limit” in superconductors. The corresponding intraband
contribution from the upper band has been derived in the
seminal works by Mattis, Bardeen62 and by Abrikosov,
Gor’kov, Khalatnikov63. Since we have found the nor-
mal state response in the quasi-static limit to be dom-
inated by the QBT contribution, the behavior of Lut-
tinger semimetals is likely to be distinctively different
from single band systems in the anomalous limit, with
striking observable effects in both the normal and super-
conducting states.

The optical response in other than s-wave singlet su-
perconducting states can be obtained by using the gen-
eral expression for the fermion propagator in the mean-
field approximation in Eq. (S.102) in the SM47 with a

suitable gap matrix ∆̂ and repeating the steps outlined
in Sec. S.IV. In fact, two very interesting and impor-
tant cases are covered by the local gap matrix from Eq.
(77) with φij 6= 0: (i) By choosing a real tensor φ 6= 0,
the effect of nematic superconducting order on the opti-
cal response can be probed. In particular, the nematic
orders feature line nodes of the gap and a spontaneous
breaking of rotation symmetry. It will be exciting to see
how both effects manifest in the optical response and
how they relate to the measurements on half-Heusler su-
perconductors. (ii) Choosing a genuinely complex tensor
φ such that tr(φ2) = 0 we can study superconducting
orders that spontaneously break time-reversal symmetry
and lead to Bogoliubov surfaces in the gap23,45,46. Again,
this very intriguing finding calls to be explored within the
framework of electromagnetic response functions.

In order to study the effects of strong interactions
and critical fluctuations on the optical response of Lut-
tinger semimetals, it is mandatory to go beyond the RPA.
First, Coulomb interactions between the electrons are rel-
evant and famously lead to Abrikosov’s non-Fermi liquid
scaling of correlation functions (at least within certain
regimes). Second, in the vicinity of a quantum critical
point, as may be the case for Pr-227 as discussed in the
Introduction, critical fluctuations of the order parameter
can modify the nature of fermionic excitations. To solve
such a setup self-consistently is a very challenging task
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and worth exploring. In a less ambitious attempt, how-
ever, it will also be interesting to assume that the men-
tioned strong interactions merely result in a renormaliza-
tion of the fermion propagator and then use the renormal-
ized propagator to estimate the optical response function
from the fermionic one-loop diagram. Furthermore, the
infrared regime can be addressed self-consistently by a
scaling or renormalization group approach to infer the
scaling exponents. These theoretical studies will help
to design and interpret future experiments on Luttinger

semimetals.
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