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The Monte Carlo method is very useful for studying various model states proposed for the frac-
tional quantum Hall systems. In this paper, we introduce a lattice Monte Carlo method based on
an exact lattice formalism for quantum Hall problems defined on a torus. This “lattice represen-
tation” is applied to study the many body Berry phase of the Composite-Fermi liquid phase in a
half-filled Landau level. The Monte Carlo result agrees with the exact numerical result found on
small systems sizes, and is consistent with the prediction from the Dirac fermion low energy effective
theory. Many other aspects of other model states, including the structure factor, Coulomb energy
and particle-hole symmetry, are studied and discussed.

I. INTRODUCTION

Strongly interacting electrons in high magnetic field
exhibit rich physical properties. Numerical Monte Carlo
studies of quantum Hall model wavefunctions have long
been an important tool in understanding quantum Hall
physics. Quantities such as the ground-state energies,
quasiparticle gaps, density-density correlation functions
(structure factors), quasiparticle statistics and more have
all been calculated using these methods [1–8]. Like many
numerical methods, these Monte Carlo studies are lim-
ited in the system sizes they can access, and methods to
increase these system sizes can allow for new measure-
ments and lead to new physical insights.

The torus geometry has been one of the most useful
platforms for studying Fractional Quantum Hall (FQH)
states [9, 10]. The translation group of a charged particle
in a magnetic field on a torus has a rich structure which
has allowed a deeper understand of topological proper-
ties. Recently, one of us has shown that instead of the
continuous formalism, a rigorous finite “lattice represen-
tation” [11] can be built on the torus, using the sub-
group of discrete translations compatible with the mag-
netic translation group in this compact geometry. One
application of this lattice formalism is the lattice Monte
Carlo method presented here.

The composite Fermi liquid (CFL) state that can oc-
cur at Landau level (LL) filling ν = 1/q (q is even) is
one of the interesting phases that two dimensional in-
teracting electrons in magnetic field can exhibit. The
CFL phase has been understood in a number of ways,
such as the Halperin-Lee-Read (HLR) theory [12] where
the composite fermions (physical electrons bound to q
“flux quanta” or vortices) form a Fermi sea. At LL filling
ν = 1/2, electrons interacting via two-body interactions
have an exact particle-hole symmetry, while it is not ob-
vious how HLR theory is consistent with this symmetry
[13–19]. This motivated Son [20] to consider an alterna-
tive effective field theory where the composite fermions
are neutral Dirac fermions, and the particle-hole trans-
formation acts as a time-reversal transformation on these
Dirac fermions. In the Dirac picture, the Fermi sea has a

singular point at its center, with a Berry flux of π, giving
a Z2 Berry phase factor of −1 for an adiabatic path in
momentum space where a single composite fermion en-
circles the singular point an odd number of times. Such a
π Berry phase was later indirectly confirmed in a recent
density matrix renormalization group study [21].

In the work described here, we directly compute the
CFL Berry phase and Berry curvature by transporting
composite fermions along different closed paths. The
Monte Carlo computation uses the lattice representation
presented here and is based on a determinant variational
model wavefunction [22–24] that is found to describe the
CFL phase very well when the (discrete) variational pa-
rameter, the composite fermion configuration, is clus-
tered to form a compact Fermi sea [25]. Our lattice
Monte Carlo result for the Berry phase of the many-
particle wavefunction agrees with a study (using much
smaller system sizes) based on exact numerical methods
[25], which our lattice Monte Carlo study confirms using
much larger sizes.

In this work, we will show why a lattice representa-
tion can be built on the torus, how the lattice-based
Monte Carlo method is able to significantly speed up
calculations, and compute a variety of physical interest-
ing properties including the many body Berry phase in
the CFL state, the structure factor, pair-amplitude and
Coulomb energy for various model states. We begin in
Section II with a pedagogical review of the FQH physics
with the emphasis on the guiding centers and the trans-
lation symmetry, and finally introduce the lattice repre-
sentation and the lattice Monte Carlo method. In the
subsequent sections we provide some examples of calcu-
lations which can be performed using this new Monte
Carlo method. In Section III, we compute Berry phases
for quasiparticles in the Laughlin state, as well as the
Berry phase acquired when moving composite fermions
around the Fermi sea in a CFL state. In Section IV,
we compute structure factors for various quantum Hall
states at very large sizes, and introduce a Brillouin zone
truncation method to further improve the Monte Carlo
efficiency. Finally in Section V, we show how the Monte
Carlo method can be used to evaluate the particle-hole
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symmetry of wavefunctions.

II. LATTICE MONTE CARLO METHOD

In this section, we will introduce our basic notation,
and provide a brief review of the guiding center physics
and translational symmetry on the torus. Both of these
played an important role in the development of the “Lat-
tice representation” [11].

A. Review of Guiding Center Physics

A generic quantum Hall problem is formed by a 2D
electron gas (2DEG) in a high magnetic field. The Hamil-
tonian that describes this system contains a kinetic term
H0 and an interaction term V ,

H = H0 +
∑
i<j

V (ri − rj), H0 =
∑
i

ε(πi). (1)

where ε(p) is the single body dispersion and πi =
pi−eA(ri) is the gauge invariant dynamical momentum.
This momentum satisfies [πi,a, πj,b] = i~δi,jεabl−2

B where

lB =
√
eB/~ is the magnetic length and εab is the 2D

anti-symmetric symbol (which is odd under the antiuni-
tary time-reversal and particle-hole-conjugation (within
a LL symmetries). Here the subscripts i, j label different
electrons while spatial indices a, b label directions. With
this convention, the cyclotron motion of the electron is
clockwise, and the “magnetic area” occupied by one flux
quanta is 2πl2B .

The electron positions (displacements from an arbi-
trary origin on the 2D plane) {ri} = {rai ea} can be re-
organized to two independent sets,

rai = Rai + R̄ai . (2)

where R̄ai ≡ −l2Bεabπi,b describes the electrons orbital
motion and Rai is the guiding center coordinate which is
the center of classical cyclotron motion. (Note that our
formalism distinguishes components of displacements,
which have upper indices, from those of derivatives,
which have lower indices, as the Euclidean metric δab
= ea · eb has no role in the physics other than to de-
fine a Cartesian coordinate system, and the common as-
sumption that introduces it by postulating a Newtonian
form ε(π) = 1

2m
−1δabπaπb will not be made here; in

general there is no place for the the Euclidean metric
in the the physics of electrons moving in a fixed crys-
talline background.) The algebras of these new coordi-
nates are [R̄ai , R̄

b
j ] = il2Bε

abδi,j , [Rai , R
b
j ] = −il2Bεabδi,j

and [R̄ai , R
b
j ] = 0. The kinetic part of the Hamiltonian,

H0, produces LL quantization. In the limit where the LL
energy-splitting is much larger than the interaction en-
ergy, the wavefunction can be written as an unentangled
product of the Landau orbit part and the guiding center

part

|ψn〉 = |ψLOn 〉 ⊗ |ψGC〉. (3)

Here |ψLOn 〉 is the Landau orbit part, where n indicates
that the system is in the nth LL. |ψGC〉 is the guiding
center part of the wavefunction. The LL part of the
wavefunction can be projected out, leaving the problem
essentially a degenerate perturbation problem within a
specific LL described by a set of non-commutative inter-
acting guiding center coordinates Rai [26],

H =
∑
i<j

V (Ri −Rj). (4)

Here the “guiding-center interaction potential” V (r) de-
pends not only on the “bare” Coulomb interaction, but
also on the “form-factor” of the LL into which it is
projected. It is an extremely smooth function, with a
rapidly-decaying Fourier transform due to the Gaussian-
like form-factor, which means that the expansion of
V (r + δr) in powers of δra is absolutely convergent for
all r. This property ensures that, as a function of non-
commuting variables, V (Ri −Rj) is well-defined.

