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We develop a theory of cooperative emission mediated by cooperative energy transfer (CET)
from an ensemble of quantum emitters (QE) to plasmonic antenna at a rate equal to the sum of
individual QE-plasmon energy transfer (ET) rates. If the antenna radiation efficiency is sufficiently
high, the transferred energy is radiated away at approximately same cooperative rate that scales
with the ensemble size. We derive explicit expressions, in terms of local fields, for cooperative
Purcell factor and enhancement factor for power spectrum valid for plasmonic structures of any
shape with characteristic size smaller than the radiation wavelength. The radiated power spectrum
retains the plasmon resonance lineshape with overall amplitude scaling with the ensemble size. If
QEs are located in a region with nearly constant plasmon local density of states (LDOS), e.g.,
inside a plasmonic nanocavity, we demonstrate that CET rate scales linearly with the number of
excited QEs, consistent with the experiment, and can be tuned in a wide range by varying the
excitation power. For QEs distributed in an extended region saturating the plasmon mode volume,
we show that the cooperative Purcell factor has universal form independent of the system size. The
CET mechanism incorporates the plasmon LDOS enhancement as well, giving rise to possibilities
of controlling the emission rate beyond field enhancement limits.

I. INTRODUCTION

Surface plasmons are collective electronic excitations
that can be resonantly excited in metal-dielectric struc-
tures with characteristic size well below the diffrac-
tion limit [1]. Rapid oscillations of the electron charge
density at the metal-dielectric interfaces generate ex-
tremely strong alternating local fields that can dramat-
ically affect optical properties of nearby dye molecules
or semiconductor quantum dots, hereafter reffered to as
quantum emitters (QEs) [2–5]. Optical interactions be-
tween QEs and plasmons give rise to a number of major
phenomena in plasmon-enhanced spectroscopy such as
surface-enhanced Raman scattering (SERS) [6], plasmon-
enhanced fluorescence and luminescence [7–9], plasmon-
assisted energy transfer [10–13], strong QE-plasmon cou-
pling [14–20] and plasmonic laser (spaser) [21–23].
A generic plasmonic effect underpinning many applica-

tions [24–29] is strong enhancement of spontaneous emis-
sion rate for an excited QE near a plasmonic structure
occurring due to a highly efficient energy transfer (ET)
to a plasmon mode followed by plasmon’s radiative de-
cay (antenna effect) [30–38]. High QE-plasmon ET rate
are due to large plasmon density of states (LDOS) in
small plasmonic systems which can dramatically exceed
the corresponding density of photonic states distrubuted
on a much larger spatial scale of radiation wavelength. In
the regions of strong field confinement (”hot spots”), e.g.,
near sharp metal tips or in a gap between closely spaced
metal structures, the Purcell factor [39], which describes
the decay rate enhancement relative to free-space decay,
can reach several orders of magnitude. However, the lo-
cal field enhhancement of decay rate is ultimately limited
by losses and nonlocal effects in metals [40, 41].
On the other hand, light emission from an ensemble

of QEs can be greatly accelerated by cooperative effects
arising from electromagnetic correlations between QEs.
A prominent example of cooperative emission is the Dicke

superradiance of QEs interacting with the common radi-
ation field which takes place at a rate scaling with the
ensemble size [42, 43]. Near a plasmonic structure, the
radiative coupling between QEs can be significantly en-
hanced due to resonant light scattering [44–51], which
also reduces detrimental effect of the direct dipole inter-
actions [43, 52, 53]. At the same time, the Ohmic losses
in metal suppress correlations between QEs close to the
interface, where the local field enhancement is strongest
[44, 45], implying that plasmon-enhanced superradiance
hinges on a delicate interplay between direct dipole cou-
pling, plasmonic correlations, and Ohmic losses.

In this paper, we describe another mechanism of co-
operative emission based on cooperative energy transfer

(CET) from an ensemble of excited QEs to a plasmonic
antenna that is especially efficient in lossy plasmonic sys-
tems [see Fig. 1(a)]. We demonstrate that plasmonic cor-
relations between QEs lead to the emergence of a collec-
tive state that transfers its energy to a resonant plasmon
mode cooperatively, i.e., at a rate equal to the sum of
individual QE-plasmon ET rates. If the antenna’s ra-
diation efficiency is sufficiently high, a substantial part
of this energy is radiated away at approximately same
CET rate, which scales with the ensemble size, while the
rest is mainly dissipated via the Ohmic losses in metal.
Note that cooperative acceleration of the ensemble decay
takes place on top of plasmonic enhancement of individ-
ual QEs’ decay rates and, therefore, the ensemble emis-
sion rate is conveniently described by cooperative Purcell

factor, which incorporates both the plasmon LDOS en-
hancement and the cooperative effects. At the same time,
the power spectrum radiated by the plasmonic antenna
retains plasmon resonance lineshape with overall ampli-
tude scaling with the ensemble size.

