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Abstract

Many-body perturbation theory within the GW approach has been established as a quantitatively

accurate approach for predicting the quasiparticle and excited-state properties of a wide variety

of materials. However, the successful application of the method is often complicated by the

computational complexity associated with the evaluation and inversion of the frequency-dependent

dielectric matrix ε(ω). Here, we describe an approach to speed up the evaluation of the frequency-

dependent part of ε(ω) in the traditional sum-over-states GW framework based on the low-rank

approximation of the static dielectric matrix, a technique often used in GW implementations that

are based on a starting mean field within density-functional perturbation theory. We show that

the overall accuracy of the approach, independently from other calculation parameters, is solely

determined by the threshold on the eigenvalues of the static dielectric matrix, ε(ω=0), and that

it can yield orders-of-magnitude speed-ups in full-frequency GW calculations. We validate our

implementation with several benchmark calculations ranging from bulk materials to systems with

reduced dimensionality, and show that this technique allows one not only to study larger systems,

but also to carefully consider the convergence of computationally demanding systems, such as ZnO,

without relying on plasmon-pole models.

Keywords: GW, Full Frequency, Contour Deformation, quasiparticle band structure
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I. INTRODUCTION

Throughout the last few decades, Kohn-Sham (KS) density-functional theory (DFT) has

become a standard computational method for predicting properties of extended materials,

nanostructures, and even complex molecules. With the recent improvements in energy

functionals and numerical algorithms in DFT codes, it is now possible to accurately predict

many ground-state properties of systems with complex chemical compositions and with

thousand of atoms in the supercells.

Despite this notable success, static DFT is a ground-state formalism and doesn’t yield

accurate quasiparticle properties, such as quasiparticle energies, electronic gaps, effective

masses, and quasiparticle lifetimes. A rigorous and proven approach for computing these

properties is through many-body perturbation theory, in which the electronic Green’s function

G, the poles of which are associated with quasiparticle excitation energies, is written in terms

of a non-interacting Green’s function G0 and the electronic self-energy Σ, the latter able to

capture electron-electron interactions and eventually electron-phonon interactions. There are

various prescriptions for approximating Σ; a particularly common and robust one that yields

accurate quasiparticle properties for confined and extended systems – both metallic and

semiconducting – is the GW approximation, in which the electronic self-energy is written

as a product of the Green’s function and the screened Coulomb interaction W ,1,2 which we

define in the next section.

The ab initio GW 2 approach is a particular way of using the GW approximation in

first-principles calculations, where one typically uses KS orbitals and eigenvalues to construct

G0. The ab initio GW approach has been shown to yield excellent quasiparticle excitation

properties for a variety of materials, and has received considerable attention from the

computational sciences community. In fact, GW calculations have now been implemented in

a number of software packages.3–13

Despite the value of GW calculations, their usage is still less popular compared to DFT

codes due to the significantly higher computational cost. The main bottleneck in traditional

GW calculations, i.e., those which explicitly write the Green’s function in terms of its spectral

representation, is in the evaluation of the non-interactive polarizability matrix χ0(ω). The

computational cost of computing χ0(ω) scales as O(N4), where N is proportional to the

system size. In addition, each matrix has to be computed and eventually inverted on a
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number of distinct frequency points which typically ranges from a few tens up to hundreds.

One of the earliest strategies developed to reduce this computational bottleneck is to

simplify the frequency dependence of χ0(ω), which allows one to perform a calculation of only

the static polarizability χ0(ω=0), and treat all integrals involving the frequency dependence

of χ0(ω) analytically. Such approaches are referred to as generalized plasmon-pole models

(PPMs), and were validated on a variety of systems.1,2,14–16

Despite the success of PPMs, the simplification in the dynamical treatment of the

polarizability typically prevents these approaches from accurately capturing dynamical effects

of the self-energy. As a result, PPMs do not give accurate information about quasiparticle

lifetimes. In addition, there is a growing demand for GW calculations with increasing

accuracy, and PPMs may introduce uncontrollable approximations beyond the desired

threshold, in particular on systems where the polarizability is not well approximated by a set

of plasmon-like excitations. As a result, there is a renewed interest in GW calculations that

do not employ PPMs, which are commonly referred to as full-frequency (FF) calculations.

A number of novel ideas have been proposed to alleviate the computational bottleneck

in FF calculations. For instance, Liu and coworkers recently presented a cubic-scaling GW

method based on a real-space, imaginary-time representation of the polarizability matrix and

self-energy, which are then transformed to the real frequency domain through a nonuniform

Fourier transform and analytical continuation.17 In addition, linear-scaling stochastic GW

approaches have also been demonstrated,18 which are particularly promising for systems

with very large number of atoms. Even though approaches which reduce the scaling cost of

GW calculations are an important avenue of research, there is still high value in speeding up

traditional GW calculations evaluated directly on the real frequency axis, in particular if

one is interested in resolving sharp features in the spectral function.

A more general way to speed up FF-GW calculations that is both elegant and powerful

is to find a better basis set to describe the polarizability of the system.19,20 This idea is

motivated by the properties of the eigenspectrum of the dielectric function,21–23 and was

shown to work remarkably well for GW calculations based on density-functional perturbation

theory (DFPT),4,24,25 as studied in detail in the earlier work of Wilson et al.26,27, Nguyen

et al.28 and Pham et al.29. These studies have shown that, when solving the Sternheimer

equation to obtain the polarizability matrix of a system, the eigendecomposition of χ0(ω=0)

forms a very good basis set for subsequent Sternheimer-equation calculations for ω 6= 0. A
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natural question is if this technique can be used to speed up GW calculations that do not

rely on DFPT.

In this paper, we describe the implementation of a method which greatly speeds up

the evaluation of the frequency-dependent part of the polarizability, making the cost of

a FF calculation of the same order as that based on a PPM. This is achieved through a

low-rank approximation30 of the static symmetrized susceptibility28 defining a static basis

set, and using this basis to perform a compression of the matrix elements involved in the

computation of the polarizability matrix for the remaining frequencies. This procedure is

efficiently executed on modern computer architectures through cache-friendly matrix-matrix

multiplications, and scales well to handle large systems.31

We refer to this approach in the context of traditional GW calculations as the static

subspace approximation, and we show that it performs remarkably well for all classes of

systems tested in this work, with a large speedup, and with a small and controllable error

which is determined by the eigenvalue threshold parameter. We also apply the method to

study the quasiparticle bandgap of zinc oxide, which is a computationally challenging system

for GW calculations, partly because it is not well described with a plasmon-pole model. The

new method has been implemented in the BerkeleyGW software package.3

The paper is organized as follow: section II reviews the key components required for

practical GW calculations; section III introduces our implementation of the static subspace

approximation; section IV shows validations of our method for a variety of systems and

section V reports on the application of the method for the evaluation of the quasiparticle

bandgap of ZnO.

