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Although topological invariants have been introduced to classify the appearance of protected
electronic states at surfaces of insulators, there are no corresponding indices for Weyl semimetals
whose nodal points may appear randomly in the bulk Brillouin Zone (BZ). Here we use a well–known
result that every Weyl point acts as a Dirac monopole and generates integer Berry flux to search
for the monopoles on rectangular BZ grids that are commonly employed in self–consistent electronic
structure calculations. The method resembles data mining technology of computer science and is
demonstrated on locating the Weyl points in known Weyl semimetals. It is subsequently used in
high throughput screening several hundreds of compounds and predicting a dozen materials hosting
nodal Weyl points and/or lines.

PACS numbers:

I. INTRODUCTION.

There has been recent surge of interest in topo-
logical quantum materials caused by the existence in
these systems of robust electronic states insensitive to
perturbations[1, 2]. Z2 invariants have been proposed to
detect the protected (quantum Hall–like) surface states
in topological insulators (TIs) [3], and, for centrosymmet-
ric crystals, this reduces to finding band parities of elec-
tronic wave functions at time–reversal invariant points
in the Brillouin zone (BZ)[4]. For a general case, the
calculation involves an integration of Berry fields [5],
and has been implemented in numerical electronic struc-
ture calculations[6] with density functional theory. These
methods have allowed for exhaustive searches to identify
candidate materials hosting topological insulator phases
[7–9].

Weyl semimetals (WSMs) are closely related systems
characterized by a bulk band structure which is fully
gapped except at isolated points described by the 2x2
Weyl Hamiltonian [2]. Sometimes these Weyl points ex-
tend into lines in the BZ giving rise to nodal line semimet-
als (NLSMs) [10]. Due to their intriguing properties such
as Fermi arc surface states [11], chiral anomaly induced
negative magnetoresistance [12], and a semi–quantized
anomalous Hall effect [13, 14], the search for WSM mate-
rials is currently very active. Unfortunately, their identi-
fication in infinite space of chemically allowed compounds
represents a challenge: there is no corresponding topo-
logical index characterizing WSM phase, and the Weyl
points may appear randomly in the bulk BZ. General
principles, such as broken time reversal or inversion sym-
metry, or emergence of the WSM phase between topo-
logically trivial and non–trivial insulating phases [11]
are too vague to guide their high throughput screening,
and recent group theoretical arguments[15, 16] to con-
nect crystal symmetry with topological properties still
await their practical realization. The progress in this field
was mainly serendipitous, although the ideas based on

FIG. 1: a. A typical cone dispersion relationship
E(k)=±v|k−kWP | for the Weyl point plotted within a rect-
angular area in k–space set by divisions of reciprocal lattice
translations G1 and G2 for a fixed value along the third trans-
lation G3. b. The Weyl point located within a microcell set
by the grid vectors q1,q2,q3 generates a Berry flux through
each plaquette as given by the (right handed) circulation of
the Berry connection with sign convention defined in text.

band inversion mechanism[17] or analyzing mirror Chern
numbers[18, 19] were proven to be useful in many re-
cent discoveries[20–24], and computer oriented searches
of topological semimetals are beginning to appear [25–
27].

In this work, we propose a straightforward method to
identify Weyl semimetals by using a well–known result
that every Weyl point acts as a Dirac monopole [28, 29]
producing a non–zero Berry flux when it is completely
enclosed by a surface in the BZ. The enclosed charge is
given by the chirality of the Weyl point similar to the
Gauss theorem in the Coulomb law. Rectangular grids
of k–points that are widely employed in self–consistent
electronic structure calculations for the BZ integration
either via special points (Monkhorst-Pack) technique [30]
or a tetrahedron method[31], are ideally suited for this
purpose since they divide the volume of the BZ onto mi-
crocells and the electronic wave functions are automat-
ically available at the corners of each microcell. It is
thus a matter of rearranging the data to extract Berry
phases of these wave functions in order to recover the
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FIG. 2: ZrNiAl–type crystal structure (# 189 space group
p6̄2m) of noncentrosymmetric hexagonal compounds com-
pounds studied in this work.

