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We investigate properties of a spin-1 Heisenberg model with extended and biquadratic interactions,
which captures crucial aspects of the low energy physics in FeSe. While we show that the model
exhibits a rich phase diagram with four different magnetic ordering tendencies, we identify a
parameter regime with strong competition between Néel, staggered dimer, and stripe-like magnetic
fluctuations, accounting for the physical properties of FeSe. We evaluate the spin and Raman
responses using exact diagonalization. Through comparison with experiments we find enhanced
magnetic frustration between Néel and co-linear stripe ordering tendencies, which increases with
increasing temperature. The explanation of these spectral behaviors with this frustrated spin model
supports the idea of local spin interactions in FeSe.

Magnetic excitations are believed to play a sig-
nificant role in the high-Tc copper and iron-based
superconductors.1,2 Among the latter, FeSe has gained
attention recently, in part because of the discovery of
a superconducting phase above 100 K3 for monolayers
grown on appropriate substrates. Bulk FeSe exhibits a
superconducting transition temperature Tc of 9 K, which
rises dramatically under pressure4,5; in contrast, a single-
layer FeSe film deposited on SrTiO3 substrate exhibits a
Tc increased by an order of magnitude6–9.

Like other iron chalcogenides, FeSe consists of alter-
nating iron and chalcogenide planes, with van der Waals
bonds holding together quasi-2D layers in the bulk10,11.
When cooled across a characteristic temperature TS ∼
90 K, FeSe undergoes a nematic transition that breaks
C4 crystal rotational symmetry in the iron-plane with
a tetragonal to orthorhombic structural transition12,13.
While the iron pnictides display a collinear striped
spin-density-wave (SDW) phase immediately following a
similar structural transition14–16, and other iron chalco-
genides possess magnetic orders17,18, no long-range mag-
netic order has been observed for FeSe19.

Considering the critical role that spin fluctua-
tions may play in the unconventional, iron-based
superconductors2,11,20, understanding the magnetic
properties of iron chalcogenides, in particular FeSe, is
helpful in identifying the nature of the pairing mecha-
nism. To that end, experimental evidence from neutron
scattering for magnetic frustration19 and competing mag-
netic ordering tendencies found in mean-field theoretical
solutions of spin models21 paint a picture of finely bal-
anced interactions among various magnetically ordered
phases.

Experimental and theoretical evidence suggests that
despite the fact that FeSe is a metal with itinerant
electrons, the low energy physics in FeSe can be described

well in terms of localized electrons, owing to strong
electronic correlations22–24, with a fluctuating magnetic
moment of

〈
m2
〉
∼ 5µ2

B per Fe atom19 corresponding to
S = 1.

A mean-field phase diagram for this type of lo-
calized electron model shows four dominant magnetic
phases: Néel order [(π, π)], a collinear striped phase
[(π, 0) or (0, π)], a staggered dimer phase [(π, π/2) and
equivalent], and a double stripe phase [(π/2, π/2) and
equivalent]21. Previous experiments and first-principles
studies have measured spin correlations consisting of mul-
tiple wavevectors, demonstrating a magnetic frustration
lacking long-range order19,24. This motivates the use of
a spin-1 Heisenberg model with long-range spin interac-
tions in a regime with magnetic frustration21,25. Two
regions of the phase diagram were previously identified
as appropriate for FeSe: a parameter regime with compe-
tition between the Néel and collinear striped orders, and
one between the staggered dimer and collinear striped
orders.