In the following we will work on a torus with primary
translations L1 and L2, which contains flux 2πNφ =
|L1 ×L2|. Model wavefunctions on the torus contain an
implicit “complex structure”, which describes a mapping
between the torus and the complex plane: z ≡ wax

a.
A complex structure is defined by a unimodular (unit
determinant) Euclidean-signature metric through gab =
w∗awb+waw

∗
b and iεab = w∗awb−waw∗b . The complex lat-

tice is then L ≡ {mL1 +nL2}, Li = waL
a
i , and the quan-

tization condition translates to L∗1L2 − L1L
∗
2 = 2πiNφ.

The metric gab is a continuously-variable parameter of
the model wavefunction that generally parameterizes the
shape of “flux attachment”, or a correlation hole around
each particle. If the interaction V (r) has a rotational
symmetry, so V (r) = f(g0

abr
arb), the natural choice for

gab is g0
ab, but otherwise gab should be chosen to minimize

the variational energy of the model wavefunction.
The symmetry group on a torus in a magnetic field

is the magnetic translation group, whose group elements
are t(d) ≡ eid×R, where d is a vector in real space. The
t(d) satisfy the Heisenberg algebra

t(d+ d′) = t(d)t(d′)e
i
2d×d

′
. (5)

A periodic translation must leave the wavefunction in-
variant up to a phase:

t(L)ψ(z) = η
Nφ
L eiφLψ(z), (6)

where ηL = 1 if 1
2L ∈ L, ηL = −1 otherwise. The phase

φL is a boundary condition parameter, that has no sig-
nificance if the system is translationally invariant, when
it can conveniently be set to zero. Translating the wave-
function by a non-integer multiple of L/NΦ would change
the boundary condition and this imposes the the con-
dition that d ≡ wad

a is quantized with discrete values
mL1/Nφ + nL2/Nφ.
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Since wavefunctions on a torus are quasiperiodic, they
are naturally expressed in terms of various elliptic func-
tions. In this work the elliptic function we will use is
what we call the “modified Weierstrass sigma functions”
σ(z) [27], which we then multiply by a Gaussian. This

function, which we will call f(z) = σ(z)e
− 1

2Nφ
zz∗

, is the
building block of the model wavefunctions in Section III.

Combining all the properties described above, we can
now explicitly write model wavefunctions. We start with
the simplest case, the wave function for a single electron,
which is also the building block for many body wavefunc-
tions:

ψ(z, {α}) =

Nφ∏
i

f(z − αi)e
1

2Nφ
(α∗i z−αiz

∗)
. (7)

Since this wavefunction is essentially holomorphic [it is
easily verified that it is a holomorphic function times

a Gaussian by substituting f(z) = σ(z)e
− 1

2Nφ
zz∗

], it is
uniquely determined given its zeros {αi}. Under a trans-
lation around the torus the wavefunction becomes:

t(L)ψ(z, {α}) = η
Nφ
L eL

∗ᾱ−Lᾱ∗ψ(z, {α}). (8)

where ᾱ =
∑
i αi/Nφ is the average of all zeros. By com-

parison with Eq. (6) we see that the ᾱ sets the boundary
conditions of the wavefunction. As noted previously, we
will use the boundary condition:

∑
i αi = 0 mod L.

Note we are not limiting ourselves to the lowest LL
by using holomorphic wavefunctions. Holomorphic func-
tions are just representations of guiding center states and
are generic to any LL; the “wavefunction” is really a rep-
resentation of a Heisenberg state of the guiding center
projected into any LL [11, 27],

Ψ(z) ≡ F (z)e−
1
2 z
∗z 7→ F (a†)|0〉, a|0〉 = 0, (9)

where a† = w∗aR
a.

B. Lattice Representation and Monte Carlo

A number of useful calculations (e.g., overlaps, opera-
tor expectation values) can be made by integrating over
the positions of all electrons in a model wavefunction.
As shown in Ref. 11, overlap of two holomohrpic torus
wavefunctions can be replaced by an exact lattice sum.
In this short section, we start with an introduction to the
“lattice representation” with an emphasis on its opera-
tor form, and then describe how these calculations can
be performed using the Metropolis-Hastings algorithm
[28, 29]. We will focus on two-body operators since these
are used in calculations of important quantities such as
the energy or the structure factor.

1. Lattice Representation Operator Form

The key advantage of our method lies in the fact that
continuous integrations can be replaced with lattice sums

on the torus in an exact way [11]. We are interested
in knowing the mean value of a translationally invariant
two-body operator

∑
i<j O(xi − xj), averaged by states

|ψn,1〉 and |ψn,2〉 in the nth LL, which by definition is
given by continuous integration,

〈ψn,1|Ô|ψn,2〉 (10)

≡
Ne∏
k

∫
d2xk ψ

∗
n,1({x})ψn,2({x})

∑
i<j

O(xi − xj).

where we use Ô to represent an operator and O(x) to
denote its coordinate representation.

In fact, such calculation can be replaced by a lattice
summation for operator ÔLat, which we call as the “lat-
tice representation” of Ô,

〈ψn,1|Ô|ψn,2〉 = C〈ψ0,1|ÔLat|ψ0,2〉Lat. (11)

where the symbol 〈|...|〉Lat means lattice summation, de-
fined as follows,

〈ψ0,1|ÔLat|ψ0,2〉Lat (12)

≡
Ne∏
k

′∑
xk

ψ∗0,1({x})ψ0,2({x})
∑
i<j

OLat(xi − xj).

In the above,
∑′

x means summing over the Nφ × Nφ
evenly spaced lattice x ∈ {(mL1 + nL2)/Nφ|m,n ∈ Z}.
The constant C is fixed once theNφ×Nφ lattice is chosen,
and it is not important since it is always canceled out by
wavefunction normalization factors. In the following, we
want to derive the expression of OLat(x) ≡ 〈x|ÔLat|x〉.

Note that in Eq. (11) we wrote states on the right side
with LL index n = 0. By doing this, we mean that the
physical problem in an arbitrary LL can be solved by
using the lowest LL wavefunctions as a technical device.

The translation group plays the central role in the
derivation of the lattice representation. To see this, we
start by finding the effective interaction potential for
guiding centers. First, do a Fourier expansion for Ô,
yielding,

〈xij |Ô|xij〉 ≡ O(xi − xj) =
1

2πNφ

∑
q

O(q)eiq·(xi−xj).

where the unprimed sum
∑

q sums all discrete q allowed
by boundary condition.