Importantly, the CET-based cooperative emission is a
weak coupling effect that does not imply plasmon reab-
sorption, i.e., the energy transferred to a plasmon from a
collective state, formed due to plasmonic correlations, is
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not transferred back to QEs but either radiated away by
the antenna or dissipated via the Ohmic losses in metal.
This can take place if, e.g., QEs’ absorption maximum
overlaps weakly with plasmon’s emission band, e.g., for
dye molecules with a significant Stokes shift or in semi-
conductor quantum dots (QDs) whose absorption maxi-
mum lies well above the emission line. As a result, the
emission rate is proportional to the number of excited,
rather than total, QEs and, therefore, can be tuned in a
wide range by varying the excitation power. In contrast,
in the strong coupling regime characterized by sustained
QE-plasmon energy exchange, the QE-plasmon coupling
scales with full QE ensemble even if a few QEs are ex-
cited [14–20]. Furthermore, since ET between a donor
(excited QE) and an acceptor (plasmon) is determined
by spectral overlap between the donor’s emission and ac-
ceptor’s absorption bands [54], the CET mechanism is
largely insensitive to QEs’ frequency variations due to,
e.g., direct dipole coupling or, in the case of QDs, their
size variations, if they stay within the broad plasmon ab-
sorption band. This tands in a stark contrast to common
cooperative mechanisms, such as superradiance, where
the emission spectra are strongly affected by even weak
disorder in the QE frequencies [43, 52, 53].

The CET-based cooperative emission was recently ob-
served experimentally from CdSe/ZnS QDs placed inside
a plasmonic nanocavity [61]. In this experiment, the mea-
sured emission rate increased linearly with the excitation
power implying that only excited QDs were involved in
the cooperative emission. At the same time, the emission
spectra exhibited the lineshape of cavity plasmon reso-
nance, but with overall amplitude scaling linearly with
the excitation power. Both above features are character-
istic for cooperative emission mediated by CET to plas-
monic antenna, while the linear scaling indicates that
QDs were located in a region with nearly constant plas-
mon LDOS, as we discuss below.

We present a detailed discussion of another common
experimental setup, in which the QEs are distributed
within some region outside the plasmonic structure, e.g.,
within dielectric shell enclosing a metal nanoparticle [see
Fig. 1(b)]. In this case, the plasmon LDOS and, accord-
ingly, individual QE-plasmon ET rates fall off rapidly
away from the metal surface and, therefore, the emission
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FIG. 1. (a) Schematics of CET from QE ensemble to plas-
monic antenna. (b) Schematics of plasmonic system with QEs
distributed within dielectric shell surrounding metallic core.

rate no longer scales linearly with the QEs’ number but,
instead, is determined by the average plasmon LDOS in
the QE region. If the QE region is sufficiently extended to
saturate the plasmon mode volume, i.e., the plasmon field
spillover beyond the QE region is small, then the remote
QEs do not, in fact, participate in the CET to plasmonic
antenna and so the emission rate saturates as well. In
this case, the cooperative Purcell factor takes a universal
(i.e., independent of LDOS) form for any metal-dielectric
structure and depends on system geometry solely via the
plasmon frequency and its quality factor. Finally, we
present numerical results comparing cooperative acceler-
ation of the ensemble decay rate to LDOS enhancement
of the individual QE decay rate at a hot spot.
In our analysis, we rely on our plasmon Green func-

tion approach [55] that we recently employed to study
the emission by a single QE situated near a plasmonic
antenna [38]. In this paper, we extend this approach
to an ensemble of QEs near a plasmonic structure to de-
scribe the emergence of collective states due to plasmonic
correlations between the QEs. The collective state that
interacts strongly with the plasmon mode is found ex-
plicitly and its decay rate is shown equal to the sum of
individual QEs’ rates. Within this approach, we also
evaluate the full radiated power spectrum to find that it
is dominated by the antenna, which radiates at a rate
that scales with the ensembles size.
The paper is organized as follows. In Section II, we

set up our approach by first treating a spontaneous de-
cay of a single QE coupled to a plasmonic resonator. In
Section III, we present our theory of CET-based cooper-
ative emission. In Section IV, we discuss specific system
geometries relevant for the experiment and present our
numerical results. Section V concludes the paper.

II. SPONTANEOUS DECAY OF A QUANTUM

EMITTER NEAR PLASMONIC RESONATOR

We start with setting up our approach by first consid-
ering spontaneous decay of a single QE resonantly cou-
pled to a plasmonic antenna, which represents a metal-
dielectric nanostructure characterized by complex dielec-
tric function ε(ω, r) = ε′(ω, r) + iε′′(ω, r). The decay
rate of a QE located at r0 has the form [54]

γ =
2

~
Im[p∗ · E(ω, r0)], (1)

where

E(ω, r) = D̄(ω; r, r0)p (2)

is slow component of the electric field generated by QE’s
oscillating dipole pe−iωt = µne−iωt, where µ and n are
the dipole moment and orientation, respectively, and

D̄(ω; r, r′) =
4πω2

c2
Ḡ(ω; r, r′) (3)
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is the electromagnetic dyadic Green’s function (hereafter,
a bar indicates a tensor in spatial indices). Here, Ḡ is
the standard Green’s dyadic for Maxwell equations that
includes the plasmonic system and c is speed of light. In
the absence of plasmonic system, the free-space Green’s
function D̄0(ω; r, r

′) = (4πω2/c2) Ḡ0(ω; r, r
′) yields the

radiative decay rate of an isolated QE: γr0 = 4µ2ω3/3~c3.