Here, we study the physics of a spin-1 Heisenberg
model on a two-dimensional, 16-site cluster using exact
diagonalization. Through benchmarking with mean-field
theory and two different experiments, our study sets the
stage for investigating the nature of FeSe within the spin
model. For parameters tuned to a frustrated region
among the Néel order, staggered dimer, and collinear
striped phases we evaluate the temperature dependence
of the dynamical spin structure factor S(q, ω) and the
Raman scattering cross-section. Consistent with neu-
tron scattering,19 we find intense fluctuations of the
collinear stripe order at low temperatures that give way
to enhanced fluctuations at the Néel order wavevector
for higher temperatures. Raman scattering26 suggests
a dominant spin character for a persistent peak in the
B1g symmetry close to 60 meV, which softens slightly at
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higher temperatures.
Due to strong electron correlations and the fluctuat-

ing magnetic moment, which neutron experiments have
found to correspond well with a S = 1 system19, the spin-
1 J1-J2-J3-K Heisenberg model, and similar variants,
have been used to study the magnetic properties of
FeSe21,25. The Hamiltonian can be written as

H =
∑
〈i,j〉

[
J1 Si · Sj +K(Si · Sj)2

]
+
∑
〈〈i,j〉〉

J2 Si · Sj +
∑
〈〈〈i,j〉〉〉

J3 Si · Sj ,
(1)

where Si = (Sxi , S
y
i , S

z
i ) is a spin operator at site

i, Jα(α = 1, 2, 3) are the nearest, next-nearest, and
next-next-nearest neighbor exchange interactions, and
K is the nearest-neighbor biquadratic interaction. The
nearest neighbor exchange term J1 favors a Néel state,
while the longer-range exchange terms (J2 and J3)
frustrate it. A large J2 or J3 can overwhelm J1 and
drives the staggered dimer or double stripe phase21. In
addition, the biquadratic term K modulates fluctuations
depending on the sign: a negative K suppresses quantum
fluctuations towards an Ising-like model21, while a pos-
itive K enhances quantum fluctuations27 and has been
found to favor a semi-ordered semi-classical ground state,
containing some correlations between neighboring sites in
an otherwise disordered system28. In this work, we adopt
a small positive K to enhance quantum fluctuations.

We study the model on a 4×4 cluster with periodic
boundary conditions. This 16-site system provides access
to all the relevant momenta, while remaining computa-
tionally tractable for the temperature range of interest.
While determining the ground state for such a problem
is not computationally challenging, a study of the tem-
perature dependence requires an accurate evaluation of
the excited states to cover an energy spectrum in excess
of the thermal energy scale set by the temperature T .
We adopt the parallel Arnoldi method29 to determine
the eigenstates and energies, and use the continued
fraction expansion30 to calculate the finite-temperature
dynamical structure factor and Raman response function.

A crucial task of this work is determining a physical set
of model parameters, within the J1-J2-J3-K Heisenberg
model, that accounts for the low-energy properties of
FeSe. To examine its dominant magnetic fluctuations
and ordering instability as a function of these parameters,
we first evaluate the static spin correlation function

S(q) =
1

N

∑
l

eiq·rl
∑
i

〈Sri+rl · Sri〉 , (2)

where, rl represents the coordinate of site l on the cluster
and the expectation value is taken with respect to the
ground state at zero temperature. To fairly parameterize
the relative strength of fluctuations with different charac-
teristic wavevectors, we normalize the relative intensity
of the dominant and largest subdominant correlation
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FIG. 1. Zero temperature “phase diagram” for the J1-
J2-J3-K spin-1 Heisenberg model with K = 0.1 J1. The
four different colors represent regions in parameter space
dominated by fluctuations of the spin arrangement depicted
in each cartoon, where green is Néel, red is staggered dimer,
blue is collinear stripe, and orange is double stripe. The color
intensity denotes the relative strength I, as defined in Eq. (3).
The black circle (J2 = 0.528 J1, J3 = 0) denotes parameters
for which we calculate the dynamical spin structure factor
and Raman susceptibility as a function of temperature.

functions. Thus, the relative strength of fluctuations is
projected onto the range [0,1) by

I = 1− dqsub
S(qsub)

dqdom
S(qdom)

(3)

where dq is the geometric degeneracy for each equivalent
momentum point on the 4×4 cluster and qdom/sub denote
the value of q for which dqS(q) is largest (dominant)
/ second largest (subdominant). Figure 1 shows the
resulting “phase diagram”, which displays the order with
the dominant correlation not the true long-range order
of the system, obtained in this manner for the J1-J2-J3-
K model. Clearly, in contrast to the Néel order state
(green) in the canonical Heisenberg model, the next-
nearest neighbor exchange J2 favors a collinear striped
state (blue) while the longer-range J3 stabilizes a double
stripe state (orange) above some critical couplings. In
the middle of these three states, the combined impact of
exchange interactions induces a staggered dimer region
(red). Near the boundaries large fluctuations due to
frustration suppress the states (white regions).