Now we split up the coordinate and wavefunction into
“Landau orbit” and “guiding center” parts using Eqs. (2)
and (3). This allows us to write it as,

〈ψn,1|Ô|ψn,2〉 = (13)

1

2πNφ

∑
q

∑
i<j

O(q)f2
n(q)〈ψGC1 |eiq·(Ri−Rj)|ψGC2 〉.

where fn(q) is the LL “form factor” defined as:

fn(q) ≡ 〈ψLOn |eiq·R̄|ψLOn 〉 = Ln( 1
2q

2l2B)e−
1
4q

2l2B . (14)



4

A key observation is that eiq·Ri in Eq. (13) is nothing
but the magnetic translation operators, which satisfy the
Heisenberg algebra Eq. (5). Note that the periodic trans-
lation (q ∈ L) leaves the state invariant up to a phase
factor Eq. (6). We thus can break up the sum over q into
a sum over the first Brillouin zone [indicated by the prime
on the sum

∑′
], and the sum over the rest of q−space

included in OGC(q). Now Eq. (13) becomes,

〈ψn,1|Ô|ψn,2〉 = (15)

1

2πNφ

′∑
q

∑
i<j

OGC(q)〈ψGC1 |eiq·(Ri−Rj)|ψGC2 〉.

where OGC(q) is the interaction defined only in the first
Brillouin zone but it includes all other short range inter-
actions exactly. Because of the exponential tail of the
form factor, the numerical value of OGC(q) is dominated
by the part of O(q) in the first Brillouin zone,

OGC(q) = [O(q)f2
n(q)]c (16)

≡
∑
q′

O(q + q′Nφ)f2
n(q + q′Nφ).

Eqs. (15) and (16) are close to the final expression of
lattice representation OLat(x) that satisfies Eq. (11). As
the central result in this section, it is,

OLat(x) =
1

2πNφ

′∑
q

OGC(q)

|[f0(q)]Nφ |2
eiq·x. (17)

We give more details of the derivation in the Appendix.
They symbol [...]Nφ used in Eq. (17) denotes a “compact-
ification”, defined as the following for arbitrary operator
χ(q),

[χ(qmn)]Nφ =
∑
k,l

χ(qmn + q′klNφ)ei(kφ1+lφ2)

× (−1)ml−nk+Nφ(kl+k+l). (18)

where φ1,2 is the boundary condition t(L1,2)|ψ〉 =
−eiφ1,2 |ψ〉, qmn ≡ (mL1 + nL2)/(Nφl

2
B). Due to the ex-

ponential decay of the form factor, the compactification
used in Eq. (17) is effectively constrained in the first Bril-
louin zone. Note that when O(x) is identity, we recover
the central result in [11]: the expression of the overlap of
wavefunctions can be replaced by a lattice summation.

At this stage, we make some comments on the result.
The emergence of the q−space Brillouin zone in Eq. (15)
is purely a consequence of the translation group, and
this indeed implies a real space lattice structure: states
and operators can be formulated on the lattice. Since
we worked out the whole problem in the guiding cen-
ter space, the lattice representation is generic to any LL;
the lowest LL wavefunction in Eq. (11) is not special,
but serves just as a technical device to solve the prob-
lem in a generic LL. Furthermore, in some cases when
the two body operator O(q) is divergent if it is put on
the infinite plane, their lattice representations are conver-
gent. As can be seen from Eq. (17), the numerator and

denominator are regularized by Gaussian factor first and
are compactified separately, making the potential conver-
gent. This is not surprising, since the lattice provides a
natural regularization. We will see this again when work-
ing on the high LL Coulomb energy and pair-amplitude.

2. Lattice Monte Carlo

To set up the the Metropolis algorithm, using the lat-
tice representation, we rewrite expectation value as:

〈ψ1|Ô|ψ2〉√
〈ψ1|ψ1〉〈ψ2|ψ2〉

(19)

=
[
∑′ |ψ1(x)|2 ·OLat(x) · ψ2(x)/ψ1(x)]/

∑′ |ψ1(x)|2√
[
∑′ |ψ1(x)|2 · |ψ2(x)/ψ1(x)|2]/

∑′ |ψ1(x)|2
.

We obtained this equation by writing the overlaps
as sums over all positions of the coordinates, and
then multiplying the numerator and denominator by
|ψ1(x)|2/[|ψ1(x)|2

∑′
x′ |ψ1(x′)|2]. In the above,

∑′
sums

over x = {x1, ...xNe} which represents a point in the
many body coordinate space. All xi live on the lattice,
therefore x is N2Ne

φ dimensional. Writing the overlap
in this way makes it clear that both the numerator and
denominator can be computed using a Monte Carlo al-
gorithm with Metropolis weight |ψ1|2.

In Table I, we test our Monte Carlo method by com-
puting the Coulomb energy, O(x) → V (x) = 1/|x|, for
the Laughlin wavefunction at ν = 1/3 in the first few LLs.
The tables shows the exact energies and those determined
by Monte Carlo, for a few different system sizes. The en-
ergy includes the “Madelung energy” [30, 31], which is
due to an electron’s interaction with periodic copies of
itself. The fact that our results agree to several digits
(limited only by the statistical error of the Monte Carlo)
is a confirmation that our lattice Monte Carlo does give
correct results. To the best of our knowledge, the first
Monte Carlo calculation of Laughlin ν = 1/3 lowest LL
Coulomb energy was done in [3] for up to 144 electrons.
Using the lattice method presented here, and by virtue
of a modern computer, we can do much larger sizes (e.g.
for 200 electrons the energy −0.40969 ± 0.00002 can be
computed within 100 CPU hours). For higher LLs n > 1,
we find very large statistical errors which prevent us from
obtaining the energy directly through the Monte Carlo.
The cause of this problem (and a solution which improves
the Monte Carlo efficiency significantly) are provided in
Section IV.

III. BERRY PHASE

In this section we use the Monte Carlo method to cal-
culate the Berry phases acquired when various quasipar-
ticles are moved around a closed path. We will start
from an easy case of moving a quasi-hole in the Laughlin
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n = 0
Ne Exact Monte Carlo
4 −0.414171 −0.414172 ± 0.000001
5 −0.412399 −0.412397 ± 0.000001
6 −0.411583 −0.411585 ± 0.000001

n = 1
Ne Exact Monte Carlo
4 −0.339105 −0.33907 ± 0.00005
5 −0.334207 −0.33421 ± 0.00004
6 −0.331879 −0.33190 ± 0.00007

n = 2
Ne Exact Monte Carlo
4 −0.280537 −0.278 ± 0.004
5 −0.278052 −0.280 ± 0.005
6 −0.274849 −0.26 ± 0.01

n = 3
Ne Exact Monte Carlo
4 −0.257681 −0.26 ± 0.09
5 −0.254155 −0.4 ± 0.2
6 −0.251042 −0.7 ± 0.9

TABLE I: Comparison of exact and Monte Carlo en-
ergies for the Laughlin wavefunction at ν=1/3. The
agreement between the two, limited only by statistical
error, is a confirmation that our lattice Monte Carlo
is correct. For n>1 the statistical error is large. The
cause and solution of this problem are described in Sec-
tion IV.

state. This serves as an example of a Berry phase calcu-
lation and demonstrates that our Monte-Carlo method
works. Then we will proceed to the gapless CFL phase.
The Berry phase obtained by the composite fermions as
they move around the Fermi surface has attracted recent
interest due to its relationship with various particle-hole
symmetric theories of the CFL [17, 18, 20, 21, 25, 32–35].