Dirac monopoles inside the BZ. While there are some un-
certainties connected to energy bands cutoffs used while
defining Berry fields for metallic systems, our method al-
lows a subsequent refinement provided a signal from a
monopole is detected. The entire procedure resembles
data mining technology in computer science as an intelli-
gent method to discover patterns from large data sets in
a (semi–) automatic way so that the extracted data can
subsequently be used in further analysis.

Since we are dealing with grids, there is a chance
that the grid microcell will enclose both chiral posi-
tive and negative charges whose Berry fluxes cancel each
other. Although resolution here is obviously adjustable
by changing the grid size, and modern computers allow
handlings of thousands and even millions of k–points
in parallel, going for Weyl points that are too close
makes no sense from both practical and fundamental
reasons. Practically, properties such as anomalous Hall
effect[13, 14] are proportional to the distance between
the Weyl points and so does the density of Fermi arc sur-
face states[11]. Disorder, electronic interactions, thermal
broadening and Heisenberg uncertainty principle provide
fundamental limitations. Therefore, distances between
the Weyl points need not be smaller than a few percent
of the reciprocal lattice spacing, and this does not require
dealing with very dense grids.

Our paper is organized as follows. In Section II, we
describe the monopole mining method and give tests by
verifying locations of the Weyl points in several known
systems, such as recently proposed TaAs[20, 21] and
CuF[24] Weyl semimetals. In Section III, we demon-
strate how it can be used for high throughput screening
of WSMs by scanning several hundreds of compounds in
the p6̄2m(#189) space group with the ZrNiAl structure.
We predict a dozen materials hosting WSM/NLSM be-
havior. Section IV is the conclusion.

II. METHOD.

Here we outline the method to evaluate the Berry
flux due to a single Weyl point that appears somewhere
in the bulk BZ with its typical dispersion relationship
E(k) = ±v|k − kWP | as illustrated in Fig.1a. We rep-
resent the BZ by reciprocal lattice translations Gν=1,2,3

and divide it ontoN1×N2×N3 microcells. Each microcell
is spanned by primitive vectors qν=1,2,3 = Gν/Nν with
its origin given by the grid of k–points represented by
three integers nν = 0, Nν −1 as k = n1q1 +n2q2 +n3q3.

The problem of finding the wave vector kWP is reduced
to recovering the microcell that contains the monopole.
We define a link field that appears while evaluating the
Berry phase using the finite difference method[6]

Uq(k) =
det

[
〈k + qj′|eiqr|kj〉

]
|det [〈k + qj′|eiqr|kj〉]|

(1)

Here the matrix elements between the periodic parts of
the wave functions are cast into the form 〈k+qj′|eiqr|kj〉,
which frequently appear in density functional linear re-
sponse calculations[32] and thus are straightforward to
evaluate. The set of energy bands j is spanned over oc-
cupied states and includes those that cross the Fermi
level. However, some uncertainty exists in this enumera-
tion procedure because the Berry flux from the negative
and positive branches of the monopole (bands 1 and 2
for the example shown in Fig.1a)will cancel each other.
For the example being discussed, this means that either
band 1 or 2 (but not both) needs to be taken into account
while evaluating Eq.1. In real materials, this may result
in contribution for some monopoles cancelling, but since
we are mostly interested in the Weyl points in the imme-
diate vicinity of the Fermi level, varying the upper cutoff
value for j by one or two will resolve this problem. We
also note that the link field Uq(k) needs to be computed
for the entire grid of k–points, where the group symme-
try operations help to generate the wave functions that
are normally available within only irreducible portion of
the BZ.