A. Plasmon Green function

We assume that the plasmonic system size is smaller
than the radiation wavelength and so the plasmon modes
can be described within quasistatic approximation [5] by
the Gauss law ∇ · [ε′(ωm, r)E(r)] = 0 with standard
boundary conditions, where ωm is the mode frequency
and E(r) is the mode electric field, which we chose to
be real. In the near field limit, the electromagnetic
Green’s function (3) can be decomposed as D̄(ω; r, r′) =
D̄0(ω; r, r

′) + D̄m(ω; r, r′), where D̄m(ω; r, r′) is the
plasmon Green’s function. Here, we only consider the
case when the QE frequency ω is close to a particular
mode frequency ωm and therefore disregard contribution
from the non-resonant modes (we will return to this point
later). Near the resonance, the plasmon dyadic Green’s
function has the form [38, 55]

D̄m(ω; r, r′) =
ωm

4Um

E(r)E(r′)

ωm − ω − iγm/2
, (4)

where γm =Wm/Um is the plasmon decay rate, and the
tensor product of electric fields is implied. Here,

Um =
1

16π

∫

dV
∂[ωmε

′(ωm, r)]

∂ωm

E2(r) (5)

is the plasmon mode energy and Wm = Wnr
m + W r

m is
the dissipated power due to nonradiative (Wnr

m ) and ra-
diative (W r

m) losses. The former is primarily due to the
Ohmic losses in metal and has the standard form [56]

Wnr
m =

ωm

8π

∫

dV ε′′(ωm, r)E
2(r). (6)

Since the integrations in Wnr
m and Um are, in fact, re-

stricted to the metallic regions with dielectric function
ε(ω) = ε′(ω)+ iε′′(ω), the usual expression for plasmon’s
nonradiative decay rate follows [5],

γnrm =
Wnr

m

Um

=
2ε′′(ωm)

∂ε′(ωm)/∂ωm

. (7)

At the same time, if the system size is smaller than the ra-
diation wavelength, the power radiated by the plasmonic
antenna is similar to that of a localized dipole [54],

W r
m =

ω4
m

3c3
P

2, (8)

where P =
∫

dV χ′(ωm, r)E(r) is the plasmon mode’s
dipole moment and χ(ω, r) = [ε(ω, r)−1]/4π is the plas-
monic system’s susceptibility. Note that, in this approxi-
mation, the real part of susceptibility defines the plasmon

radiated power, while its imaginary part determines the
nonradiative losses (6) [38]. Accordingly, the radiative
decay rate of a plasmon mode has the form

γrm =
W r

m

Um

=
8π2ωm

3λ3m

[∫

dV (ε′ − 1)E
]2

∫

dVE2 ∂(ωmε′)/∂ωm

, (9)

where λm = 2πc/ωm is the plasmon wavelength and we
denoted ε ≡ ε(ωm, r) in the integrand. The rates (7) and
(9) constitute the full plasmon decay rate γm = γnrm +γrm.
The plasmon radiation efficiency η has the form

η =
γrm
γm

=
ζ

1 + ζ
, (10)

where the parameter

ζ =
γrm
γnrm

=
4π2

3λ3m

[∫

dV (ε′ − 1)E(r)
]2

∫

dV ε′′E2(r)
, (11)

characterizes the relative magnitute of plasmon’s radia-
tive and nonradiative decay rates. Note that, for small
nanoplasmonic systems, γnrm should be amended to in-
clude the surface-assisted Landau damping rate [57].

B. Purcell factor for spontaneous decay rate and

radiated power spectrum

The decay rate of a QE near a plasmonic system has
the form γ = γr0 + γet, where

γet(ω) =
2µ2

~
Im

[

nD̄m(ω; r0, r0)n
]

(12)

is the QE-plasmon ET rate. Some part of the transferred
energy is radiated away by the plasmonic antenna while
the rest dissipates via the Ohmic losses in metal. These
processes are both included in the plasmon Green’s func-
tion via the plasmon radiative and nonradiative rates (9)
and (7), respectively, which comprise the plasmon decay
rate γm in the plasmon Green’s function (4).
The QE-plasmon ET rate is obtained in explicit form

by inserting the plasmon Green function (4) into Eq. (12),

γet(ω) =
µ2Q

~Um

[n·E(r0)]
2

1 + 4Q2(ω/ωm − 1)2
, (13)

where Q = ωm/γm is the plasmon quality factor. The
decay rate enhancement at resonance ω = ωm is charac-
terized by the Purcell factor [39]

F =
γet(ωm)

γr0
=

3λ3mQ

4π2Vn

(14)

where Vn is the projected plasmon mode volume defined
as the inverse of plasmon mode density ρnr) that charac-
terizes the plasmon field confinement at a point r along
the direction n [38, 55]:

1

Vn(r)
= ρn(r) =

2 [n·E(r)]
2

∫

dVE2 ∂(ωmε′)/∂ωm

. (15)
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Using the above expression, we find the Purcell factor for
a QE coupled to a plasmonic resonator as

F =
3λ3mQ [n·E(r0)]

2

2π2
∫

dVE2∂(ωmε′)/∂ωm

. (16)

For a sufficiently large antenna, a substantial part of the
energy transferred from the QE is radiated away at a
rate that is proportional to the Purcell factor (16). The
enhancement factor for power spectrum radiated by a
QE via plasmonic antenna, relative to that for an isolated
QE, is obtained by integrating the Poynting’s vector over
remote surface enclosing the system [38]. The result is

M(ω) =
γet(ω)

γr0
η =

Fη

1 + 4Q2(ω/ωm − 1)2
, (17)

where η is the plasmonic antenna’s radiation efficiency
given by Eq. (10). The radiated power spectrum re-
tains the plasmon resonance shape with maximal en-
hancement at resonance M(ωm) = Fη. Note that an in-
crease in plasmon radiation efficiency η = γrm/(γ

nr
m +γrm)

also implies a reduction of the plasmon quality factor
Q = ωm/(γ

nr
m + γrm) in the Purcell factor (16), so that

the maximal radiated power is achieved at some optimal
antenna efficiency. Indeed, using Eqs. (7), (10), (14) and
(15), the enhancement factor at resonance is

M(ωm) = Fη =
3λ3m
4π2

ζ

(1 + ζ)2
[n·E(r0)]

2

∫

dV ε′′E2
. (18)

It is now easy to see that the maximal enhancement is
achieved at ζ = γrm/γ

nr
m = 1 corresponding to the an-

tenna radiation efficiency η = 1/2.

III. COOPERATIVE EMISSION OF LIGHT

MEDIATED BY ENERGY TRANSFER TO

PLASMONIC ANTENNA

Let us now turn to emission of light by an ensemble

of excited QEs with dipole moments pi, positioned at
ri near a plasmonic structure. Each QE couples to the
common field generated by all QEs,

E(ω, r) =
∑

j

D̄(ω; r, rj)pj , (19)

where D̄(ω; r, rj) is the electromagnetic Green function
(3) in the presence of plasmonic structure. We assume
that the QE’s frequency is close to a particular mode fre-
quenccy ωm and only consider the weak coupling regime,
i.e., the dipole moments of individual QEs are unaf-
fected by the coupling to a plasmon mode. Even so,
the plasmon-induced correlations between QEs lead to
the emergence of a collective state that transfers its en-
ergy cooperatively to the resonant plasmon mode, while
the rest of states do not directly couple to the plasmon
but can still radiate on their own. Following the transfer,

possible energy flow pathways include plasmon reabsorp-
tion by the QEs, dissipation due to the Ohmic losses in
metal, and radiation by the plasmonic antenna. In the
weak coupling regime, i.e., when plasmon reabsorption
is weak, and for sufficiently high antenna radiation effi-
ciency (η ∼ 1), the energy is mainly radiated away by the
plasmonic antenna at about the same CET rate. Since
only excited QEs participate in such one-way ET to a
plasmon, the CET rate scales with the number of excited
(rather total) QEs and can be tuned in a wide range by
varying the excitation power [61]. Below we present our
theory for the CET-based cooperative emission.

A. Plasmonic correlations, collective states and

cooperative energy transfer

We consider an ensemble of N excited QEs with dipole
moments pi = µnie

iφi , where random phases φi simulate
uncorrelated initial states of QEs after a pulsed excitation
and subsequent relaxation. Each QE interacts, via the
coupling p∗

i · E(ri), with the common electric field (19),
implying that the system eigenstates are defined by the
Green’s function matrix at QEs’ positions projected onto
QEs’ dipole moments [43],

Dij = p∗

i D̄(ω; ri, rj)pj . (20)

In the near field limit, the coupling matrix (20) can be
decomposed, following the Green function (4), into the
free-space and plasmon terms, Dij = D0

ij + Dm
ij . The

free-space coupling matrix D0
ij can, in turn, be split

into direct dipole-dipole and radiative parts. The for-
mer causes random shifts of the QEs’ energies which,
for QEs oriented randomly, vanish on average [52, 53]
(we will return to this point later), while the latter has
the form D0

ij = i(2ω3/3c3)p∗

i · pj and, in the absence of
plasmonic structure, gives rise to superradiant and sub-
radiamt states [43].
Near the plasmon resonance ω ∼ ωm, the coupling ma-

trix (20) is dominated by the plasmonic term Dm
ij , which

can also be split into non-radiative and radiative parts.
The latter describes the plasmonic enhancement of radia-
tive coupling between QEs due to resonant light scatter-
ing off the plasmonic structure, and leads to plasmonic
enhancement of Dicke supperradiance [44, 45]. Note,
however, that for small plasmonic systems, the plasmon-
enhanced scattering is substantially weaker than reso-
nant plasmon absorption [58] and, therefore, the main
contribution to plasmon coupling matrix comes from the
non-radiative term described by the plasmon Green func-
tion (4). Thus, for QEs’ frequency close to the plasmon
resonance, the coupling matrix (20) takes the form

Dpl
ij (ω) =

ωm

4Um

p∗

i ·E(ri)pj ·E(rj)

ωm − ω − iγm/2
. (21)

The diagonal elements of plasmon coupling matrix (21)

are complex, Dii = ~δω(i) + i~γ
(i)
et /2, and their real
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and imaginary parts describe, respectively, the frequency

shifts δω(i) and decay rates γ
(i)
et of individual QEs due to

the coupling to a resonant plasmon mode. In the weak
coupling regime, the frequency shifts are relatively small
and play no significant role in the following, while the

QE-plasmon ET rates γ
(i)
et are given by Eq. (13).