II. SUM-OVER-BANDS GW APPROACH IN PRACTICE

In typical ab initio GW calculations, the non-interacting Green’s function G0 is constructed

from the KS eigenvalues εnk and wavefunctions ψnk(r), where n is a band index and k is

a k-point. This allows one to express the independent-particle irreducible polarizability

χ0 at zero temperature for an insulatory system within the time-dependent Hartree, or
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random-phase approximation (RPA),32–34 as

χ0(r, r′,q, ω) = 2
Nv∑
n

Nc∑
m

∫
dk

(2π)3
∆nmk(q, ω)

× ψnk+q(r)ψ∗mk(r)ψmk(r′)ψ∗nk+q(r′) (1)

∆nmk(q, ω) ≡ 1

ω − (εmk − εnk+q) + i δ

− 1

ω + (εmk − εnk+q)− i δ , (2)

where Nv and Nc denote the number of valence and conduction states, respectively, q is a

vector lying in the first Brillouin zone (BZ), and δ is an infinitesimal number. Here and in the

following we consider the spin unpolarized case, that is, systems for which there is an equal

number of electrons with spin up and down, each pair having the same spatial wavefunction.

The expression in Eq. (1) is rarely computed directly in GW codes, since one may need to

employ a very dense grid to accurately represent the polarizability in real space. A common

choice, which naturally takes care of periodic boundary conditions in solids, is to use a

plane-wave (PW) basis set for both the polarizability and orbitals.

In a PW basis, each cell-periodic Bloch state unk(r) = e−ik·rψnk(r) is represented by a

vector containing the linear expansion coefficients cnk(G), where G is a reciprocal-lattice

vector. In this basis, the polarizability defined in Eq. (1) can be written as

χ0
GG′(q, ω) =

2
∑
k

Nv∑
n

Nc∑
m

[
MG

nmk(q)
]∗

∆nmk(q, ω)MG′

nmk(q), (3)

where the frequency independent matrix elements MG
nmk(q) are defined as

MG
nmk(q) = 〈ψnk+q| ei(q+G)·r |ψmk〉 . (4)

The size of the matrix χ0
GG′(q, ω) is thus determined by the number of G vectors employed

in the expansion, which is typically defined in terms of an energy cutoff Eχ
cut for the dielectric

matrix by including a number NG of G vectors such that |G + q|2 ≤ Eχ
cut (in Rydberg

atomic units). In practice, NG is about an order of magnitude smaller than the number Nψ
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of G vectors necessary to expand the Bloch functions in reciprocal space. In order to obtain

converged calculations, the number of empty states Nc included in Eq. (3) is typically of the

same order as NG.

Once the matrices χ0
GG′(q, ω) are obtained, one can compute the dielectric matrix as

εGG′(q, ω) = δGG′ − v(q + G)χ0
GG′(q, ω), (5)

where v(q + G) is the bare Coulomb potential expressed in reciprocal space. One then

readily obtains the screened Coulomb potential WGG′(q, ω) after inverting the dielectric

matrix in Eq. (5) for all q points and frequencies ω,

WGG′(q, ω) = ε−1
GG′(q, ω)v(q + G′). (6)

It is convenient to split the screened Coulomb interaction matrix into two components:

one that includes only the bare Coulomb interaction, and another that only includes electron

correlations due to electronic screening,

W c
GG′(q, ω) = WGG′(q, ω)− v(q + G)δGG′ . (7)

With the separation in Eq. (7), the self-energy matrix elements are accordingly split

into correlation 〈ψik|Σc(E) |ψjk〉 and bare-exchange 〈ψik|Σx |ψjk〉 contributions. The latter,

called exchange self-energy, is equivalent to the non-local Hartree-Fock exchange in hybrid

DFT calculations.3,35–38 The typical challenge in a GW code is to efficiently compute the

correlation contribution to the electronic self-energy, Σc (the relevant expressions of Σx Σc

can be found in Refs. 3 and 39).

Since the self-energy is a direct product in real space and time domains of G(r, r′, t) and

W (r, r′, t), it involves an integration when written in frequency space. Fortunately, this

integration can be performed in a numerically efficient way by using the contour deformation

(CD) technique, wherein real-frequency integrals involving W c(ω) and G(ω) are written

in terms of an integral over the imaginary axis, where both W c(ω) and G(ω) are smooth

quantities, plus a small number of residuals on the real axis.4,30,39–41 While this formalism

still requires one to compute χ0(ω) on a number of frequencies typically ranging from a few

tens up to a hundred, it requires many less evaluations of χ0(ω) than a direct integration on
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the real axis.

If one is interested in computing the GW quasiparticle energy for only a selected number

of states, such as when computing the quasiparticle bandgap, then the most time-consuming

part of the calculation within a sum-over-bands approach is in the construction of the inverse

dielectric matrix. The main computational steps for evaluating ε−1
GG′(q, ω) (for instance, in

the BerkeleyGW3 software package) are the following:

1. Calculation of the PW matrix elements MG
nmk(q), given by Eq. (4). Each matrix

element can be written as a convolution and thus efficiently computed using fast

Fourier transforms (FFTs). Each individual FFT requires a number of operations

that scales as O(N logN), with N proportional to system size. For a single value of

q, the required number of FFTs is proportional to NvNcNk, with both Nv and Nc

growing linearly with system size, resulting in an overall scaling of O(N3 logN). The

set of all matrix elements for a given q are stored in a matrix M(q) with dimensions

NvNcNk ×NG, with the set of (n,m,k) indices labeling different rows of M(q), and

with each G vector corresponding to a different column.

2. Calculation of the frequency-dependent RPA polarizability according to Eq. (3), which

can be cast into a compact matrix notation as

χ0(q, ω) = 2M†(q) ∆(q, ω) M(q). (8)

Here, M(q) is the previously calculated rectangular matrix, and ∆(q, ω) is a diagonal

matrix with elements ∆nmk(q, ω), defined in Eq. (2). From a computational stand

point, Eq. (8) is a matrix multiplication involving two “tall and skinny” matrices,

which is implemented in a parallel algorithm by employing a tailored data layout. This

step represents the most computationally demanding part of the algorithm, scaling

asymptotically as O(N4).

3. Computation of the frequency-dependent dielectric matrix ε, defined in Eq. (5), and

its inverse. These steps are accomplished as two simple algebraic operations, the most

demanding of which is a matrix inversion. The size of the matrix ε is NG, which is

proportional to N , resulting in a computational cost scaling as O(N3).

These steps are performed for all q points given in the input, offering another level of
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parallelization achieved by splitting the set of q points and performing the computation

independently for each subset. A summary of the computational complexity and memory

usage with respect to the calculation parameters is reported in Table I.