We now evaluate the Berry flux through faces of each
microcell of the N1 × N2 × N3 grid. This is illustrated
in Fig.1b, where the flux Φi=1..6 through each plaquette
with the origin at particular k and spanned by a pair of
vectors qµqν is conveniently encoded into the following
formula

2πΦ ≡ Im ln

[
Uqµ

(k)Uqν
(k + qµ)

Uqν
(k)Uqµ

(k + qν)

]
(2)

This procedure is similar to one employed while evalu-
ating Z2 invariants [6] on six two–dimensional tori intro-
duced in Ref. [33] but now the roles of the tori are played
by the slices of the BZ spanned by each pair of the re-
ciprocal vectors GµGν with a fixed value along the third
vector Gξ. We only need to take care of the fact that the
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flux as given by Eq. 2 produces right (alternatively left)
handed circulation of the Berry connection but inner (or
outer) normal should be chosen consistently for the to-
tal flux through each surface of the microcell. Thus, the
total Berry flux is given by

c = Φ1 + Φ2 + Φ3 − Φ4 − Φ5 − Φ6 (3)

Although the flux through each plaquette is generally
non–integer, the total flux is guaranteed to be an integer
since individual contributions (2) from adjacent plaque-
ttes cancel each other in Eq.(3), up to an addition of
2πn. Therefore c returns ether the chiral charge of the
monopole or zero.

The entire algorithm is now viewed as an automated
procedure that is either done following the self–consistent
band structure calculation or ”on the fly”. We illustrate
it on the example of TaAs Weyl semimetal whose elec-
tronic properties are well documented in recent literature
[21]. We use a full potential linear muffin–tin orbital
method (FP LMTO) developed by one of us [34] and
perform a self–consistent density functional calculation
with spin–orbit coupling using the Generalized Gradi-
ent Approximation [35]. We subsequently set up a k–
grid using 20× 20× 20 divisions of the reciprocal lattice
unit cell. These types of grids were previously shown
to be sufficient in calculating Z2 invariants in topologi-
cal insulators[36]. For evaluating the link field, Eq. (1),
the energy window is chosen to span the entire valence
band with the cutoff value corresponding to the band
number that crosses the Fermi level. It appears this is
sufficient to recover all monopoles. The net result is 24
out 8000 microcells produce non–zero Berry flux and give
their approximate positions. We take the coordinates
of the corresponding microcells (only non–equivalent by
symmetry are needed; two for TaAs) and mine these ar-
eas of k–space by introducing similar rectangular grids
inside each microcell in order to refine the locations
of the Weyl points to the positions: (0.009, 0.506, 0),
(0.019, 0.281, 0.579) in units 2π/a, 2π/a, 2π/c. This is in
agreement with the previous calculation [21].

We also considered CuF, recently predicted to be a
Weyl semimetal by one of us[24]. The exact same setup
(20 × 20 × 20 divisions with the energy panel spanned
till the band that crosses the Fermi level) returns 24 mi-
crocells that are all related by symmetry. Zooming into
one microcell returns the following location of the Weyl
point: (0.281, 0.119, 0)2π/a, consistent with our previous
result [24].

III. RESULTS.

To demonstrate the predictive power of the method,
we scanned several hundreds noncentrosymmetric hexag-
onal compounds in the p6̄2m (# 189) space group with

the ZrNiAl structure (see Fig. 2). Their complete crys-
tallographic data can be found in Ref. [37]. Topological
electronic structures in few of these systems have already
drawn a recent attention. CaAgP was predicted to be a
line–node Dirac semimetal while CaAgAs was found to
be a strong topological insulator [38]. Similar proper-
ties have been discussed for NaBaBi under pressure[39].
We perform self–consistent band structure calculations
and subsequent monopole mining procedure in exactly
the same manner as we illustrated for TaAs and CuF.
The experimental lattice constants from Ref. [37] have
been utilized while the discrepancies brought by the dif-
ferences in utilizing theoretically predicted lattice param-
eters were found to be small.

As many of the compounds in this structure include
rare earth elements with their f electron states appear-
ing in the vicinity of the Fermi level, we first provide a
list of only those compounds that do not explicitly in-
clude Lanthanides (see Table I). These are the systems
for which density functional based calculations can be
trusted in general. Quite a few of them include magnetic
elements (such as Fe) which can potentially develop a
magentic order at low temperatures. Unfortunately, the
literature contains very limited information about the ex-
istence of magnetism and the type of order (ferro, anti-
ferro, incommensurate, etc.), and at the absence of es-
tablished theoretical procedures to search for the lowest
energy ground state in infinite space of possible magnetic
configurations, all calculations reported here assume a
paramagnetic ground state.