A. Laughlin-hole Berry Phase

As a first example we move one quasi-hole in the ν =
1/q. In this section, we use q as the inverse of the filling
fraction. Laughlin state around an area A in which no
other quasiholes are present, and the particle density is
uniform. Since the quasi-hole is charged and there is a
magnetic field passing through the system, the quasi-hole
should pick up a Berry phase of 2πA/q. Before doing the
Berry phase calculation, we first review the Laughlin and
Laughlin-hole wavefunction on the torus.

On the infinite plane, Laughlin’s ν = 1/q wavefunction

[2] is given by
∏
i<j(zi − zj)

qe
− 1

2l2
B

∑
i ziz

∗
i
. The torus

generalization of it [9, 10] is,

Ψ({α}) =

Ne∏
i<j

[f(zi − zj)]q
q∏

k=1

f(Z − αk). (20)

where Z =
∑Ne
i zi is the center-of-mass coordinate. The

first term of Eq. (20) is the usual Vandermonde factor

on a torus, while the second term places q center-of-
mass zeros at positions {αk}, k=1, ..., q. From now on
we will enforce periodic boundary conditions by requir-
ing that

∑q
k αk = 0 mod L. As already discussed in

Section II, the f(z) is the “modified Weierstrass sigma”
function times Gaussian: f(z) = σ(z) exp− 1

2Nφ
zz∗. All

model wavefunctions presented in this section are fac-
torizable into a holomorphic function times a Gaussian
factor

∏
i exp(− 1

2ziz
∗
i ).

Inserting additional Nh fluxes in the ν = 1/q Laughlin
wavefunction creates quasi-hole excitations. The wave-
function with {w} representing the positions of the quasi-
holes is,

Ψ({α}, {w}) = (21)

Ne∏
i<j

fq(zi − zj)
Ne,Nh∏
i,a

f(zi − wa)

q∏
k=1

f(Z + W
q − αk).

In the following, we will use the Monte Carlo to cal-
culate this Berry phase Φ. We take the one-hole model
wavefunction Nh = 1, and move it around a path w0 →
w1 → ... → wn−1 → w0. At each step, we compute
the overlap between the wavefunctions with w = wn and
wn+1. To compute the Berry phase, we take the product
of these overlaps:

〈ψ(w0)|ψ(w1)〉...〈ψ(wn−1)|ψ(wn)〉 = |D|eiΦ.

Since our numerics turns the continuous motion of the
quasi-hole into a series of discrete steps, the amplitude
|D| will be smaller than one. The system has probability
of 1−|D| jumping to the excited state and scrambling the
phase. Therefore it is important to keep the step length
|wi − wi+1| small so that |D| is close to one.

The numerical results for Laughlin q = 3 and q =
5 states are represented in (Fig. 1). We see that our
observed values are what we expect them to be.

One can also do braiding of holes, or even more exotic
anyons in other topological states [5, 6]. Here we just
use a Laughlin hole as a trivial example to illustrate the
Berry phase calculation.

B. CFL Berry Phase

The composite-Fermi-liquid state is a gapless state
that forms at LL filling ν = 1/q when q is even. An
emergent Fermi surface of composite fermion forms [12].
In this subsection, we will calculate the Berry phase
acquired by moving one composite fermion around the
Fermi surface.

There are some model wavefunctions proposed for the

CFL state, such as detij e
idi·Rj |Ψ

1
2

L〉 [36, 37] where |Ψ
1
2

L〉
is the boson Laughlin state. Evaluating this wavefunc-
tion when projecting to a single LL unfortunately re-
quires anti-symmetrization of Ne! terms, and therefore
quickly becomes unfeasible for practical calculation when
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FIG. 1: Ne = 50, ν = 1/q. Laughlin-hole state Berry
phase (Φ) v.s. area the loop enclosed (A). The dot and
the square show Monte-Carlo data for q = 3 and q = 5
respectively. The Monte-Carlo error is bounded by the
line width. This demonstrates that Φ = A/q. The inset
shows the overlap |〈ψ(0)|ψ(∆x)〉| v.s. ∆x which allows
us to take step steplength to be ∆x = 0.02 i.e. the
quantum distance between consecutive steps is small.

Ne is large. In this work we consider instead the follow-
ing model wavefunction [23, 24], whose computational
complexity is O(N3

e ).

ΨCFL({α}, {d}) = det M̃ij

∏
i<j

fq−2(zi−zj)
q∏

k=1

f(Z−αk).

(22)

where M̃ij is a Ne ×Ne matrix, and det M̃ij is its deter-
minant:

M̃ij = e
1
2q (zid

∗
j−z

∗
i dj)

Ne∏
k 6=i

f(zi − zk − dj + d̄).

In addition to a dependence on the q center of mass zeros
{α}, this wavefunction depends on Ne additional param-
eters {d}, the dipole moments. Like many quantum Hall
wavefunctions, this wavefunction surrounds each electron
with a “correlation hole”: a region of depleted charge. In
this wavefunction, the center of the correlation hole is dis-
placed from the electron by dj . In the magnetic field, a
dipolar electron always moves perpendicular to its dipole
direction, therefore the composite fermion’s momentum
is ka = l−2

B εabed
b.

Requiring that all electrons see the same boundary
conditions sets some constraints on the {d}. The ze-
ros seen by the ith particle add up to α − d + NedP (i).
Since all electrons must satisfy the same boundary con-
dition, di must take {mL1

Ne
+nL2

Ne
} values. Of course this

quantization makes sense if we remember that l−2
B εabed

b

represents the composite fermion momentum, and mo-
mentum is quantized on torus.

A shift of d̄ is a continuous symmetry of the model
wavefunction, as we noticed recently. And we also found

that the unnormalized model wavefunction vanishes iden-
tically when d̄ approaches the center of Fermi sea, when
(and only when) dipoles form an inversion-symmetric
Fermi sea and the number of electrons is even. We believe
this is related to the extra degeneracy in a particle-hole
symmetric system with even number of electrons in the
inversion symmetric many-body momentum sector, and
might be related to the emergent Dirac cone that gives
raise to the observed Z2 Berry phase, as we will discuss
in the below.

From the numerical work we have done at small sys-
tem sizes [25], we know that the model wavefunction is
very close to the Coulomb ground state when the dipoles
are clustered, and becomes less close when more dipoles
are excited out of Fermi sea. We first need to define
what it means to take a composite fermion around the
Fermi sea. In this work we consider a set of states
obtained from dipole moments which form a compact
Fermi sea, plus one additional dipole moment. We move
this dipole moment on a path which encloses the Fermi
sea. Alternatively we can remove a dipole moment to
make a composite-hole and move it around on a path in-
side the Fermi sea. Because the many-body momentum

K =
∑Ne
i di, these states defines a path in the momen-

tum space.
Since our system has translational invariance, states

with different many-body momentum K1 6= K2 are gen-
erally orthogonal 〈ψ(K1)|ψ(K2)〉 = 0. We must insert
an operator that makes this overlap non-vanishing. The
natural choice of this operator is the guiding center den-

sity operator ρ(d) =
∑Ne
i ti(d) which satisfies the GMP

algebra [ρ(d1), ρ(d2)] = 2i sin d1×d2

2l2B
ρ(d1 + d2). We thus

define a the many-body K-space Berry phase, which is
a generalization of the single body Brillouin zone Berry
phase, as follows,

|D|eiΦ = Tr(Γ1,2Γ2,3...ΓN,1), (23)

where for each step (Γ1,2)α,β ≡ 〈ψ1α|ρ(∆K12)|ψ2β〉
where ∆K12 takes a value in the first Brillouin zone and
∆K12 = K1 − K2 mod L. Here α, β = 0, 1, labels the
two-fold degenerate topological ground states. The off-
diagonal elements of Γ1,2 are small since they involve
transition between different topological sectors.