Execution Memory

Matrix element O(NkNvNcNψ logNψ) O(NkNvNcNG)

Polarizability O(NωNkNvNcN
2
G) O(NωN

2
G)

Inversion O(NωN
3
G) O(NωN

2
G)

Input and output O(NωN
2
G) O(NωN

2
G)

Table I. Computational cost and required memory for the evaluation of the inverse ε(q, ω) at each

q-point. In the table, Nψ is the size of the PW basis used to expand the KS-DFT wavefunctions, NG

is the size of the PW basis used to expand the polarizability and dielectric matrices, Nc and Nv are

the number of conduction and valence bands respectively, Nk is the number of symmetry-reduced k

points using the symmetry subgroup that leaves the q vector invariant, and Nω is the number of

frequencies (both imaginary and real) employed in the calculation. Only Nv, Nc, Nψ and NG scale

with the system size, the number of k/q-point in general scale inversely with system size and Nω

only depends on the system type.

In summary, the implementation presented so far computes the polarizability matrix di-

rectly in reciprocal and frequency spaces. Overall the algorithm display an O(NωNkNcNvN
2
G)

computational bottleneck (scaling as N4 with system size), typical of traditional GW calcu-

lations; thus, any representation of the polarizability matrix that allows one to decrease the

size of the basis size NG would therefore dramatically speed up FF GW calculations.

III. STATIC SUBSPACE APPROXIMATION OF THE FREQUENCY DEPEN-

DENT INVERSE DIELECTRIC MATRIX

In this section, we describe a flexible algorithm which allows one to employ an alternative

basis to decrease the computational cost to construct the full frequency-dependent dielectric

matrix. The advantage of the algorithm presented here is that it is of general applicability,

as our implementation can use any type of alternative basis. In fact, there is a variety of

possible low-rank approximations that can be used in GW calculations.30 As we discuss later,

this paves the way to combine low-rank approaches with cubic-scaling methods to build the
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polarizability matrix for full-frequency GW calculations.

The approach considered here, inspired by the earlier work of Wilson et al.26,27, Nguyen

and coworkers28 and Pham et al.29, and motivated by the properties of the dielectric func-

tion,21–23 is to express the frequency dependence of the inverse dielectric matrix in a low-rank

approximation fashion by using selected Nb eigenvectors of the static dielectric matrix,

εGG′(ω = 0), having eigenvalues larger than a given threshold. While each individual eigen-

vector of ε−1(q, ω) might change considerably as a function of ω, it was noted that the basis

set spanned by the eigenvectors associated with the larger eigenvalues is not very dependent

on ω for typical values of interest.15,16,19,21,29

In this way, at the expense of a single matrix diagonalization, the cost for evaluating χ0(ω)

and ε−1(ω) for ω 6= 0 is accelerated by a factor proportional to (NG/Nb)
2 and (NG/Nb)

3

respectively. Since the computational cost for a full-frequency calculation is roughly equal to

that of repeating Nω times a static calculation, with typically Nω of the order of 10 to 100,

even a moderate reduction in NG/Nb ' 3−5 allows us to perform a full-frequency calculation

in roughly the same order of time as it takes to perform a static or PPM calculation.

Additionally, one can control the overall accuracy of the method by a single parameter,

namely, the threshold teig for the truncation of the eigenspectrum of ε(ω = 0). In fact, as

will be shown later, we find a direct relation between the absolute error in the QP energies

and teig. Moreover, the error resulting from the static subspace approximation is largely

independent from the other calculation parameters such as the number of bands and the

dielectric matrix cutoff.

According to the definition of the dielectric matrix given in Eq. (5), ε−1(ω), ε(ω) and

v · χ0(ω) all have the same eigenvectors. For practical reason, it is more convenient to define

a symmetrized susceptibility,

χ0
GG′(q, ω) ≡ v

1
2 (q + G)χ0

GG′(q, ω) v
1
2 (q + G′), (9)

which is Hermitian for ω = 0. All eigenvalues of the static dielectric matrix are real and

greater than one21,22 so that the eigenvalues of −χ0 are all positive. The eigenvalue spectrum

of ε and −χ0 at q = Γ and ω = 0 for silicon carbide (β−SiC) are reported in Fig. 1, which

shows the fast decay of the eigenvalues to one and zero for ε and −χ0, respectively.26

With the notation introduced so far and employing the same input parameters introduced
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Figure 1. Eigenvalue spectrum (logarithmic scale) for the static dielectric and symmetrized

susceptibility matrices for β−SiC at Γ.

Execution Memory

Matrix elements O(NkNvNcNψ logNψ) O(NkNvNcNG)

Polarizability ω = 0 O(NkNvNcN
2
G) O(N2

G)

Eigendecomposition: Cs O(N3
G) O(N2

G)

Basis transformation: Ms O(NvNcNGNb) O(NvNcNb)

Polarizability ω 6= 0 O(NωNkNvNcN
2
b ) O(NωN

2
b )

Inversion O(NωN
3
b ) O(NωN

2
b )

Input and output O(NGNb +NωN
2
b ) O(NGNb +NωN

2
b )

Table II. Computational cost and required memory for the evaluation of the frequency-dependent

inverse dielectric matrix within the static subspace approximation. The meaning of the symbols are

the same as that given in Table I, with the addition of Nb defining the reduced number of eigenvectors

of the static symmetrized susceptibility employed for the representation of the frequency-dependent

part.

in the previous section, the procedure for the computation of the frequency dependent inverse

dielectric matrix within the static subspace approximation can be summarized as:

1. For each q point, calculate χ0
GG′(q, ω=0) using the standard procedure described in

Section II. This step thus involves the computation of the matrix elements MG
nmk(q)

and their contraction according to Eq. (8).
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2. Construct the symmetrized susceptibility χ0
GG′ according to the definition in Eq. (9),

and perform the eigendecomposition

χ0(q, 0) = C(q)λ(q) C†(q), (10)

where C(q) is the NG × NG eigenvector matrix of χ0
GG′(q, 0), and λ(q) is the cor-

responding diagonal matrix of eigenvalues. Given a truncation threshold teig, define

Cs(q) as the NG ×Nb truncated eigenvector matrix associated with the Nb absolute

larger eigenvalues. This matrix is used to construct the low-rank approximation of χ0

and related quantities.