We can also comment on the compounds that include
Lanthanide elements. They can be separated onto two
large groups. The first group includes the materials
where the narrow f–band appears crossing the Fermi
level in the calculated band structures. This would be
an indication that a many–body renormalization of the
single particle spectra (such, e.g., as band narrowing,
multiplet transitions, etc) is expected. Although mod-
ern electronic structure approaches based on combina-
tions of density functional and dynamical mean field
theories [40] allow handling such cases, those are out-
side the scope of the present study, and we do not
study topological properties of these compounds. The
second group includes the materials with either fully
empty or fully occupied f band, namely f0 : LaAuCd,
LaAuIn, LaAuMg, LaCuIn, LaCuMg, LaInMg, LaIrSn,
LaNiIn, LaNiZn, LaPdCd, LaPdHg, LaPdIn, LaPdMg,
LaPdPb, LaPdSn, LaPdTl, LaPtIn, LaPtPb, LaPtSn,
LaRhIn, LaRhSn, LaTlMg; f14: LuAsPd, LuAuIn, Lu-
AuZn, LuCuIn, LuGaMg LuGeAg, LuGeLi, LuInMg,
LuIrSn, LuNiAl LuNiIn, LuNiPb, LuPbAg, LuPdIn,
LuPdSn LuPdZn, LuPtIn, LuPtSn, LuRhSn, LuSiAg,
LuTlMg. These are the cases where static mean field
description can in principle capture single particle exci-
tations (apart from the question whether the position of
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TABLE I: List of noncentrosymmetric hexagonal compounds
in the p6̄2m (# 189) space group with the ZrNiAl structure
studied in this work. The compounds containing Lanthanide
element are explicitly excluded from the Table.

Class X = Class X =
CrAsX Ti, Pd, Fe, Co, Ni, Rh XPtIn Sc, Y
MnAsX Ti, Ni, Rh, Fe, Pd, Ru TiGeX Co, Pd
ScGeX Fe, Rh, Cu, Os, Pd, Ru ZrCoX Ga, Sn
XSiRe Hf, Ta, Ti, Zr ZrGeX Os, Zn
HfGeX Fe, Os, Rh, Ru XNiGa Hf, Zr
FeAsX Ti, Co, V , Ni ScPX Ir, Na
XPNi Fe, Mo, W , Co MnGeX Pd, Rh
XGeMn Hf, Nb, Sc, Ta CrPX Pd, Ni
TiPX Cr, Os, Ru HfXRu P, As
ZrPX Os, Mo, Ru XAsOs Hf, Zr
MnPX Rh, Pd, Ni XPdPb Ca, Y
ScSiX Cu, Ru, Mn XSiMn Nb, Ta
CaXCd Ge, Sn, Pb HfSiX Os, Ru
XAsPd Hf, Ti, Zr CaXAg P, As
XNiAl Hf, Y , Zr ZrXRu Si, As
XBFe Nb, Ta NbCrX Ge, Si
Other: YRhSn, YAuCd , YPdMg , YNiIn , ScGeAg
YPdAl , YInMg , YAuZn , YPbAg , YPdTl
YAuMg , YPdZn , YPdTl , YSiAg , YRhIn
YTlMg , YAgMg , YAuIn , YCuIn , YGaMg
HfIrSn , YPdIn , YCuAl , YGeLi , YPtSn
YCuMg , BaBiNa, YAlMg, ScSnAg, YSiLi

the f–band is correctly predicted by such theory).

There are a few materials that include Sm ion with
its non–magnetic configuration f6 : SmAgMg, SmAuCd,
SmAuIn, SmAuMg, SmCuAl, SmCuIn, SmIrIn, SmIrSn,
SmNiAl, SmNiIn, SmNiSn, SmNiZn, SmPdCd, Sm-
PdHg, SmPdIn, SmPdMg, SmPdPb, SmPdTl, SmPtIn,
SmPtMg, SmPtPb, SmPtSn, SmRhIn, SmRhSn, Sm-
SiAg, SmTlMg. Here j = 5/2 and j = 7/2 subbands ap-
pear below and above the Fermi level, respectively. The
Coulomb renormalzation in these compounds has a pre-
dictable effect by renormalizing the spin–orbit coupling
by the Hubard–type interaction, and the states in the
immidiate vicinity of the Fermi level are not affected.