Let us now show that the plasmonic correlations be-
tween QEs, described by the non-diagonal elements of
plasmon coupling matrix (21), give rise to a collective
state that transfers its energy cooperatively to the plas-
mon at a rate γNet that equals the sum of individual QE-
plasmon ET rates:

γNet (ω) =
∑

i

γ
(i)
et =

µ2Q

~Um

∑

i

[ni ·E(ri)]
2

1 + 4Q2(ω/ωm − 1)2
.

(22)
Indeed, a collective state represented by the vector ψN =
{p∗

1·E(r1), . . . ,p
∗

N ·E(rN )} is an eigenstate of the matrix

(21), i.e., D̂mψN = λNψN with a complex eigenvalue
λN = ~δωN + i~γNet/2, where δωN =

∑

i δω
(i). Since

the imaginary part of λN saturates the ET rate from
the QE ensemble to plasmon mode, the rest of collec-
tive states are uncoupled from that mode but, in princi-
ple, can interact with off-resonant modes and radiation
field. Note, however, that for large ensembles, the cou-
pling of collective states to off-resonant modes is rela-
tively weak [59, 60], whereas large plasmonic Purcell fac-
tors ensure that direct QE radiative decay is relatively
weak as well, implying that the CET to plasmonic an-
tenna is the dominant energy flow channel. We stress
that, in plasmonic systems, the collective states emerge
in response to the local field that can vary significantly
near a plasmonic structure, rather than to the radiation
field that is nearly uniform on the system scale, and,
therefore, these states are distinct from the superradi-
ant and subradiant states. Furthermore, since the QE-
plasmon ET rates are determined by the spectral over-
lap between donors’ (QEs) emission band and acceptor’s
(plasmon) absorption bands [54], the CET mechanism,
in contrast to superradiance [43], is largely insensitive to
the QEs’ frequencies variations due to, e.g., direct dipole-
dipole coupling between QEs, QE-metal interactions, or,
in the case of semiconductor QDs, their size distribution,
as long as such variations stay within a broad plasmon
resonance band.

B. Cooperative Purcell factor and radiated power

spectrum

We now introduce cooperative Purcell factor for a QE
ensemble as FN = γNet (ωm)/γr0 [compare to Eq. (14)],
where the CET rate at plasmon frequency is a sum of
the corresponding individual QE-plasmon ET rates

γNet (ωm) =
µ2Q

~Um

∑

i

[ni ·E(ri)]
2 =

∑

i

8πµ2Q

~V
(i)
n

. (23)

Here, V
(i)
n is the plasmon mode volume at ri projected

along ni, given by Eq. (15). Normalizing Eq. (23) by γr0 ,
we obtain cooperative Purcell factor as a sum of individ-
ual QEs’ Purcell factors (16):

FN =
∑

i

3λ3mQ

4π2V
(i)
n

=
∑

i

3λ3mQ |ni ·E(ri)|
2

2π2
∫

dV |E|2∂(ωmε′)/∂ωm

.

(24)
Note that FN describes both the plasmon field enhance-

ment of individual QE decay rates characterized by V
(i)
n ,

and cooperative acceleration of ensemble emission due to
plasmonic correlations between QEs.
The powerWr radiated by an ensemble of QEs coupled

to plasmonic antenna is obtained in a standard way by
integrating Poynting’s vector S = (c/8π)|E(ω, r)|2 over
a remote surface enclosing the system [54], where E(ω, r)
is the far field generated by QEs in the presence of plas-
monic structure. To extract the far field contribution
from Eq. (19), we employ the Dyson equation for the
Green function, D̄ = D̄0 + D̄0 ·χ

′D̄, where χ(ω, r) is
the plasmonic system susceptibility [compare to Eq. (8)].
Near the resonance, by replacing D̄ with the plasmon
Green’s function (4) and using the far-field asymptotics
of the free-space Green’s function [54], we obtain

Wr =
ω4

3c3

∣

∣

∣

∣

∣

∑

i

[

pi +
ωm

4Um

P [E(ri)·pi]

ωm − ω − iγm/2

]

∣

∣

∣

∣

∣

2

, (25)

where the second term describes contribution from the
antenna with dipole moment P . After averaging over
the random phases φi in pi = µnie

iφi and omitting non-
resonant direct QE emission (first term), we obtain the
ensemble radiated power spectrum mediated by CET to
plasmonic antenna in the form

WN
r =

µ2ω4

3c3
γNet (ω)