3. For all other frequencies {ωi 6= 0}, the symmetrized susceptibility is projected onto the

subspace defined by Cs,

χ0
s(q, ωi) = C†s(q)χ0(q, ωi) Cs(q),

where χ0(q, ωi) and χ0
s(q, ωi) are the NG ×NG and Nb ×Nb matrix representations of

the symmetrized susceptibility in the PW and static eigenvector basis, respectively. In

order to take advantage of the reduced size of the static eigenvector basis, χ0
s(q, ωi) is

computed in two steps. First, the PW matrix elements MG
nmk(q), which are frequency

independent, are projected onto the χ0
s subspace and scaled by the square root of the

Coulomb potential,

Ms(q) ≡M(q) v1/2(q) Cs(q), (11)

where v1/2(q) is an NG×NG diagonal matrix containing the Coulomb potential, M(q)

is an NvNcNk × NG matrix, and Ms(q) is an NvNcNk × Nb matrix containing the

subspace-projected PW matrix elements scaled by the square root of the Coulomb

potential. We then compute χ0
s(q, ωi) as

χ0
s(q, ωi) = Ms

†
(q) ∆(q, ω) Ms(q), (12)

which is very similar to Eq. (8) used in the previous algorithm. However, the

computational cost associated with Eqs. (11) and (12) is O(NkNvNcNGNb) and

O(NωNkNvNcN
2
b ), respectively, so that, compared to the O(NωNkNvNcN

2
G) cost of
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the standard procedure, the computational effort gets reduced by a factor proportional

to (NG/Nb)
2, for large numbers of frequencies.

4. The final step of the algorithm consists of the evaluation of the inverse dielectric matrix,

which is also performed in the truncated basis. In particular, the Nb ×Nb dielectric

matrix in the static eigenvector basis is simply obtained as εs(q, ωi) = I− χ0
s(q, ωi),

which is then inverted numerically. Then, ε−1
s (q, ωi) can either be used directly in this

low-rank basis, or transformed back to the PW basis via

ε−1(q, ωi) = Cs(q)
[
ε−1
s (q, ωi)− INb

]
C†s(q) + ING

,

where INb
and ING

are identity matrices of size Nb and NG, respectively. The reduced

computational cost compared to the standard algorithm is cubic in the inversion step,

namely O(N3
b ) instead of O(N3

G) and quadratic in the number of input and output

operations.

The computational costs associated with the individual steps of the new procedure are

reported in Table II.

In summary, the algorithm described in this section addresses the memory and com-

putational bottlenecks in full-frequency GW calculations by representing the frequency

dependent inverse dielectric matrix with the basis formed by the lower Nb eigenvectors of

the symmetrized susceptibility, and which decreases the computational cost to compute the

full-frequency dielectric matrix by O(NG/Nb)
2 with NG being the size of the original PW

basis. Additionally, the inversion and storage of large NG ×NG matrices are also avoided

by reformulating the required operations in the reduced static Nb basis. The size of the

reduced basis is determined by a single truncation parameter on the eigenspectrum of the

static symmetrized susceptibility, namely teig, that is directly related to the overall accuracy

of the resulting quasiparticle energies, as described in the next section.

The idea of speeding up GW calculation by employing a basis set obtained from the

eigenvectors of the static dielectric matrix has been explored before, in particular in the

context of using DFPT to avoid writing the Green’s function in its spectral representation

which requires a summation over empty states. 4,25–29 In contrast, the implementation

presented here concerns GW formalisms that do not use density-functional perturbation
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theory and, as we will show in the next section, also enables one to significantly speed up FF

GW calculations

Even though spectral representation and DFPT based GW calculations are often imple-

mented in such a way as to have the same computational complexity with system size, the

technical difficulty in obtaining many unoccupied KS orbitals for GW calculations is often

cited as an advantage of DFPT-based approaches. However, there are still a number of

possible algorithmic improvements that can be taken advantage of in formalisms that rely on

the spectral representation of the Green’s function. For instance, the explicit use of empty

states allows the computation of the static polarizability with cubic computational effort,17

which can directly be incorporated into the present algorithmic framework.

In addition, for very large systems, extracting a large number of eigenvectors of the

polarizability matrix can be a challenging tasks using iterative methods – especially since the

the eigenvalues of χ0 become clustered. We found this to be the case for system defects in

semiconductors, which require large supercells containing over 1, 000 atoms, and when more

than ∼ 10, 000 eigenvectors of χ0 are necessary to converge absolute quasiparticle energies

to within ∼ 50 meV. In these cases, having an algorithm based on direct methods – which is

used in the implementation we propose here – may be considerably more stable.

IV. BENCHMARK CALCULATIONS

In this section, we present a series of benchmark calculations performed to validate

the method and to assess how the error introduced by the static subspace approximation

depends on the various input parameters as well as a function of the system type under

study. The analysis here is organized in subsections each reporting the results for a particular

class of materials, for which different approximations and computational strategies have

to be considered. The studied materials include semiconductors, metals, systems with

reduced dimensionality and molecules. Unless otherwise stated, Quantum ESPRESSO42 and

BerkeleyGW3 have been used to perform the DFT and GW calculations respectively. At the

DFT level the calculations have been performed using norm-conserving pseudopotentials43

and plane-wave basis. A detailed description of the computational protocol employed in

these calculations is reported in the Supplemental Information (SI).44
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(a) (b)

Figure 2. Band structures of (a) silicon and (b) β-SiC, along with the error introduced by the static

subspace approximation. The solid blue line is obtained without approximation and the red dashed

employs the static subspace approximation with an eigenvalue screening threshold teig = 0.01. The

zero reference in both cases has been set to the valence band maximum (VBM). The inset blow-ups

show the band structure around the Γ15c point to show the difference between the reference and

approximate results.

A. Semiconductors

As a prototype for condensed phase semiconductor systems, we chose silicon (Si) and

silicon carbide (SiC). These systems are among the most heavily studied semiconductors and

this choice allows us to carefully assess our results compared to several previously reported

calculations. We considered the cubic phase of silicon carbide (3C-SiC) also referred to as

β−SiC. The experimental lattice parameter has been used for both silicon (5.43 Å) and SiC

(4.36 Å). More details about the computational setups can be found in the SI.

The results obtained with the static subspace approximation compared to the reference

calculation (without approximation) are summarized in figures 2 and 3. In particular

figures 2a and 2b show the quasiparticle band structures as obtained with and without the

approximation, in both cases the zero is set to the valence band maximum (VBM). Even using

a relatively high screening threshold for the eigenvalues (in this case teig = 0.01), the plots

show excellent agreement over the whole range of considered energies and wavevectors. The

inset in both cases shows a blow-up of the band structure around a specific region in order to
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Figure 3. For silicon the mean absolute error between the reference and approximate results

calculated for 196 quasiparticle energies is reported as a function of teig, in this case the error is

reported with (relative) and without (absolute) shift with respect to the Fermi level.

(a) (b)

Figure 4. For silicon (a) and β-SiC (b), blue columns show the number of eigenvectors in percentage

of the total that are retained in the computation of the inverse dielectric matrix (ε) as a function of

the eigenvalue screening threshold (teig). Red columns report the percentage reduction of the time

to solution for the evaluation of ε with respect to the reference calculation (no approximation).

highlight the deviation between reference and approximate results. By analyzing the error as

signed deviation, i.e. taking the actual difference between each approximate/reference pair

of quasiparticle energies calculated, we observed that for both systems considered, for a given

teig the error is of similar magnitude over the whole range of energies and the approximate

results approach the reference value from above by reducing teig (see SI for more details).