From the exact diagonization study in [25], we have
found that this phase is determined by the direction in
which the composite fermion moves around the Fermi
sea. The total phase is given by:

eiΦ = (i)N+−N−(−1)η. (24)

In the above formula, (i)N+−N− is a path-dependent
phase, and (−1)η is the Z2 part. N+ (N−) is the number
of anti-clockwise (clockwise) steps, defined relative to the
center of Fermi sea. Note that steps normal to the Fermi
sea are not included, since they always have zero ampli-
tude. The η ∈ Z is the winding number, that counts
how many times the total path enclose the center of the
Fermi sea. The observed Z2 phase is consistent with the
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FIG. 2: Ne = 13 CFL Berry phase. Cross mark “x”
represents the “composite fermion” we are moving.
This is a consistency check with the same calculation
done in [25] (but using a different numerical approach).
This data can be interpreted through Eq.(24), which
shows that in addition to a Z2 piece there is a piece de-
pending on the direction of motion around the Fermi
surface. When this is accounted for we find a residual
“-1” from the Z2 part whenever the composite fermion
encloses the Fermi sea.

low energy effective theory proposed in [20] where com-
posite fermions are conjectured to be Dirac fermions and
Berry flux is thus concentrated in the center of Fermi sea.
More discussions on the many body Berry phase as well
as exact numerical studies up to Ne = 13 electrons are
given in [25].

The Monte Carlo calculation enables us to look at the
Berry phase at much larger sizes, up to Ne = 69, and lets
us check the Berry phase in a more convincing way. The
following (Fig. 2) is done for Ne = 13, and (Fig. 3) is
for Ne = 69. The results agree with Eq. (24), confirm-
ing that a Z2 phase is indeed obtained when composite
fermions encircle the origin. Note that the model wave-
function Eq. (22) is not exactly particle-hole symmetric,
therefore the observed Berry phase obtained using it is
not exact, but is close to Z2 phase.

IV. STRUCTURE FACTOR AND PAIR
AMPLITUDE

Another application of the Monte Carlo technique is
the (static) guiding center structure factor S(q) which
plays an important role in the FQH.

In the “single-mode approximation” first introduced by
Feynman in superfluid Helium-4 [38] and then adopted
by Girvin, MacDonald and Platzman in the FQH [39, 40],
the structure factor provides a variational upper bound
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FIG. 3: Ne = 69 CFL Berry Phase. Cross mark “x”
represents the “composite fermions” we are moving.
The results are again consistent with Eq. (24)

of the neutral excitation gap. In particular, the |qlB | → 0
behavior of S(q) is closely related to the collective modes
in the system, and gives a criterion for the system to
be gapped or gapless at long wavelength. For example,
in superfluid Helium-4, S(q) ∼ |qlB |2, corresponds to
the gapless phonon mode, while in FQH S(q) ∼ |qlB |4
corresponds to the gapped “graviton” mode [26]. For the
Laughlin wavefunction, the 4th- and 6th- order expansion
coefficients of S(q) are predicted in [41]. The larger sizes
accessible using our Monte Carlo method allow us to test
these predictions.

Additionally, for the gapless CFL state, the peak in
the structure factor can be used to identify the composite
fermion Fermi surface, and identify its symmetry prop-
erties [21]. We can observe this physics in our Monte
Carlo data. Lastly, from the structure factor, we found
a method to greatly improve the Monte Carlo efficiency.

A. Structure Factor

The guiding center (static) structure factor by defini-
tion is the density-density correlation function,

S(q) ≡ 1

2Nφ
〈ψGC |{δρ(q), δρ(−q)}|ψGC〉. (25)

where δρ(q) is the fluctuation of density operator ρ(q)
relative to the background 〈ρ(q)〉/Nφ = 2πl2Bνδ

2(q),

ρ(q) =

Ne∑
i

eiqaR
a
i ,

δρ(q) = ρ(q)− 〈ρ(q)〉. (26)



8

Note that both δρ(q) and ρ(q) satisfy the GMP alge-
bra. Several properties of S(q) are worth mentioning [42].
First, the large-|qlB | asymptotic value is determined by
the filling fraction S(∞) = ν(1+ξν), where ξ = −1 if the
underlying particles are fermions, = 1 if bosons. Second,
S(q) is self-dual under a Fourier transformation [42],

S(q)− S(∞) = ξ

∫
d2q′l2B

2π
eiq×q

′l2B (S(q′)− S(∞)).

(27)

Third, the coefficients of the small-|qlB | expansion

S(|q|) = c2|qlB |2 + c4|qlB |4 + c6|qlB |6 + ..., (28)

contains useful information. For a gapped system, c2 =
0. For a gapless system, S(|q|) goes to zero more slowly
than |qlB |4. For a Laughlin ν = 1/q state, c2 = 0, and
predictions exist for c4 and c6 [41]:

c4 =
ν|s|
4
,

c6 =
ν|s|
8

(s− c− ν
12

1

νs
). (29)

where s = − 1
2 (q − 1) is the guiding center spin [26], c is

the central charge. Our Monte Carlo method allows us
to test these predictions (Fig. 4).

Another way to write Eq. (25) is the following,

S(q) =

1

Nφ

Ne∑
i,j

〈ψGC |eiq·(Ri−Rj)|ψGC〉 − 1

Nφ
〈ρ(q)〉〈ρ(−q)〉.

Writing S(q) in this way reveals a challenge when com-
puting it with our Monte Carlo method, which computes
expectation values relative to the real-space coordinates
r and Schrödinger wavefunctions rather than the guiding
center versions. What our Monte Carlo calculates is the
“full structure factor” (per flux), defined as:

Sfull(q) =

1

Nφ

Ne∑
i,j

〈ψ0|eiq·(ri−rj)|ψ0〉Lat −
1

Nφ
〈ρ(q)〉〈ρ(−q)〉.(30)

We can relate these two quantities by using the form
factor to simplify Sfull(q). This shows that Sfull(q) is
related to the guiding center structure factor S(q) via,

Sfull(q)− ν = |[f0(q)]Nφ |2 · [S(q)− ν]. (31)

The ν in the above equation comes from the terms in
the sum where i = j. Because of the Gaussian function

f0(q) = e−
1
4q

2l2B , the Monte Carlo error in S(q) is am-
plified greatly when |qlB | is large. This limits us to see
the S(q) within a window of small |qlB |. For Laughlin,
|qmax| ≈ 3l−1

B (Fig. 4).
For the CFL states, the shape of the Fermi surface can

be seen from the peak of structure factors. And the ra-
dius of the latter should be twice as large as that of the
former. Here we plot the structure factor for model wave-
functions with different dipole-moment configurations for
Ne = 37 electrons (Fig. 5).
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FIG. 4: The guiding center structure factor for Ne = 50
electrons in the Laughlin ν = 1/3 state. The subfig-
ure a) shows its plot together with error bars. The

Gaussian function e−
1
4q

2l2B limits us to see S(q) only
within a window. In subfigure b), we check the long-
wavelength expansion (c4 and c6) in (28) by compar-
ing it to the Monte Carlo data, where c4, c6 is given by
(29) and all other ci = 0. It can be seen that the long-
wavelength behavior of S(q) is correctly described by
(29).