Given the various instabilities of the J1-J2-J3-K
model, can one find a parameter regime appropriate
for FeSe? Previously, Fa Wang et al. adopted a J1-
J2 model near the quantum paramagnetic phase around
J2∼0.5 J1

25 and Qisi Wang et al. suggested a point in the
staggered dimer region near the boundary with collinear
striped order (for negative K)19. Both involve compe-
tition between collinear striped order and some other
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state. This would be consistent with recent neutron scat-
tering data, showing both collinear striped and, slightly
weaker, Néel order fluctuations at low temperatures, with
spectral weight transfer between them upon changing the
temperature. Such an experimental observation suggests
that the low-energy magnetic properties of FeSe can be
described by a parameter set inside the collinear stripe
region close to its boundary.

In addition to neutron scattering, the Raman response
provides another clue about a proper parameter regime
for FeSe as it captures the two-magnon excitations.
As a collective mode, the two-magnon excitations de-
pend sensitively on the form and strength of magnetic
interactions31. At low energy, the experimental Raman
response in B1g symmetry consists of two dominant
contributions which can be separated in the temperature
range around TS [26]. The peak in the range below
200 cm−1 was interpreted previously in terms of charge
nematic fluctuations32. We return to this point briefly
later. Here we focus on the broad peak centered at
500 cm−1 which softens slightly and loses weight with
increasing temperature26. We argue that this part of the
Raman response originates from spin excitations and will
elaborate now on the theoretical details.

In the Fleury-Loudon formalism,33 the Raman scat-

tering operator is written as Ô =
∑
i,j Jij(êin · d̂ij)(êout ·

d̂ij)Si · Sj34, where Jij are exchange coupling strengths

in the spin Hamiltonian, d̂ij represent unit vectors
connecting sites i and j, and êin/out are the polarization
vectors for the incoming/outgoing photons, respectively.
The light polarizations that encode the Raman symmetry
channels are

êin = 1√
2
(x̂+ ŷ), êout = 1√

2
(x̂+ ŷ) for A′1g,

êin = x̂, êout = ŷ for B2g,
êin = 1√

2
(x̂+ ŷ), êout = 1√

2
(x̂− ŷ) for B1g,

(4)

where A′1g = A1g ⊕ B2g. In this work, we mainly
focus on the B1g channel as it directly reveals the two-
magnon excitation, while the A1g and B2g spectra serve
as additional experimental comparison.

Using the Raman scattering operator Ôα, we evaluate
the temperature-dependent Raman response in different
symmetry channels as

Rα(ω)= −
∑
n

e−βEn

πZ
Im 〈ψn|Ô†αW−1Ôα|ψn〉 , (5)

where α denotes a particular symmetry channel, Z is the
partition function, W = ω+En+iε−H, |ψn〉 and En are
the n-th eigenstate and energy, with the sum taken over
all eigenstates of the Hamiltonian in Fock space30. We
use ε = 0.15J1 in the continued fraction step. To remove
the elastic peak, it is convenient to calculate the Raman
susceptibility χ′′α(ω) = Rα(ω)−Rα(−ω). Due to the
computational challenges, we truncate the summation at
an energy E0 + 2J1, while providing sufficient states for
evaluating the temperature-dependence of spectra up to
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FIG. 2. Raman susceptibility χ′′(ω) at zero temperature as
a function of J2, with J3 = 0 and K = 0.1J1 for A1g (top),
B1g (middle), and B2g (bottom) symmetries. The two vertical
black boundary lines and the top color bar sketch regions with
distinct dominant correlations [Néel order (left), staggered
dimer (middle), and collinear stripe (right), as in Fig. 1].