The mean absolute error (MAE) over all calculated quasiparticle energies is reported for

silicon in figure 3 as a function of teig. The corresponding analysis for SiC is reported in
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SI. In the plots, the label “relative” refers to the case for which the EQP have been shifted

with respect to the Fermi level, whereas “absolute” refers to the error calculated for the

unshifted EQP. As shown in the plots the error converges much faster with respect to teig

for the relative energy than for the absolute energy. This is related to the fact that the

static subspace approximation (see also SI) introduces a uniform error over the different

quasiparticles corrections that is compensated when calculating energy differences. These

results show that excellent approximate GW solutions can be obtained using a screening

threshold on the eigenvalues between 10−3 to 10−2, and that the error can be further reduced

by decreasing the value of teig.

This Work Ref.45 Ref.46 Ref.29 Ref.4 Ref.47 Exp.

LDA PBE LDA LDA LDA PBE PBE

Γ1v -11.54 -11.61 -11.57 -11.57 -11.64 -11.83 -12.5±0.6

Γ′
25v 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Γ15c 3.32 3.30 3.24 3.23 3.25 3.32 3.25 3.40, 3.05

Γ′
2c 3.82 4.07 3.94 3.96 3.92 4.23, 4.1

X1v -7.53 -7.57 -7.67 -7.57 -7.75

X4v -2.77 -2.83 -2.80 -2.83 -2.88 -2.96 -2.86 -2.9, -3.3±0.2

X1c 1.46 1.40 1.34 1.35 1.36 1.37 1.28 1.25

X4c 10.45 10.59 10.54

L′
2v -9.33 -9.38 -9.39 -9.35 -9.38 -9.3±0.4

L1v -6.69 -6.76 -6.86 -6.78 -6.93 -6.7±0.2

L′
3v -1.18 -1.20 -1.17 -1.20 -1.23 -1.21 -1.21 -1.2±0.2, -1.5

L1c 2.17 2.23 2.14 2.18 2.21 2.29 2.14 2.1, 2.4±0.15

L3c 4.17 4.11 4.05 4.06 4.00 4.15±0.1

Table III. G0W0 quasiparticle energies calculated at high symmetry points for silicon, in eV, relative

to the VBM. We employed an eigenvalue threshold of teig = 10−3. The second line reports the

mean-field DFT functional employed as the starting point for the GW calculation. All theoretical

calculations use a full-frequency treatment of the dielectric matrix. Experimental values reported

as quoted in Ref. 45.

Figure 4 presents the computational effort of our calculation as a function of the eigenvalue

screening threshold (teig). The computational savings are measured with the reduction in

the time to solution (percentage of the reference calculation). The reduction in the number

of eigenvectors, that is, the size of the subspace basis, is also given as a function of teig. As

shown in the plots, the full-frequency calculation can be sped up by a factor ranging from

four to twenty by choosing teig between 10−3 and 10−2. This shows that, using the static

subspace approximation, it is possible to control the error in a systematic way and perform
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This Work Ref.29 Ref.4 Ref.47 Ref.48 Ref.49 Exp.

LDA PBE LDA PBE PBE LDA-PPM LDA-PPM

Γ1v -15.41 -15.52 -15.54 -15.69 -16.08 -16.44

Γ′
15v 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Γ1c 7.31 7.27 7.26 7.52 7.35 7.19 7.35 7.4

Γ15c 8.45 8.50 8.10 8.18 8.35 7.75

X1v -10.37 -10.58 -10.46 -10.96 -11.24

X3v -7.80 -7.87 -8.17 -8.44 -8.64

X5v -3.28 -3.33 -3.47 -3.46 -3.30 -3.53 -3.62 -3.4

X1c 2.57 2.42 2.31 2.28 2.42 2.19 2.34 2.39, 2.42

X3c 5.54 5.52 5.41 5.23 5.59 5.2(3)

L1v -11.85 -12.03 -12.06 -12.46 -12.75

L1v -8.53 -8.64 -8.92 -9.19 -9.42

L3v -1.12 -1.12 -1.10 -1.16 -1.10 -1.21 -1.21 -1.15

L1c 6.53 6.54 6.43 6.37 6.62 6.30 6.53 6.35

L3c 8.52 8.50 8.32 8.07 8.57 8.55

Table IV. G0W0 quasiparticle energies calculated at high symmetry points for β−SiC, in eV, relative

to the VBM. We employ an eigenvalue threshold teig = 10−3. The second line reports the mean-field

DFT functional employed as the starting point for the GW calculation. PPM indicates that the

calculations have been obtained within a plasmon-pole model. The other theoretical calculations

use a full-frequency treatment of the dielectric matrix. Experimental values reported as quoted in

Ref. 48.

full-frequency calculations with a computational effort being of the same order as using a

PPM, for which only the static inverse dielectric matrix is computed.

Tables III and IV report the quasiparticle energies evaluated at high-symmetry points for

silicon and β-SiC respectively. Additionally Table V gives the analogous results calculated

for aluminum arsenide (AlAs) obtained with the same procedure described in SI. Note in

this case that the wavefunctions employed in the evaluation of the self-energy have been

generated over k-grids centered at each of the high-symmetry points and both LDA and

PBE50 have been considered as a DFT starting point for G0W0. For comparison, the tables

have been supplemented with available experimental and calculated data, the latter reported

for a comparable level of theory. In general good agreement, within a few hundreds meVs, is

achieved for silicon and AlAs while larger deviations are observed for SiC, especially when

moving away from the valence band maximum.

Finally the full-frequency dependence of the self-energy, real ReΣnk(ω) and imaginary

ImΣnk(ω) parts, are reported in figure 5 for the first eight bands of silicon. These quantities

can be used to construct the spectral function3 (see also SI) which can be compared directly
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This Work Ref.29 Ref.4 Ref.47 Ref.48 Exp.

LDA PBE LDA PBE PBE LDA-PPM

Γ1v -11.68 -11.70 -11.66 -11.82 -11.51

Γ′
15v 0.00 0.00 0.00 0.00 0.00 0.00

Γ1c 2.90 2.99 2.96 2.99 2.99 2.74 3.13

Γ15c 5.13 5.07 5.07 5.06

X1v -9.75 -9.70 -9.77 -9.67

X2v -5.31 -5.37 -5.37 -5.55

X5v -2.18 -2.22 -2.20 -2.35 -2.17 -2.27 -2.41

X1c 2.27 2.14 2.13 2.01 2.31 2.16 2.23

X3c 3.12 3.03 3.08 3.04

L1v -10.31 -10.28 -10.27 -10.19

L1v -5.44 -5.52 -5.82 -5.69

L3v -0.84 -0.86 -0.90 -0.90 -0.82 -0.87

L1c 2.96 2.96 3.02 2.94 3.08 2.84 2.36

L1c 5.58 5.49 5.63 5.52

Table V. G0W0 quasiparticle energies calculated at high symmetry points for AlAs, in eV, relative to

the VBM. We employed an eigenvalue threshold teig = 10−3. The second line reports the mean-field

DFT functional employed as a starting point for the GW calculation. PPM indicates that the

calculations have been obtained within a plasmon-pole model. The other theoretical calculations

use a full-frequency treatment of the dielectric matrix. Experimental values reported as quoted in

Ref. 48.