Out of the compounds that we studied, we clearly iden-
tify 11 materials which show WSM behavior, 1 NLSM
and 1 hosting both Weyl points and nodal lines. The
two NLSMs also host topologically distinct triple fermion
points [41]. Table II summarizes our results for each
compound , giving the locations of the non–equvalent
low–energy Weyl and/or triple points, their number and
energies relative EF in eV. The Weyl points are generally
viewed as type II according to classification introduced
in Ref. [42]. (Complete crystallographic and electronic
structure data for these compounds is given in the sup-
plementary information.)

Many of the Weyl semimetals that we predict in our
work display remarkably similar locations of their Weyl
points. LaInMg[43], LuGeAg[44], YGeLi[45],YPbAg[46],
and YSiAg[47], exhibit 6 pairs (chiral positive and neg-

TABLE II: List of non–equivalent Weyl and triple points (in
units 2π/a, 2π/a, 2π/c), their number and energies relative to
the Fermi level (in eV) recovered using the monopole mining
method for noncentrosymmetric hexagonal compounds in the
p6̄2m (# 189) space group with the ZrNiAl structure that are
predicted to exhibit Weyl/nodal line semimetal behavior. The
typical appearance of the Weyl points in the Brillouin Zone
is cited by referencing to either sort A or B as illustrated in
Fig. 3ab.

Comp. Topological Points Sort # E (eV)
LaInMg (0.00000, 0.36868, 0.01123) Weyl-A 12 −0.06
LuGeAg (0.00000, 0.42190, 0.00098) Weyl-A 12 −0.23
YGeLi (0.00000, 0.27793, 0.00817) Weyl-A 12 −0.13
YPbAg (0.00000, 0.40335, 0.03142) Weyl-A 12 −0.09
YSiAg (0.00000, 0.37864, 0.00384) Weyl-A 12 −0.09
HfPRu (0.46280, 0.06931, 0.0221) Weyl-B 24 +0.06
ZrPRu (0.45982, 0.07532, 0.01698) Weyl-B 24 +0.06

LaTlMg
(0.00000, 0.38916, 0.03236)
(0.41450, 0.02567, 0.00724)

Weyl-A
Weyl-B

12
24

−0.13
−0.13

YTlMg
(0.00000, 0.43303, 0.02319)
(0.44076, 0.02908, 0.00441)

Weyl-A
Weyl-B

12
24

−0.05
−0.11

LuAsPd
(0.00000, 0.11481, 0.14140)
(0.00000, 0.12004, 0.13942)

Weyl-A
Weyl-A

12
12

+0.18
+0.19

ZrAsOs
(0.47365, 0.02591, 0.04792)
0.47406, 0.01215, 0.04789

Weyl-B
Weyl-B

24
24

+0.02
+0.02

TiGePd
(0.00000, 0.00000, 0.16495)
(0.00000, 0.00000, 0.20775)

Triple
Triple

2
2

+0.14
+0.22

VAsFe
(0.00000, 0.000000, 0.32279)
(0.00000, 0.000000, 0.47625)
(0.00000, 0.38339, 0.17269)

Triple
Triple

Weyl-A

2
2
12

+0.14
+0.19
+0.09

ative) of points, that are all symmetry related and are
only slightly displaced from the kz = 0 plane. They are
located along the ΓM direction in the BZ. We illustrate
their precise positions for LaInMg in Fig. 3a and refer
to them in Table II as Weyl points of sort A. We find
that HfPRu[48], and ZrPRu[43] show another sort (re-
ferred to as sort B) of Weyl points, namely 12 pairs that
are shifted symmetrically away from the ΓK line (see
Fig. 3b). Interestingly, a similar behavior is seen for
LaTlMg[49], and YTlMg[43] which show both sorts (A
and B) of Weyl points. LuAsPd[50] shows two kinds of
sort A Weyl points (24 total), while ZrAsOs[51] shows
two kinds of sort B Weyl points (48 total). Their dis-
placement from kz = 0 plane is much larger than the one
found in previous cases. For each reported Weyl point,
we also provide independent verification by calculating
the band structures along kx, ky and kz directions with
the boundary vectors confining the Weyl point. These
data can be found in Supplementary Information [52].