T = 0.25J1 (all states contributing a weight e−βEn >
e−5).

As shown in Fig. 2, the Raman susceptibility at zero
temperature changes dramatically with J2. In B1g

symmetry (middle panel) the two-magnon excitation
starts around an energy of 7.5J1 for J2 = 0, then
softens uniformly approaching the boundary between
the staggered dimer and collinear striped phases. The
energy for this two-magnon excitation can be estimated
by counting the number of interactions that change sign
with a double spin flip. Across the transition from
Néel to staggered dimer, the transition is gradual as
demonstrated by the wide white region in Fig. 1. In con-
trast, the transition across staggered dimer and collinear
stripe order is more abrupt and leads to discontinuous
changes in the Raman spectra. Taking a value of J1 =
123.1 meV from first principles calculations21, it becomes
clear that consistency between the experimental position
of the peak at roughly 500 cm−1 and the theoretical two-
magnon energy can only be obtained for J2/J1 ∼ 0.5,
near the boundary between the staggered dimer and
collinear striped phases. This parameter range is also
consistent with the general notion of highly frustrated
magnetism in FeSe. We identify the best agreement in
this region with J2 = 0.528J1, J3 = 0, and K = 0.1J1
(the black dot shown in Fig. 1). The significance of
these parameters is presumably the positive biquadratic
coupling K and the J2 value that puts the system very
close to the phase boundary in the immediate vicinity
of the collinear stripe region. The exact numerical
values of the parameters that describe FeSe are expected
to change slightly in other finite size clusters and in
the thermodynamic limit. As we show next, the finite
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FIG. 3. (a) The imaginary part of the Raman susceptibility
for B1g symmetry as a function of temperature. (b) Cuts of
Raman spectra at T = 0 (blue), 0.12J1 (orange), and 0.24J1
(red), indicated by the arrows.

temperature Raman and neutron scattering experiments
compare favorably with simulations for these parameters.

Figure 3 displays the temperature dependence of the
B1g Raman susceptibility for the chosen parameters.
We observe a single dominant peak. With increasing
temperature, this peak softens slightly, before hardening
again at higher temperature. The peak gradually loses
intensity up to the highest simulated temperatures.
In fact, thermal broadening occurs in all symmetries,
while B1g remains dominant. This dominant peak that
softens with increasing temperature before hardening
again agrees well with experiment26, suggesting that a
local spin model provides an adequate description of
the dominant degrees of freedom in Raman scattering
from FeSe in this energy range. We will see that the
temperature dependence of this softening coincides with
the temperature dependence of spectral weight transfer
observed in S(q = (π, π), ω), further reinforcing the
connection between the peak in the Raman response and
two magnon excitations.

The spectral range below the magnon excitations is
dominated by critical fluctuations peaking at 50 cm−1

close to TS [26 and 32]. The origin of these fluctuations
is not obvious. While Massat et al. argue for orbital
(charge) fluctuations32 critical spin fluctuations cannot
a priori be excluded in the ubiquitous presence of
magnetism. Yet, our simulations in the spin channel
do not support this interpretation. However, critical
fluctuations cannot be captured by a simulation on a
4× 4 cluster since they are characterized by a diverging
correlation length for T → TS. The shoulder on the low-
energy side of the magnon excitation may be a remainder
of the fluctuations but further studies are necessary.

In A1g symmetry [Fig. 4(a)], there is a single peak
at slightly higher energy than the one found in the B1g

channel. This peak decreases in intensity and hardens
slightly with increasing temperature. In B2g symmetry,
shown in Fig. 4(b), we see several peaks spread out over
the energy range of 2J1 to 8J1. The general trends for

each of these symmetries, and in particular the dominant
peak in B1g symmetry, correspond well with recent
Raman scattering data.26
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FIG. 4. The imaginary part of the Raman susceptibility for
(a) A1g and (c) B2g symmetries at temperatures as indicated.
(b,d) Cuts corresponding to A1g and B2g Raman spectra at
three temperatures T = 0, 0.12J1 and 0.24J1.