(a) (b)

Figure 5. The frequency dependence of the matrix elements of the self energy operator for the first

eight bands of silicon evaluated at the Γ point. The zero of the frequency axis is set to the center of

the gap. Panels (a) and (b) show the real and imaginary part of 〈ψnk|Σ(ω) |ψnk〉 respectively. The

reported calculations are in excellent agreement with previous works39,51.

with photoemission spectra and other experimental band structure parameters. The possibility

to calculate such quantities over a large range of frequencies requires, within the contour

deformation formalism, the evaluation of the inverse dielectric matrix over a similarly large

grid of frequencies on the real axis, which is made particularly inexpensive by using the
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static subspace approximation. The results reported in figure 5, obtained by employing an

eigenvalues screening threshold of 10−2, are in excellent agreement with previously reported

calculation.39,51

B. Metals: Copper

Figure 6. Mean absolute error between the reference and approximate results for a total of 50

quasiparticle energies as a function of the number of eigenvectors included in the subspace basis.

The error is reported with (relative) and without (absolute) shift with respect to the Fermi level.

The calculations have been performed with a cutoff of 32 Ry and including 300 and 1000 bands in

the calculation of the inverse dielectric matrix and self-energy, respectively. The considered number

of eigenvectors ranges between 10-30% of the full basis.

As the next benchmark, we focus our analysis on a metallic system, bulk copper. In

contrast to insulators and semiconductors, metallic systems require additional considerations

in the evaluation of the dielectric matrix due to the absence of a gap between occupied and

empty states, leading to the possibility for intra-band transitions, that is, excitation within

the same band. A fine k-point grid must therefore be used to accurately sample the possible

transitions across the Fermi surface,57 as described in the SI.

Due to the large number of q/k points involved in the calculations, which has a large impact

on the eigenspectrum of the symmetrized susceptibility, the static subspace approximation

has been tested by fixing the number of included eigenvectors rather than selecting them

by using a screening threshold on the eigenvalues. This choice is more reasonable and

results in better systematic convergence in metals compared to the case of semiconductors.

The error introduced by the static subspace approximation has been tested by performing
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Figure 7. Band structure for copper obtained by employing a cutoff of 45 Ry and including 400 and

1000 bands in the calculation of the inverse dielectric matrix and self-energy respectively. The size

of the subspace basis has been fixed to 100 eigenvectors (∼ 25% of the total). A uniform k−grid52

of 16 × 16 × 16 and 32 × 32 × 32 have been used for the evaluation of ε−1 for q 6= 0 and q → 0

respectively. Calculations performed with a norm-conserving scalar-relativistic pseudopotential53,54

including semi-core s and p states.

the calculation of ten quasiparticle energies (roughly five above and below the Fermi level

depending on the k point considered) for a set of five k-points, including Γ, X, L and two

additional points in the vicinity of the Fermi surface. Figure 6 reports the convergence of

the mean absolute error as a function of the number of eigenvectors included in the subspace

basis (ranging between 10-30% of the total). As in the previous section, the error is reported

as relative and absolute to distinguish between the case for which the EQP’s have and have

not been shifted with respect to the Fermi level respectively. The plot shows a systematic

reduction of the error introduced by the static subspace approximation by increasing the

subspace basis and that mean error below 20 meV can be achieved by using less than 30% of

the total number of eigenvectors.

Figure 7 reports the PBE and GW quasiparticle band structures computed employing

a cutoff of 45 Ry and employing 100 eigenvectors in the subspace basis. Details of the

energy level positioning at high symmetry points are reported in Table VI compared with

experiments and previously reported calculations.
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PBE G0W0 Ref.17 Ref.55 Exp.

Position d-bands Γ12 -2.21 -2.16 -2.11 -2.81 -2.78

X5 -1.49 -1.42 -1.45 -2.04 -2.01

L3 -1.63 -1.57 -1.58 -2.24 -2.25

Γ12 − Γ25′ 0.85 0.72 0.69 0.60 0.81

Widths of d bands X5 −X3 2.98 2.73 2.60 2.49 2.79

X5 −X1 3.43 3.20 3.10 2.90 3.17

L3 − L3 1.45 1.36 1.26 1.26 1.37

L3 − L1 3.52 3.29 3.16 2.83 2.91

Position of s/p bands Γ1 -9.44 -9.45 -9.18 -9.24 -8.60

L2′ -1.04 -1.14 -1.02 -0.57 -0.85

L Gap L1c − L2′ 4.73 4.99 4.98 4.76 4.95

Table VI. Quasiparticle energies calculated at high symmetry points for copper, in eV, relative to

the Fermi level. Experimental values taken from Ref. 56. For calculation parameters see SI.

Compared to experiments, the calculated positioning of the d bands are systematically

(∼0.6 eV) above the experimental values while the widths, with the exception of L3 − L1,

are very well reproduced. Opposite is the case of the s/p bands which show a reversed

trend, that is systematically below experiments. These results are consistent with previous

studies58,59 showing that spurious self-interactions in the GW approximation may result in

upward shifts of highly localized d states up to 0.6 eV and downward shifts for dispersed

states at the valence or conduction band edges up to 0.3 eV.

Compared to other theoretical results, our calculations are in good agreement with those

reported by Liu et al.17, both for the level positioning and widths. Additionally, compared

to the results reported in Ref. 17, we also found good agreement in the overall profile of the

band structure (see Figure 7) and for the computed spectral function of the Green’s function

at Γ (see SI).

C. Systems with Reduced Dimensionality: Monolayer MoS2

Another class of materials that is computationally demanding for the ab initio GW

approach is that of systems with reduced dimensionality, which includes molecules, clusters,

nanotubes, nanoribbons, slabs and monolayer materials. The two main challenges associated

with these materials is that (1) when performing calculations in a PW basis, we need to
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(a) (b)

Figure 8. Convergence study of monolayer MoS2 with the static subspace approximation. (a) G0W0

quasiparticle bandstructure (red lines) of monolayer MoS2 obtained with Nb = 400 eigenvectors,

and the corresponding LDA bandstructure (blue dashed lines). (b) Convergence of the error of

the quasiparticle evaluated at the highest valence and lowest conduction band states at K and Γ

with respect to the screening threshold on the eigenvalues teig. We show the absolute error on the

Γ → K and K → K band gaps (green and blue triangles respectively), the mean absolute error

(red circles) and the maximum absolute error (black squares). The percentage labels in the plot

shows the fraction of eigenvectors retained in the calculations for each teig.

construct large enough supercells and truncate the Coulomb potential to avoid spurious

interactions between the repeated cell,60 and (2) systems with reduced dimensionality often

display a strong spacial variation of the dielectric screening, which manifests in a slow

convergence of these calculations with k-point sampling.