γr0
η (26)

where the CET rate γNet (ω) is given by Eq. (22) and the
antenna radiation efficiency is given by Eq. (10). Finally,
normalizing WN

r by radiated power W 0
r = µ2ω4/3c3 of

an individual QE [54], we obtain enhancement factor for
radiated power spectrum as [compare to Eq. (17)]

MN (ω) =
γNet (ω)

γr0
η =

FNη

1 + 4Q2(ω/ωm − 1)2
. (27)

At plasmon resonance, the enhancement factor is related
to cooperative Purcell factor as MN(ωm) = FNη.
A distinct feature of CET-based cooperative emission

is its robust power spectrum that retains the plasmon
resonance shape with amplitude proportional to the co-
operative Purcell factor, which scales with the ensemble
size. In contrast to common cooperative mechanisms,
e.g., superradiance, where radiation takes place directly
from the QE collective states and, hence, emission spec-
tra reflect those states’ decay rates [43], here the light
emanates from the plasmonic antenna and, hence, the
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emission spectra reflect the antenna’s optical character-
istics. For example, by placing the plasmonic antenna
on top of a metallic mirror, the CET-based cooperative
emission can be made highly directional whereas its rate
can be tuned in a wide range with excitation power [61].
Furthermore, the radiated power spectrum is largely in-
sensitive to variations of the QE emission frequencies as
long as they fit within a broad plasmon band; in contrast,
superradiance emission spectra are strongly affected by
even a weak disorder due to high sensitivity of subradiant
states to small perturbations of the QE energies [52, 53].

IV. DISCUSSION AND NUMERICAL RESULTS

The CET rate (23) and the corresponding Purcell fac-
tor (24) depend sensitively on the plasmon field intensity
at the QEs’ positions, and so we consider below two dis-
tinct cases. First, we assume that N excited QEs are
located in a region where the plasmon field E is approx-
imately uniform, e.g., within dielectic core enclosed by
a metal shell (plasmonic cavity) [61]. In this case, after
averaging over random dipole orientations in Eq. (24),
which results in a factor 1/3, we obtain

FN =
Nλ3mQ

4π2V
, (28)

where V is the plasmon mode volume that is related to
the plasmon mode density ρ as [38, 55]

1

V
= ρ(r) =

2E2(r)
∫

dVE2∂(ωmε′)/∂ωm

, (29)

which, in this case, is nearly constant in the QE region.
Thus, for an ensemble of N excited QEs in a region with
nearly uniform plasmon field, the cooperative Purcell fac-
tor scales linearly with N on top of the plasmon field en-
hancement characterized by small plasmon mode volume
V . Correspondingly, the power radiated by the antenna
increases linearly with N as well, while the emission spec-
tra retain the plasmon resonance shape [61].
Consider now a common setup, where QEs are uni-

formly distributed in a volume V0 outside the metal struc-
ture, e.g., within dielectric shell on top of a metallic core
(see schematics in Fig. 2). In this case, the plasmon
field falls off rapidly away from the metal-dielectric in-
terface, and so do the individual QE-plasmon ET rates.
Furthermore, since the remote QEs couple weakly to the
plasmon mode, with increasing QE region size, the coop-
erative Purcell factor (24) should saturate. Introducing
the average mode volume in the QE region V0 as [62]

1

V0
=

1

V0

∫

dV0 ρ(r) =
1

V0

2
∫

dV0E
2

∫

dVE2∂(ωmε′)/∂ωm

, (30)

and performing orientational averaging, we obtain the
cooperative Purcell factor as

Fc =
Nλ3mQ

4π2V0
=
nλ3m
2π2

Q
∫

dV0E
2

∫

dVE2∂(ωmε′)/∂ωm

, (31)

where n = N/V0 is the QE concentration, and subscript c
indicates a dependence on QE concentration rather than
on total number. For extended QE region saturating the
plasmon mode volume, the integral

∫

dV0E
2 is indepen-

dent of V0 and so the average plasmon mode volume V0

should scale as V0. Using the Gauss law in Eq. (31) to
match the electric fields at the metal-dielectric interface
and omitting the remote QEs’ contribution, we obtain
the saturated plasmon mode volume Vsat as,

Vsat

V0
=

εd ωm

2|ε′(ωm)|

∂ε′(ωm)

∂ωm

, (32)

where εd is the dielectric constant of QE region. Finally,
for QEs saturating the plasmon mode volume, we obtain
the cooperative Purcell factor,

Fsat =
Nλ3mQ

4π2Vsat
=

nλ3m
2π2εd

Q|ε′(ωm)|

ωm∂ε′(ωm)/∂ωm

, (33)

which scales linearly with the QE concentration n, and
is independent of local fields. Note that, in the saturated
case, the cooperative Purcell factor depends on the sys-
tem geometry only via the plasmon frequency ωm. With
increasing QE region size, the radiated power spectrum
(27) saturates as well:

Msat = Fsatη =
nλ3m
4π2εd

∣

∣

∣

∣

ε′(ωm)

ε′′(ωm)