While we have seen that Raman scattering provides
some information about magnetic excitations in the
model, much more detailed information comes from the
dynamical spin structure factor

S(q, ω)=−
∑
n

e−βEn

πZ
Im 〈ψn|Sz−qW−1Szq|ψn〉 , (6)

where Szq = 1√
N

∑
l e
iq·rlSzl . Figure 5 shows S(q, ω) as a

function of temperature for q = (π, 0), (π, π), and (π, π2 ).
At T = 0, the lowest-energy spin excitation occurs
at (π, 0), with significant fluctuations at slightly higher
energy in (π, π2 ) and (π, π), indicative of a frustrated
magnetic system. With increasing temperature, the spin
excitation at (π, 0) hardens slightly and loses intensity,
while it softens substantially at (π, π) and (π, π2 ). This
temperature dependence is reminiscent of the neutron
scattering data19, and the enhanced competition is con-
sistent with the evolution of the B1g Raman response
in Fig. 3, further highlighting the role of magnetic
frustration in FeSe.

Interestingly, only a small region of parameter space
with K ∼ 0.1J1 displays a temperature dependence
consistent with the B1g Raman and the spin response, at
least in this 16-site cluster calculation (Raman response
functions for other parameters shown in the supplemen-
tary material). The origin of this softening and its
sensitivity to K is difficult to assess in a simple spin-wave
picture due to the many-body nature of this biquadratic
term. Fortunately, with the full wavefunctions obtained
by exact diagonalization, we can study the magnetic
fluctuations and competition directly through eigenstates
of the Hamiltonian. Figure 6 shows detailed information
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FIG. 5. (a-c) S(q, ω) as a function of temperature for q =
(π, π) (Néel), q = (π, π

2
) (staggered dimer) and q = (π, 0)

(collinear stripe), respectively. More detailed temperature
dependence can be seen for three temperature cuts of (π, 0) in
(d). As temperature increases, spectral weight shifts to lower
energy at (π, π) and (π, π

2
), and to higher energy at (π, 0).

about the five lowest eigenstates as a function of J2 for
two different values of K. The color of each point repre-
sents the dominant magnetic character of the eigenstate,
following the same convention as Fig. 1. Crossing the
boundary to the collinear striped phase, there is a small
region (highlighted by the black boxes) where the low-
lying excited states possess a staggered dimer or mixed
character. In this region, while both values of K result in
similar ground states and zero-temperature Raman and
neutron scattering spectra, only K = 0.1J1 provides the
ingredients for a temperature dependence consistent with
experiments, because of its much smaller excitation gap
and larger density of excited states. These states are
responsible for the softening of the B1g peak, as well as
the energy shift and weight transfer of the dynamical spin
structure factor.

In summary, we present a systematic exact-
diagonalization study of the magnetic fluctuations and
spectra in a local spin J1-J2-J3-K model. This model
displays a rich phase diagram influenced by magnetic
frustration. A comparison of the dynamical spin and
Raman response to experimental results underscores
that this model provides a consistent description of
the magnetic properties of FeSe, lying at the boundary
between the collinear stripe, Néel order, and staggered
dimer phases. Through a detailed analysis of the
eigenstates, we attribute the temperature evolution of
the spectra to the competition between various finely
balanced magnetic ground and excited states, and hence

FIG. 6. Energy and magnetic fluctuations associated with the
five lowest energy excited states for K = 0 (top) and 0.1J1
(bottom), as a function of J2 for J3 = 0. The black boxes
enclose a range of J2 where the ground state and possibly a
nearly degenerate state of collinear striped order are followed
by states characterized by a dominant staggered dimer phase.
The color coding of each circle follows the same convention as
Fig. 1.

explain the crucial role of the biquadratic coupling. Our
results suggest that magnetic frustration plays a domi-
nant role in the low-energy physics of FeSe, which may
additionally support the intrinsic connection between
spin fluctuations and unconventional superconductivity.
We find that local spins give an adequate description of
these magnetic properties.
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Appendix A: Line shape of the B1g Raman spectra
of FeSe

The interaction of photons and spin excitations may
be described by the Fleury-Loudon Hamiltonian O.33
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FIG. A1. B1g Raman response Rχ′′(Ω, ~ωI) of FeSe for three photon energies ~ωI as indicated. All spectra are corrected
for the instrumental response. (a) Raw data. At low energies the magnetic response is superimposed on the particle-hole
continuum (see also supplemental section 4 of Ref. 26). At high energies, Ω > 2 000 cm−1, there is a substantial contribution
from luminescence. (b) After appropriately multiplying the spectra measured with green and yellow photons with constant
factors all spectra collapse on top of each other.