To assess the validity of our approximation in these systems, we perform a thorough anal-

ysis on the quasiparticle properties of monolayer MoS2, a prototypical quasi-two-dimensional

(quasi-2D) semiconductor which belongs to the family of transition metal dichalcogenides.

This system displays several features which make GW calculations computationally demand-

ing. Because the VBM and CBM of this material have a considerable amount of 4d character,

it is crucial to include the exchange interaction originating from semicore 4s and 4p states

to accurately compute the quasiparticle bandgap. This also reflects in a relatively large

dielectric cutoff of ∼ 35 Ry being necessary to converge GW calculations for these systems.

In addition, because of the reduced dimensionality, the dielectric function changes rapidly in
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the q→ 0 limit,61,62 which require very fine k-point sampling to converge GW calculations.63

To address the slow convergence with respect to k-point sampling, we employ the recently

developed non-uniform neck subsampling (NNS) method64 which efficiently captures the

sharp features of the dielectric matrix by evaluating ε−1(q) on a non-uniform q grid. With

the exception of the utilization of the NNS technique, the remaining calculation parameters

for the evaluation of the full-frequency quasiparticle corrections (cutoffs, number of bands

etc.) are similar to those employed by Qiu et al. in ref. 63, except that here we performed

one-shot G0W0 calculations (i.e., without self-consistently updating the eigenvalues of the

Green’s function G). We note that these calculations have been performed on a large supercell

and with a truncated Coulomb potential60 to avoid spurious interactions between repeated

supercells along the confined direction.

We show in Fig. 8a the calculated quasiparticle band structure of monolayer MoS2, for

which we used Nb = 400 eigenvectors (∼12% of the total) in the generation of the static

subspace. Spin-orbit interaction was included perturbatively following Ref. 61. In addition,

in Fig. 8b we report the error in the quasiparticle energies introduced by the static subspace

approximation as a function of the eigenvalue screening threshold (teig) for both absolute

and relative energy differences.

From Fig. 8b, it is clear that we can obtain very good convergence of the quasiparticle

energy of monolayer MoS2 with an error of just 20 meV in the absolute value and a negligible

error in the energy differences when we keep only 8% of the eigenvectors. It is interesting to

note that, for similar dielectric cutoffs, the absolute number of eigenvectors Nb necessary to

achieve a given target error for monolayer MoS2 is similar to that needed in a bulk system

such as copper. Hence, the fact that we only need to keep a much smaller fraction of the

eigenvectors for monolayer MoS2 is likely due to the presence of a large vacuum region,

which increases the size of the epsilon matrix but brings little additional information on the

dielectric function for the region inside the physical system of interest. We stress, however,

that the presence of the vacuum may affect the dielectric environment outside the material, as

discussed in Ref. 63. These results show that the static subspace approximation is particularly

useful for systems with reduced dimensionality. In fact, for the case of monolayer MoS2,

excellent convergence is achieved by using ∼10% of the original PW basis size, allowing one

to speed up the evaluation of the inverse dielectric matrix by an order of magnitude.
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D. Molecules: H2O

Figure 9. Convergence of the HOMO quasiparticle energy of water with respect to the number of

bands included in the calculation and the dielectric matrix ε and the screened Coulomb cutoff.

As a final benchmark, we perform GW calculations on a water molecule to test the static

subspace approach on a prototypical quasi-zero-dimensional system. Our GW calculations use

a DFT mean-field starting point with the PBE functional and cluster boundary conditions.65

The details about the calculation are reported in the supporting information; additionally,

extensive analysis of convergence issues for isolated systems in PW-GW implementations

(which goes beyond the scope of this work) can be found in Ref. 66. Our calculated value of

the HOMO quasiparticle energy is -11.84 eV, which compares well with previously reported

calculations ranging from -11.8eV to -12.1eV4,11,18,66,67.

For GW calculations that employ a traditional sum-over-bands approach, it is well known

that the quasiparticle energies depend sensitively on the cutoff of the dielectric matrix

and the number of bands included in the calculation, and that these two parameters are

interconnected.68 This is illustrated here for the case of a water molecule in Fig. 9. An

important question therefore is if the static subspace approximation represents another

convergence degree of freedom that must be studied simultaneously with the cutoff of the
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(a) (b)

Figure 10. (a) Convergence of the mean absolute error for the quasiparticle states with respect to

the truncation threshold on the eigenvalues teig. Each curve was evaluated with a different cutoff

for the dielectric matrix, but with a fixed number of bands (1600). The error is computed with

respect of the calculation performed without the subspace approximation, but for the same cutoff

of the dielectric matrix. (b) Similar plot as in (a), but where each curve was computed with a

different number of bands, but with a fixed cutoff for the dielectric matrix of 20 Ry.

dielectric matrix and the number of bands, or if they are independent. Fortunately, we show

here that the subspace approximation is largely independent of other convergence parameters,

which dramatically simplifies GW calculations within a sum-over-bands approach.

In Fig. 10a, we show the convergence of the quasiparticle energies obtained for a fixed

number of bands (1600), but varying the cutoff Eε
cut of the dielectric matrix, as well the

eigenvalue threshold teig for the subspace calculations. We report the mean absolute error of

the quasiparticle energy computed for 4 states for a given eigenvalue threshold and a given

dielectric cutoff, relative to the calculation performed with the same cutoff but without the

static subspace approximation. In Fig. 10b, we report the complementary case, wherein

we fix Eε
cut = 20 Ry but vary the number of bands and teig, and report the error from

the subspace approximation for a given number of bands. In all cases, even though the

absolute quasiparticle energies change significantly with respect to dielectric cutoff and

number of bands, the error introduced by the static subspace approximation as a function of

teig displays very little dependence on the cutoff or number of bands employed. This implies

that convergence studies with respect to teig can be dramatically simplified by performing

calculations with relatively small cutoffs and number of bands to determine the appropriate

value of teig. Once teig is determined for the desired accuracy of the calculation, one can then
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use standard techniques to converge the calculation with respect to the number of bands and

dielectric cutoff, but taking advantage of the static subspace approximation to make these

calculations more computationally efficient.

In all cases, less than 4% of the total number of eigenvectors is sufficient to provide

excellent convergence in the absolute quasiparticle energy of ∼ 10−3 eV. This represents a

reduction of the basis size that is even larger than that found for quasi-2D and bulk systems.