B. Improved Monte Carlo Algorithm

In Section II, we showed how to calculate any two-
body expectation value O(xi − xj), in any LL, and to
demonstrate our method we computed the Coulomb en-
ergy of the Laughlin state in the first two LLs. However
we found that for higher LLs (n>1), our method was sub-
ject to large Monte Carlo errors. In this section we will
use our insights about the structure factor to understand
and ameliorate these errors. The algorithm discussed in
this section applies to other translational invariant two
body interactions, like pair-amplitude. We will use the
notation of Section II.

The first step in this process is to find out the effective
potential acting on the guiding centers,

〈Ô〉 =
1

2πNφ

′∑
q

∑
i<j

OGC(q)〈eiq·(Ri−Rj)〉

=
1

4πNφ

′∑
q

OGC(q) · [S(q)− ν]. (32)

In the problem of high LLs with index n, the Coulomb
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FIG. 5: CFL S(q) and dipole configuration. The peak
of the structure factor and composite fermion Fermi

surface have the same shape. The radius of the former
is twice of the latter.

energy is,

OGC(q) = [O(q)f2
n(q)]c,

O(q) =
2π

|qlB |
, |qlB | 6= 0. (33)

where the symbol [...]GC is defined in Eq. (16), not to be
confused with [...]Nφ defined in Eq. (18). Eq. (32) tells
us that, at least in principle, the guiding center structure
factor allows us to calculate any two-point expectation
value. However, we found in the previous section that
S(q) determined from our Monte Carlo procedure has
very large errors as at large |qlB |. The reason these errors
do not completely ruin our calculation is that Eq. (32)
also contains a form factor fn(q), which decays to 0 ex-
ponentially at large |qlB |, thus suppressing the errors.
Unfortunately, the decay of fn(q) gets weaker as the LL
index n is increased. This is why we we had difficulty
calculating Coulomb energies for n>2 in Section II.

We can conclude that the large |qlB | modes contribute
a tiny amount to the mean value we want, and merely
introduce large Monte Carlo error. Fortunately, Eq. (32)
allows us to see a way to efficiently and accurately ap-
proximate 〈Ô〉 since S(∞) = ν(1 − ν) when |qlB | → ∞
[1, 42]. We thus do the following trick: introduce a cutoff
Q, and separate Eq. (32) into short-ranged (|q| > Q) and
long-ranged (|q| < Q) parts. Only for the long-ranged
part, we calculate by Monte Carlo by using the lattice
representation Eq. (17). For the short-ranged part, we
simply replace S(q) with S(∞) and calculate directly.

n = 2, QlB = 5
Ne Exact MC energy δEM δES δEtot

4 −0.280537 −0.278 0.004 4e-4 0.004
5 −0.278052 −0.278 0.005 6e-4 0.005
6 −0.274849 −0.269 0.005 0.001 0.005
11 −0.268481 −0.271 0.006 0.001 0.006
12 −0.268005 −0.262 0.006 0.001 0.006

TABLE II: By separating the energy calculation into
short- and long-ranged parts and approximating the
long-ranged part, we can dramatically reduce our sta-
tistical error. In this table we compute the Coulomb
energy of the Laughlin wavefunction in n = 2 . We
used the same number of Monte Carlo steps as we did
in Table I, but find that our statistical error is reduced
by up to two orders of magnitude even at these rela-
tively small sizes. We also did test on larger systems,
e.g. Ne = 11, 12.

Assuming that S(q) is saturated when |q| > Q intro-
duces systematic error δES . Although we do not know
the short wavelength oscillation behavior of S(q), we are
still able to give an upper bound of |δES |, which could
be calculated analytically. Note that S(q) is positive and
is bounded from above by its maximum value Smax, the
oscillation must be less than min{Smax − S(∞), S(∞)}.
Hence, an upper bound of the systematic error is given
by the following,

|δES | <
1

4πNφ

′∑
|q|>Q

|OGC(q)| · δS (34)

δS = min{Smax − S(∞), S(∞)}.

From the plot of the structure factor Fig (4) and Fig (5),
we empirically set Smax ≈ 0.5 for the laughlin ν = 1/3
state, Smax ≈ 0.8 for CFL ν = 1/2 state.

This systematic error δES must be included, together
with the Monte Carlo error δEM , into the total uncer-
tainty δEtot =

√
δE2

M + δE2
S . Increasing the cutoff QlB

decreases δES but makes δEM larger. The best value of
QlB is taken as the one for which δEM and δES are of
the same order.

Table II uses this approach to recalculate the Coulomb
energies which were originally calculated in Table I. We
can see that by cutting-off and approximating the large q
contribution, we can significantly decrease the statistical
error, and obtain improved estimates for the energy.

C. Pair Amplitudes

The self duality relation in Eq. (27) implies the S(q)
can be expanded in terms of Laguerre polynomials (mul-
tiplied by Gaussians), which form a complete basis of
polynomials that are self-dual under Fourier transforma-
tions. The expansion coefficients in this basis are known
as “pair amplitudes”. Such pair-amplitudes appear in
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the pseudo-potential Hamiltonian, and therefore it is in-
teresting to ask whether they can be calculated in our
Monte Carlo method.

Before defining pair-amplitudes on the torus, let us
first look at the infinite plane geometry, where the pair-
amplitude is better understood. The infinite plane has
rotational symmetry, and angular momentum is well de-
fined. A projector that projects a two-particle pair into
a given state with relative angular momentum m is,

P ijm = 2

∫
d2ql2B

2π
Lm(q2l2B)e−

1
2 q

2l2Beiq·(Ri−Rj). (35)

Here the P ijm are orthogonal projectors that satisfy,

P ijmP
ij
m = P ijm , (36)

P ijmP
ij
n = 0, if m 6= n. (37)

The mth pair-amplitude ξm is the probability of finding
a pair of particles with relative angular momentum m,

ξm ≡ 〈
∑
i<j

P ijm 〉. (38)

On the torus, P ijm is defined similarly as in Eq. (35),
but with the integral over a continuum of momenta re-
placed by a discrete sum over all points in the reciprocal
space. Since the torus does not have continuous rotation
symmetry, the m does not have the meaning of “relative
angular momentum” any more, and P ijm are no longer
orthogonal: (37) does not hold, while (36) is modified

P ijmP
ij
m = CmP

ij
m , (39)

where Cm is a number that is slightly larger than one.
The fact that (39) does not introduce any projectors with
m 6= n ensures that the torus Laughlin wavefunction
is still the exact ground state of the pseudo-potential
Hamiltonian. Although the torus has only discrete ro-
tation symmetry, the continuous rotation symmetry is
restored and the P ijm become orthogonal (Cm → 1) in
the limit Nφ →∞.