∣

∣

∣

∣

ζ

(1 + ζ)2
, (34)

where ζ is given by Eq. (11) and we used Eq. (7). The
maximal enhancement is achieved at ζ = 1, correspond-
ing to the antenna radiation efficiency η = 1/2. Note
that, in the saturated regime, the radiated power is de-
termined, apart from a large factor |ε′(ωm)/ε′′(ωm)| ≫ 1,
by the QEs’ number that would fit, at a given QE concen-
tration n, within the volume λ3m, independent of the sys-
tem size. Mode volume saturation was recently observed
in photoluminescence of strongly-coupled molecular exci-
tons excited in J-aggregates embedded within dielectric
shell enclosing a gold nanoprism [63].
As an example, here we present the results of numer-

ical calculations for core-shell nanorods in water with
QEs embedded, at constant concentration n, within SiO2

shell enclosing an Au core [see schematics in Fig. 2]. We
model this core-shell structure by two confocal prolate
spheroids with semi-major axes a and a1 corresponding
to Au/SiO2 and SiO2/H2O interfaces, respectively. The
QEs’ emission frequency was kept in resonance with the
longitudinal dipole plasmon mode, and the experimental
Au dielectric function was used in all calculations.
In Fig. 2, we plot the average plasmon mode volume V0

within SiO2 shell, normalized by saturated mode volume
Vsat (i.e., for infinitely thick shell), versus a1/a. Note
that, with expanding QE region, the average plasmon
mode volume in that region takes an increasingly smaller
fraction of the region volume V0 until it saturates to the
value (32). While for thin shells, the ratio V0/Vsat is
relatively large due to significant field spillover beyond
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FIG. 2. Average plasmon mode volume V0 in the QE region,
normalized by saturated mode volume Vsat, is plotted vs. QE
region size. Inset. Schematics of core-shell nanorod in water
with Au core and QE-doped SiO2 shell.

the QE region, it rapidly saturates with increasing a1/a,
reaching the value V0/Vsat ≈ 1 at a1/a ≈ 2.

In Fig. 3, we plot calculated cooperative Purcell factor
Fc and power spectrum enhancement factor Mc = Fcη
versus QE region size for several nanorod lengths a at
fixed aspect ratio a/b = 3.0. With expanding QE re-
gion, the initial increase of Fc and Mc saturates as the
remote QEs’ coupling to plasmon weakens. Although the
plasmon mode volume is nearly saturated at a1/a = 2.0
(see Fig. 2), both Fc and Mc still change, albeit weakly,
with the QE region size due to plasmon frequency depen-
dence on the shell thickness. The magnitudes of Fc and
Mc for different nanorod lengths are determined by the
interplay between the plasmon quality factor Q and an-
tenna radiation efficiency η, which change in the opposite
way as the plasmon radiative decay rate γrm increases. In
fact, the smallest nanorod (a = 10 nm) has the largest
Purcell factor Fc ∝ Q and the smallest enhancement fac-
tor Mc ∝ Qη, while the largest enhancement factors are
achieved for medium-sized rods. Note that, according
to Eq. (34), the optimal antenna radiation efficiency for
maximal power spectrum enhancement is η = 1/2.

We now turn to comparison between cooperative accel-
eration of the ensemble emission rate and plasmon field
enhancement of the individual QE at a hot spot. Al-
though the CET mechanism incorporates the LDOS en-
hancement as well, randomly distributed QEs can miss
the hot spot, characterized by extremely large LDOS, and
so, at low QE concentration, the LDOS enhancement of
the QE decay rate at a hot spot can be comparable to
cooperative acceleration of the ensemble decay rate. To
illustrate this point, let as compare the individual QE-
plasmon ET rate for a QE near sharp tip of small metal
nanostructure to the CET rate for a QE ensemble satu-
rating the plasmon mode volume near the same structure.

1.2 1.4 1.6 1.8 2.0

2.0x106

4.0x106

6.0x106

8.0x106

1.0x107

1.2x107

(b)

n = 1.0 mM

Au/SiO2/H2O

M
c

a1/a

s = 1.77

d = 3.9

s

d

1.0x107

2.0x107

3.0x107

4.0x107

5.0x107

6.0x107

Au/SiO2/H2O

F
c

 a = 10 nm

 a = 20 nm

 a = 30 nm

 a = 40 nm

 a = 50 nm

(a)

a/b = 3.0

FIG. 3. Cooperative Purcell factor (a) and power spectrum
enhancement factor (b) are plotted vs. QE region size for
several nanorod lengths at fixed core aspect ratio a/b = 3.0.