Another interesting outcome of our high–throughput
screening is the materials exhibiting nodal lines and
triple–point fermions. TiGePd[53] and VAsFe[54] both
host 12 pairs (chiral positive and negative) of nodal
lines that are located very close to the ΓA direction
in the BZ. We illustrate this behavior for TiGePd in
Fig. 3c by zooming into the area of the BZ bounded by
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FIG. 3: a. Positions of 6 pairs (cyan for chiral positive and magenta for chiral negative) of low–energy Weyl points seen
along the ΓM direction in the BZ for LaInMg and referenced in Table II as sort A; b. Positions of 12 pairs of Weyl points
that are shifted symmetrically away from the ΓK line for HfPRu and referenced in Table II as sort B; c. A set of nodal
lines for TiGePd that is recovered by the monopole mining method presented in this work. The color (cyan and magenta)
distinguishes chiral positive and negative lines, respectively. The zoomed area of the BZ is bounded by 0.15 ≤ 2πkz/c ≤ 0.22
and −0.03 ≤ 2πkx,y/a ≤ +0.03. Also shown in yellow are the triple degenerate topological points [41].

0.15 ≤ 2πkz/c ≤ 0.22 and −0.03 ≤ 2πkx,y/a ≤ +0.03.
Interestingly, the nodal lines start and end at triple de-
generate points that have recently enriched our classifi-
cation of the topological objects [41]. These triple points
are located at the ΓA line of the BZ. We provide their
coordinates for TiGePd and VAsFe in Table II.

One of the most striking features of Weyl semimetals is
the presence of the Fermi arcs in their one–electron sur-
face spectra[11]. Although computations of their shapes
are possible via a self–consistent supercell (slab) calcu-
lation of the surface energy bands, given the number of
compounds that we deal in this work, it is a computa-
tionally demanding study. Nevertheless, since the arcs
connect the Weyl points of different chirality, one can
expect that most of the materials that we list in Table II
would have rather short arcs since the distances between
positive and negative chiral charges are quite small. One
notable exception is VAsFe which, as we list in Table II,
exhibits not only nodal lines and triple points, but also
a set of Weyl points which are well separated from each
other. These are expected to produce very long Fermi
arcs for the (100) or (110) crystallographic types of sur-
faces. One can also expect that their contribution to the
anomalous Hall coefficient should be large since the latter
is known to be directly proportional to the distance be-
tween the Weyl points [13]. We have recently shown [55]
that long and straight Fermi arcs are generally capable of
supporting nearly dissipationless surface currents, there-
fore it could be interesting to explore such possibility in
VAsFe.

IV. CONCLUSION.

In conclusion, we presented an automated monopole
mining method to identify Weyl and nodal line semimet-

als. We tested the method by recovering the Weyl points
in several known systems as well as demonstrating its
predictive power by high throughput screening hundreds
noncentrosymmetric hexagonal compounds in the p6̄2m
(# 189) space group and finding 13 materials whose lo-
cations of the topological nodal points and lines have
been reported. As we judge from our calculated energy
bands, the WSMs identified in this work exhibit regular
Fermi surface states while the Weyl points are not exactly
pinned at the Fermi level. This is similar to other re-
cently discovered WSMs, such as TaAs[21] whose exper-
imental studies of large negative magnetoresistance have
been recently performed[56]. Despite the latter repre-
senting a signature of the much celebrated chiral anomaly
feature in Weyl semimetals, there exists an obvious prob-
lem of distinguishing contributions from the Weyl points
and regular Fermi states. In this regard our automated
approach should be helpful for scanning vast material
databases in identifying an ideal WSM with only nodal
points at the Fermi level as it was originally envisioned
in pyrochlore iridates[11].
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