The Raman response is then determined as described in
Eq. (5) of the main text. The Fleury-Loudon formalism is
justified only in the non-resonant case. If the intermedi-
ate electronic states are eigenstates of the band structure
not only the intensity but also the line shape may depend
on the energy of the photons35–37.

For justifying the applicability of the formalism we
measured the B1g Raman response of FeSe for three
different excitation energies ~ωI , 2.16 eV (575 nm),
2.41 eV (514 nm), and 2.71 eV (458 nm). [λI (nm) =
1240/~ωI (eV)] The results are shown in Fig. A1. Panel
(a) displays the raw data at 40 K after correcting for the
spectral response of the system. All spectra peak at ap-
proximately 530 cm−1, and the maxima are asymmetric
having a much slower decay on the high-energy side than
at low energies. The overall intensity increases by a factor
of almost three if ~ωI increases from 2.16 to 2.71 eV.
Panel (b) shows that the line shape is independent of
the excitation energy. All spectra collapse on top of each
other when multiplied appropriately. Thus the line shape
does not depend on ~ωI . Consequently, the response
derived via Eq. (5) of the main text is qualitatively
correct. The experimental and theoretical results are
compared in Figs. 3 and 5 of Ref. 26.

Appendix B: Biquadratic Coupling Dependence of
Raman Spectra

We have found the positive biquadratic coupling to
be critical to the temperature dependence of the Raman
susceptibility simulations agreeing well with experiment.
Here we show nonzero temperature simulations for K = 0
and K = 0.2J1. We have picked parameters immediately
inside the collinear stripe region near the transition to
staggered dimer along J3 = 0, similar to the point
highlighted in Fig. 1 of the main text.

Fig. B1 shows the B1g Raman susceptibility for K = 0.
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FIG. B1. The imaginary part of the Raman susceptibility for
B1g symmetry for K = 0, J2 = 0.57J1, and J3 = 0. These
parameters are found in the collinear stripe region near the
transition to staggered dimer.
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FIG. B2. The imaginary part of the Raman susceptibility for
B2g symmetry for K = 0, J2 = 0.57J1, and J3 = 0. These
parameters are found in the collinear stripe region near the
transition to staggered dimer.

This was calculated in the same way as in the main text
except that we used ε = 0.03J1 since the energy levels
are more closely packed. The spectrum still consists
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FIG. B3. The imaginary part of the Raman susceptibility for
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(b) symmetries. These parameters are found in the collinear
stripe region near the transition to staggered dimer.

of a dominant low energy peak but this peak does not
soften as temperature is increased, a signature of Raman
scattering in FeSe in B1g symmetry. In addition, the
maximum is at a much lower energy than for K = 0.1.
Fig. B2 shows the B2g Raman susceptibility for the same
parameters. This spectrum is similar to what we see for
the parameters used in the main text. We do not show
the A1g susceptibility for these parameters since it is zero
with the Raman operator we have used when K = 0.

Fig. B3 shows the B1g Raman susceptibility for
K = 0.2J1, again immediately inside the collinear stripe
region. Here we see again a single peak that does not
soften with increasing temperature. Fig B4 shows the
A1g and B2g susceptibilities. These are similar to the
results shown in the main text with a single low energy
peak in A1g symmetry and a more spread out spectrum
for B2g symmetry. Again we see that the temperature
dependence of the B1g Raman susceptibility is what
distinguishes the biquadratic coupling parameter used in
the main text from other values.
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