The Purcel factor near a metal tip has the form [38]

Ftip =
3λ3mQ

2π2Vmet

|ε′(ωm)|2

ωm∂ε′(ωm)/∂ωm

[

n·Ẽ(r0)
]2
, (35)

where Ẽ(r0) is the plasmon field at point r0 normalized
by its value at the metal-dielectric interface, n is the QE
dipole orientation, and Vmet is the metal volume. Using
Eq. (33), the ratio of Purcell factors takes the form

Fsat

Ftip
=

nVmet

3εd|ε′(ωm)|
[

n·Ẽ(r0)
]2 . (36)

Although the normalized field Ẽ reaches unity at the
(classical) interface, its magnitude is, in fact, significantly
damped due to nonlocal effects near the metal surface
[40, 41], so that Ẽ2 < 1 even at a hot spot.
In Fig. 4, we compare the cooperative Purcell factor

(33) for an ensemble of QEs uniformly distributed within
dielectric shell around an Au nanorod to the individual
Purcel factor (35) for a QE placed near same Au nanorod
tip (see schematics in Fig. 4). Since the plasmon mode
volume near a metal tip scales with the metal volume
Vmet [38], the ratio Fsat/Ftip scales as nVmet, while being
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FIG. 4. Cooperative acceleration of the ensemble decay rate
relative to LDOS enhancement of the individual QE decay
rate is plotted vs. a QE distance d to the metal tip. Lower
inset: Schematics of a Au nanorod surrounded by QE-doped
SiO2 shell in water. Upper inset: Schematics of a QE located
at a distance d from the Au nanorod tip in water.

very sensitive to QE’s distance d to the tip [see Eq. (36)].
For a relatively low value nVmet = 10, i.e., merely ten
QEs that would fit within metal volume at given QE
concentration n in the shell, the ensemble CET decay
rate is comparable to individual QE decay rate at a hot
spot, but gets much larger once the QE is moved away
from the tip. Note that, for d < 1 nm, the local fields
are damped by nonlocal effects [40, 41]. For higher QE
concentrations, cooperative acceleration of the emission
rate is well beyond the field enhancement limit [61].

V. CONCLUSIONS

Finally, let us discuss an important distinction between
CET-based cooperative emission and traditional coop-
erative emission, such as superfluorescence. When an
ensemble of QEs confined within some small volume is
excited by a short pulse, the system undergoes coher-
ence build-up, which involves multiple processes of pho-
ton emission and resbsorption until all QE dipoles get
aligned, followed by superradiant burst [43]. The collec-
tive superradiant state emerges as a result of QEs interac-
tion with their common radiation field, and the radiation
takes place directly from QEs that from a superradiant
state. In contrast, when QEs are placed near a plasmonic
resonator, they inreract strongly, via near-field coupling,
with the plasmon mode, while direct radiative coupling
between QEs is much weaker. Therefore, the collective
states are formed due to emitters correlations via the
plasmon field, which can vary significantly depending on
system geometry, rather than the radiation field, which
is nearly uniform on the system scale. Accordingly, the

collective states participating in CET-based cooperative
emission are completely different from the traditional su-
perradiant and subradiant states. Importantly, in CET-
based cooperative emission, the light emanates from the
antenna and, therefore, the emission spectrum retains the
lineshape of plasmon resonance, in contrast to superra-
diance spectra, which reflects the decay rates of super-
radiant and subradiant collective states. Furthermore,
in the weak coupling regime, the plasmon reabsorption is
suppressed and, hence, the CET-based emission does not
imply coherence build-up and, therefore, in contrast to
superfluorescence, does not take place through a burst,
but instead represents a steady process occurring at rate
controlled by the excitation power [61].

In summary, we developed a theory of cooperative
emission from an ensemble of quantum emitters (QE)
mediated by cooperative energy transfer (CET) to a plas-
monic antenna at a rate equal to the sum of individual
QE-plasmon energy transfer (ET) rates. If the antenna
radiation efficiency is sufficiently high, the transferred
energy is radiated away at approximately same coopera-
tive rate that scales with the ensemble size. We obtained
explicit expressions, in terms of local fields, for coop-
erative Purcell factor and enhancement factor for radi-
ated power spectrum valid for plasmonic nanostructures
of any shape with characteristic size smaller than the
radiation wavelength. The radiated power spectrum re-
tains the plasmon resonance lineshape with overall ampli-
tude scaling with the ensemble size. We discussed typical
experimental geometries, where (a) QEs are located in-
side a plasmonic nanocavity with nearly uniform plasmon
LDOS, and (b) QEs are distributed in a region outside a
metal nanostructure characterized by highly nonuniform
LDOS. In the former case, the CET-based cooperative
emission rate scales linearly with the number of excited
QEs [61], which stands in stark contrast to superradiant
emission at a rate that scales with the total QE num-
ber even if a few QEs are excited. In the latter case, we
show that for extended QE regions saturating the plas-
mon mode volume, the ensemble emission rate and, cor-
respondingly, cooperative Purcell factor have universal
form independent of the system size. We have also com-
pared cooperative acceleration of the ensemble decay rate
to the plasmon LDOS enhancement of an individual QE
decay rate at a hot spot near metallic tip. Although the
CET mechanism does incorporate the plasmon LDOS en-
hancement as well, the QE emission rate at a hot spot
can be comparable to the CET rate since, for small QE
ensembles, randomly distributed QEs can easily miss the
hot spot. Finally, we have shown analytically and numer-
ically that the strongest enhancement of radiated power
does not follow the largest Purcell factor but, instead, is
achieved for structures with the optimal antenna radia-
tion efficiency η = 1/2.

This work was supported by NSF grants No. DMR-
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