V. ZINC OXIDE

Despite the wide use and success of the ab initio GW approach to predict electronic

properties of a large variety of condensed-phase systems, zinc oxide, an apparently simple

insulator, turned out to be a challenging system for these first-principle calculations. Most

of the difficulties arise from the presence of shallow Zn-3d states, which give strong covalent

hybridization with valence O-2p states, and the presence of shallow semi-core Zn-3p and 3s

states, which also affect the valence band edges via exchange interactions. For the wurtzite

structure, at the local and semi-local DFT levels, the electronic gap is strongly underestimated

(0.7-0.9 eV) compared to experiments (3.6 eV69,70) while theoretical results at the GW level

range between 2.3 and 4.5 eV.68,71–80 Such a wide spread of results at the GW level, especially

when considering the single-shot G0W0 method, is a direct consequence of the sensitivity

of the approximation with respect to the various calculation parameters for this system.

These include the poor starting point description for the electronic structure at the local

and semi-local DFT levels, the importance of the core-valence exchange contributions, errors

introduced by linearization procedures, plasmon-pole models, slow convergence with respect

to the number of bands included in the evaluation of the polarizability and self-energy, and

slow convergence with respect to the plane-wave cutoff for the expansion of the dielectric

function. Therefore, because of its numerical sensitivity, ZnO is an ideal test system to

benchmark the static subspace approximation.

In this section, we both validate the static subspace approximation in this computationally

challenging system, and also take advantage of our algorithm to perform highly converged

calculations on ZnO. Similarly to the case of the water molecule, we have verified that, for

ZnO, the error resulting from the static subspace approximation is independent of the other

convergence parameters. We also found that an eigenvalue screening threshold of teig = 10−3

27



and a total of 81 frequencies on the real and imaginary axis is sufficient to converge absolute

quasiparticle energies to within better than 10 meV. More details on these calculations are

reported in the supporting information.

Apart from these quantities, there are four other convergence parameters that need to be

considered in a GW calculation: the k-point sampling of the BZ, the size of the dielectric

matrix in the PW basis (NG), and the number of bands included in the evaluation of the

dielectric function (Nε) and self-energy (NΣ). The first convergence parameter (k-point

sampling) is in most cases independent on the other three, which are interdependent.81,82 We

perform a convergence study on all of these three parameters including up to 2000 bands in

Σ and ε, with PW cutoffs up to 100 Ry (see SI for the detailed analysis).
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Figure 11. Convergence study of the GW quasiparticle band gap of ZnO with respect to three

interdependent parameters (see the text). The convergence function is plotted for two fixed

parameters (dashed lines) used to produce the data points (discs), and for the extrapolated

parameters (solid lines).

In order to extrapolate the quasiparticle band gap to the complete basis set limit (NG →
∞, Nε →∞, NΣ →∞), we make use of a convergence function that models the quasiparticle

band gap as a function of the three parameters. Our convergence function is the product of

three linear functions of 1/NG, 1/Nε, and 1/NΣ, and we fit the six coefficients to our data.

Figure 11 shows a subset of our GW calculations used in our convergence study, as well as
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the convergence function for any two fixed parameters. The extrapolation to the complete

basis set limit gives a ZnO quasiparticle band gap of Eg = 2.78 eV, which represents our

best estimate of the fully converged gap within respect to all three parameters.

As a final note, we emphasize that the error introduced by the static subspace approxima-

tion in all examined cases (see SI) is negligibly small – of the order of few meV in the absolute

quasiparticle energies – while the approximation allows one to speed up these calculations by

one order of magnitude. Therefore, we expect the static subspace approximation to be a

valuable technique when dealing with computationally challenging systems such as ZnO.

VI. CONCLUSIONS

In this paper, we described a method – the static subspace approximation – that greatly

speeds up the evaluation of the frequency-dependent part of the polarizability matrix

for G0W0 calculations within the traditional sum-over-states approach. This is achieved

by performing a low-rank approximation of the static (ω=0) symmetrized susceptibility

matrix, and subsequently using the subspace formed by the eigenvectors to compress the

relevant plane-wave matrix elements necessary to compute the polarizability matrix for other

frequencies. This approximation is motivated by the properties of the eigenspectrum of the

dielectric function21–23 and is based on the earlier work of Wilson et al.26,27, Nguyen and

coworkers28 and Pham et al.29.

We tested the approximation for a wide variety of systems, showing that, depending on

the dimensionality of the problem, retaining 5-25% of the total number of eigenvectors is

enough to obtain excellent accuracy in the evaluation of the final quasiparticle energies. In

addition, we show that the error in the final quasiparticle energy can be directly controlled

by setting a target eigenvalue threshold. We also obtain useful rules of thumb, wherein an

absolute error of just a few meV’s can be achieved by keeping eigenvalues up to a threshold

of ∼ 10−3, while relative quasiparticle energies typically converge with a threshold of ∼ 10−2.

We also show that the error introduced by the static subspace approximation is largely

independent of the error introduced by other convergence parameters, such as the number of

bands used to represent the Green’s function in its spectral form, and the plane-wave cutoff

of the dielectric matrix. This is particularly important for converging GW calculations, since

it shows that the error introduced by the subspace approximation can be determined with
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calculations using a relatively small cutoff for the dielectric matrix and including a smaller

number of bands.

The approach we propose allows one to speed up the evaluation of G0W0 quasiparticle

energies by at least one order of magnitude compared to the standard approaches, making

the cost of a FF calculation of the same order as that based on a plasmon-pole model. This

open the possibility not only to study large systems at the FF-GW level, but also to perform

systematic convergence studies of complex materials. We show this by successfully applying

the method to study the quasiparticle energies of zinc oxide, a system that is difficult to

treat within the ab initio GW approach. The algorithm described in this paper has been

implemented and is available in the BerkeleyGW software package.3
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49 M. Rohlfing, P. Krüger, and J. Pollmann, Phys. Rev. B 48, 17791 (1993).

50 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

51 H. N. Rojas, R. W. Godby, and R. J. Needs, Phys. Rev. Lett. 74, 1827 (1995).

52 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

32



53 K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I. E.

Castelli, S. J. Clark, A. Dal Corso, S. de Gironcoli, T. Deutsch, J. K. Dewhurst, I. Di Marco,

C. Draxl, M. Du lak, O. Eriksson, J. A. Flores-Livas, K. F. Garrity, L. Genovese, P. Giannozzi,

M. Giantomassi, S. Goedecker, X. Gonze, O. Gr̊anäs, E. K. U. Gross, A. Gulans, F. Gygi,

D. R. Hamann, P. J. Hasnip, N. A. W. Holzwarth, D. Iuşan, D. B. Jochym, F. Jollet, D. Jones,
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