The calculation of pair-amplitudes is similar in spirit
to that of the Coulomb energy in high-index LLs. In
the problem of calculating the pair-amplitude, we simply
replace Eq. (33) with Eq. (40). The error analysis follows
the same algorithm as discussed in the last section. This
time,

OGC(q) = 4π[Lm(q2l2B)e−
1
2q

2l2B ]c (40)

In Table III, we showed several orders of calculated pair-
amplitudes for Laughlin ν = 1/3 state for Ne = 6 parti-
cles.

V. PARTICLE-HOLE OVERLAP THROUGH
MONTE-CARLO

It is interesting to ask how close wavefunctions such
as Eq. (22) are to having particle-hole symmetry. In

ED MC Value QlB δEM δES δEtot

ξ1 0. 1e-3 5.00 1e-3 5e-4 1e-3
ξ3 5.928056 5.84 5.00 0.08 0.04 0.09
ξ5 4.441078 3.75 5.00 0.8 0.7 1.08

TABLE III: The pair-amplitude calculated for Ne = 6
particles in Laughlin ν = 1/3 state. The δEM and δES
are Monte Carlo error and systematic error respectively.
The total error δEtot =

√
δE2

M + δE2
S .

[25], we have addressed this question by numerically
second-quantizing these wavefunctions, and then imple-
menting particle-hole symmetry in the second-quantized
basis by exchanging the filled and empty orbitals. Since
we have now developed a tool for rapid calculations in the
Schrödinger representation, it is natural to ask whether
we can evaluate particle-hole symmetry in this represen-
tation.

According to [43], if we have some wavefunction Ψ1,
we can compute its particle-hole conjugate as follows:

ΨPH
1 (z̃j) =

∫ Ne∏
i=1

dzi Ψ1(zi)Ψ
∗
LL(zi, z̃j) (41)

where ΨLL is the wavefunction for a filled LL. Using
this definition of particle-hole conjugation we can com-

pute the quantity 〈Ψβ
CFL({d})|PH Ψβ′

CFL(−{d})〉, which
is the overlap between the CFL state and its particle-hole
conjugate. Here β indicates which center-of-mass sector
the wavefunction is in, while {d} represents the set of
composite fermion dipole-moments of the wavefunction.
Particle-hole symmetry on its own changes the momen-
tum of a wavefunction, so when we write PH we really
mean particle-hole symmetry combined with a rotation
by π, an operation which preserves the symmetry [25].
The π-rotation reverses the center-of-mass sector (so we
will need β 6= β′), and also takes d → −d. Equivalently
to reversing the d’s, we can instead reverse all the coor-
dinates z, which is what we will do from now on. Using
Eq. (41), we can write the particle-hole overlap as follows:

〈Ψβ
CFL({d})|PH Ψβ′

CFL(−{d})〉 = (42)∫ NΦ∏
j=Ne+1

dz̃jΨ
β
CFL({z̃j})×

∫ Ne∏
i=1

dzi Ψβ′

CFL(−{zi})Ψ∗LL({zi}, {z̃j})

= 〈ψ1(x)|ψ2(x)〉

ψ1(x) = Ψβ
CFL({zj})Ψβ′

CFL(−{zi}) (43)

ψ2(x) = Ψ∗LL({zi}, {z̃j}) (44)

In the above equation we have stopped explicity writing
the variational parameters {d}, and as in Sec. (II) we use
x as a shorthand for all the coordinates {zi}, {z̃j}.

In Sec. (II), [specifically Eq. (19)] we were calculating
the overlap 〈ψ1|ψ2〉 and we manipulated the wavefunc-
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tions in such a way that |ψ1|2 could be used as a Metropo-
lis weight. However, we could in principle use any real,
non-negative function as a weight. This inspires a more
general version of Eq. (19):

〈ψ1|ψ2〉√
〈ψ1|ψ1〉〈ψ2|ψ2〉

=

∑′
O12(x)p(x)√

[
∑′

O11(x)p(x)][
∑′

O22(x)p(x)]
.

(45)

where Oij(x) ≡ ψ∗i (x)ψj(x)
p(x) . Here p(x) is the statistical

weight, so it must be real and non-negative. |ψ1|2 is a
good choice for p(x) when ψ1 and ψ2 are very similar,
because it means that O(x) will be of order one, and this
is necessary for efficient importance sampling. If O(x)
can vary widely, then we will no longer be doing impor-
tance sampling (i.e. configurations where O(x)p(x) is
large will not be sampled frequently) and the algorithm
will be inefficient. If p(x) = 0 when ψ1(x) [or ψ2(x)] is
non-zero the Monte Carlo will give incorrect results since
O11(x) [or O22(x)] is infinite.

The ψ1 and ψ2 defined in Eqs. (43-44) are not very
similar, and in fact one can have zeros where the other
one is large. A simple way to see this is that whenever
zi=z̃j for any i, j in Eq. (42), ψ2 will vanish but ψ1 does
not have to. Therefore simply using |ψ1|2 or |ψ2|2 for
p(x) will not work. In this work we make the following
choice for p(x):

p(x) = (α|ψ1(x)|+ |ψ2(x)|)2. (46)

The virtue of this choice is that p(x) will be large whever
either ψ1 or ψ2 is large. The CFL wavefunctions are not
normalized so the parameter α is included to make the
two terms in the sum have approximately equal size. Us-
ing a fixed value of α (e.g. α = 1) will give correct results
but tuning α for a given system size can dramatically
improve the performance of the Monte Carlo. We find
for the wavefunctions used in this paper that |ψ1(x)|2 is
roughly two orders larger than that of p(x). Note that
other choices of p(x) are possible so long as it is large
whenever either wavefunction is large, it maybe be possi-
ble to further improve performance with a better choice
of p(x).

A final obstacle to computing the particle-hole over-
lap is that the wavefunctions produced by Eq. (41) are
not normalized, even if the wavefunctions on the right-
hand side of that equation are normalized. In order to
obtain a normalized wavefunction (and therefore a sensi-
ble overlap) we need to multiply Eq. (41) and (42) by a

normalization constant
√
C, where

C =

(
NΦ

Ne

)
. (47)

The value of this constant can be explained by think-
ing about the overlap we are calculating as an overlap
of the wavefunctions ψ1, ψ2 defined in Eqs. (43-44). If
the two CFL wavefunctions were particle-hole symmet-
ric, this overlap would be 1. But wavefunction ψ1 is com-
pletely antisymmetric under interchanging coordinates zi

1 2 3 4 5 6 7 8 9 10

Ne

0.005

0.000

0.005

0.010

0.015

0.020

1−
〈 ψβ C

F
L
|P
H
ψ
β
′

C
F
L

〉

exact
Monte Carlo

FIG. 6: Overlaps between a wavefunction and its PH
conjugate. The red points from come from doing an

exact second-quantization of the model wavefunction as
in Ref. 25, while the blue comes from a Monte Carlo

calculation. For each Ne, the configuration of d’s with
the largest overlap was used.

(which appears in one CFL wavefunction) and z̃j (which
appears in the other wavefunction). In order for the over-
lap to be 1, ψ2 must therefore also have this symmetry,
but it clearly does not. Therefore to get sensible results
we must antisymmetrize Eq. (44). Each term in such an
antisymmetrization will be exactly the same once all po-
sitions are summed over, but in order to stay normalized
we must divide by the square root of the number of terms
in the antisymmetrization, which is exactly

√
C.

This normalization constant means both the values
produced by numerically computing Eq. (45) and their

statistical errors must be multiplied by
√
C. Therefore

to keep the statistical errors constant in system size, the
number of Monte Carlo steps requires scales as ∝ C.
This is the same algorithmic complexity as numerically
second-quantizing the wavefunction, as in Ref. 25. There-
fore there is no benefit to using our Monte Carlo method
to compute particle-hole overlaps. Nevertheless the al-
gorithm does work, as can be seen in Fig. 6 where we
show the particle-hole overlaps for a few values of Ne, and
compare them to the results of numerical second quanti-
zation. The Ne = 9 data in Fig. 6 took 600 CPU hours,
while doing the exact second-quantizing algorithm takes
around ten minutes. Therefore though using Monte Carlo
does give correct results, it is not a practical method to
evaluate the particle-hole symmetry of model wavefunc-
tions.

VI. DISCUSSION

We have shown that quantum Hall problems on a torus
in a single Landau level supports a discretized Lattice
representation. This procedure can be used to dramat-
ically save the time required for Monte Carlo calcula-
tions, because the continuous sampling is redundant and
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the special functions required for quantum Hall wave-
functions on a torus can be tabulated in advance. We
used our procedure to calculate a number of quantities,
such as the energy of model wavefunctions, quasiparti-
cle braiding statistics, the Berry phase acquired by com-
posite fermions moving around the composite Fermi sur-
face, guiding center structure factors and the particle-
hole symmetry of model wavefunctions. Our Monte Carlo
confirmed that the CFL at half filling has a Z2 Berry
phase factor at much larger system sizes than that in
[25], and is consistent with the Dirac fermion effective
theory [20] prediction.

During the time when this work was under review, sev-
eral related work came out. The Berry phase associated
with transporting two composite fermions was studied in
[35]. The effects of Landau level mixing on the many-
body Berry phase were studied in [44]. Recently, the
CFL Berry phase at ν = 1/4 was calculated in [45]. Mo-
tived by it, a Dirac-type effective theory was proposed
in [45], which generalizes Son’s theory from half filling
to all other filling fractions that CFL can occur. Similar
theories were studied from a different but complementary
perspective in [46].

Our method can be used to dramatically increase the
accessible system sizes for almost every quantity calcu-
lated using Monte Carlo. There are a few quantities
which we still do not know how to calculate, for exam-
ple the real-space entanglement entropy. Applying our
formalism to such methods is an interesting direction for
future work.
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APPENDIX: LATTICE REPRESENTATION FOR
TWO-BODY OPERATORS

In this section, we derive the lattice representation of
translationally invariant two-body operators, which is
used above in Eq. (17). We will start with finding the
lattice representation for one-body operators.

We will start by answering this question: given a
periodic single body operator O(x) = O(x + L), what
is the corresponding lattice operator OLat(x ∈ L/Nφ)
such that the continuous integral equals to the lattice
summation (up to some constant C),

〈ψ1|Ô|ψ2〉 = C 〈ψ1|ÔLat|ψ2〉Lat (48)

where 〈...〉 and 〈...〉Lat represent the integral and lattice
summation respectively.

Since O(x) is periodic, its Fourier transform is,

O(x) =
1

2πNφ

∑
q

O(q)eiq·x,

O(q) =

∫
d2x O(x)e−iq·x. (49)

The OLat(x) is not only periodic but is defined on lattice.
Its Fourier transform is,

OLat(x) =
1

2πNφ

′∑
q

OLat(q)eiq·x,

OLat(q) =
2π

Nφ

′∑
x

OLat(x)e−iq·x. (50)

where
∑′

sums q in the first Brillouin zone. The
resolutions of identity are:

∫
d2xeiq·x=2πδq,0,∑

q e
iq·x=2πNφδ(x), and 1

Nφ

∑′
q′ e

iq×q′=δq,0, where

δq,0=Nφ if q=0, δq,0=0 if otherwise.
∫
d2xδ(x)=1.

In the same spirit as Section II, we can write the
expectation value as follows,

〈ψ1|Ô|ψ2〉 =
1

2πNφ

′∑
q

O′(q)〈ψGC1 |eiq·R|ψGC2 〉. (51)

where O′(q) is the operator defined only in the first Bril-
louin zone but it includes all other interactions exactly,

O′(q) =
∑
q′

O(q + q′Nφ)f0(q + q′Nφ). (52)

where f0(q) is the lowest LL form factor Eq. (14). Since
the form factor decays rapidly, when the system size is
large O′(q) is almost the same as O(q) except at the
Brillouin zone. Now take O(x) = eiq·x. Eq. (51) and
Eq. (49) then lead to the following equation,∫

d2x ψ∗1(x)ψ2(x)eiq·x = f0(q)〈ψGC1 |eiq·R|ψGC2 〉.

By Eq. (49), its inverse Fourier transformation is,

2πNφ ψ
∗
1(x)ψ2(x) (53)

=
∑
q

f0(q)e−iq·x〈ψGC1 |eiq·R|ψGC2 〉.

Then, by using the same method that leads to Eq. (52),
Eq. (53) can be compactified to the first Brillouin zone.
But this time, we need to take into account the effect of
the phase factor, which leads to a similar but different
notion of compactification. The expression for this new
compactification [...]Nφ can be found in Eq. (18),

2πNφ ψ
∗
1(x)ψ2(x) (54)

=

′∑
q

[f0(q)]Nφe
−iq·x〈ψGC1 |eiq·R|ψGC2 〉.
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Eq. (54) is the key identity. Based on it, and by using
Eq. (50), we can easily derive,

2π

Nφ

′∑
x

ψ∗1(x)ψ2(x)eiq·x = [f0(q)]Nφ〈ψGC1 |eiq·R|ψGC2 〉.

(55)

Taking q=0, in the limit Nφ → ∞, [f0(0)]Nφ → 1,
the lattice sum is replaced by the integration
2π
Nφ

∑′
x →

∫
d2x and we recover the orthogonality

of wavefunctions [27].

The lattice inner product is then found to be,

′∑
x

ψ∗1(x)ψ2(x)OLat(x) (56)

=
1

(2π)2

′∑
q

OLat(q)[f0(q)]Nφ〈ψGC1 |eiq·R|ψGC2 〉.

By comparing this to Eq. (51), the lattice representa-
tion for a single body operator is easily found to be

OLat(q) = 2π
Nφ

O′(q)
[f0(q)]Nφ

.

The two-body operator is a straightforward gener-
alization since,

′∑
q,xi

ψ∗1(x1)ψ∗2(x2)OLat(q)eiq(x1−x2)ψ3(x2)ψ4(x1)

=

′∑
q,xi

ψ∗1(x1)ψ4(x1)eiq·x1 [ψ∗3(x2)ψ2(x2)OLat(−q)eiq·x2 ]∗.

Applying Eq. (54) or Eq. (55) twice, and comparing it
with Eq. (15), we can solve the lattice representation for
two-body operators, which is shown in Eq. (17).
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