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Abstract

We investigate and experimentally observe the existence of topologically protected interface

modes in a one-dimensional mechanical lattice, and we report on the effect of nonlinearities on

topological protection. The lattice consists of a one-dimensional array of spinners with nearest

neighbor coupling resulting from magnetic interactions. The distance between the spinners is spa-

tially modulated to obtain a diatomic configuration, and to produce a non-trivial interface by

breaking spatial inversion symmetry. For small amplitudes of motion, the interactions are approxi-

mately linear, and the system supports topologically protected interface modes at frequencies inside

the bulk bandgap of the lattice. Nonlinearities induced by increasing amplitude of motion cause

the interface modes to shift and merge with the bulk bands. The resulting edge-to-bulk transition

causes the extinction of the topologically protected interface mode and extends it to the entire

length of the chain. Such transition is predicted by analytical calculations and verified by experi-

mental observations. The paper thus investigates topologically protected interface modes obtained

through broken spatial inversion symmetry, and documents the lack of robustness in the presence

of nonlinearities.
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I. INTRODUCTION9

Notable efforts have been devoted to the investigation of topological protection in con-10

densed matter1,2, and in classical areas of wave physics such as acoustics3, photonics4,5, as11

well as solid6,7 and fluid mechanics8. The phenomenon of topological protection consists in12

the existence of wave modes that do not propagate into the bulk of the considered media,13

but are instead confined to a lower dimensional region within it, either a boundary or an14

interface. Driven by its topological nature, this effect is robust to the existence of imper-15

fections and defects, making it attractive for applications where lossless wave propagation,16

immunity to backscattering and mode localization are important objectives. Topological17

protection can be achieved through time-reversal symmetry breaking, which generally re-18

quires the employment of active elements that effectively bias the interactions within the19

media. Examples include circulators in optomechanics9, gyroscopic mechanical metamateri-20

als10, and the use of active fluids characterized by a background flow11 among others. These21

systems mimic the quantum Hall effect whereby a net “magnetic” flow breaks time-reversal22

symmetry. Two superimposing effects lead to the emergence of topologically protected (TP)23

modes. First, bandgaps are opened at the otherwise high symmetry degeneracy points in24

reciprocal space (e.g. Dirac cones). Second, the integral of the Berry curvature of each25

band along the reciprocal space does not equal zero, and the separated dispersion surfaces26

are linked only by one lower dimensional band, which corresponds to the TP mode. The27

eigenvector associated with this band is localized to a lower dimensional region in space and28

propagation is unidirectional12. Similar effects are achieved through solely passive elements29

that break spatial inversion symmetry (SIS)13,14. Spatial inversion symmetry breaking also30

opens bandgaps at the high symmetry points and couples the spins (or polarities) of other-31

wise degenerate modes. In this case, the integral of the Berry curvature is nonzero in the32

vicinity of the opened Dirac cone, although it is zero over the entire reciprocal space. Two33

lower dimensional bands are produced and are associated with TP modes localized at the34

interface of two lattices with inverted bands, i.e. bands that are characterized by oppo-35

site values of the relevant topological invariants, and propagation of these associated modes36

occurs in opposite directions7.37
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In systems that involve active elements, topological protection may be tailored or removed38

by control of such elements. In passive systems, the control of TP modes must instead rely on39

the inherent dynamic behavior of the lattice. Thus, nonlinearities appear as natural choices40

to pursue the objective of controlling and tailoring TP modes. Indeed, the vast majority41

of studies in the field of topological protection is limited to linear systems. While some42

theoretical investigations involving topological transitions have been recently presented15,16,43

the physical demonstration of how nonlinearities affect TP modes remains mostly unexplored.44

Nonlinearities, for example, enable uneven distributions of the wave energy, which in turn45

may lead to nonreciprocal wave propagation17–21. Another interesting nonlinear effect is the46

change in the effective parameters governing wave motion, such as the equivalent stiffness of47

elastic systems, which produces shifts of dispersion branches and bandgaps22,23.48

The theoretical analysis of nonlinearities and their effect on a topologically non-trivial49

interface is presented in16, where results suggest lack of robustness of TP modes obtained50

through SIS breaking in the presence of a nonlinear interface. The present work sets the51

objective of observing this behavior experimentally. To this end, a nonlinear lattice con-52

sisting of units that interact through permanent magnets is modeled, assembled and then53

tested. Magnetic interactions provide the means for modulating the strength of the lat-54

tice coupling through proper adjustment of the interatomic spacing, and naturally intro-55

duce nonlinearities as the amplitude of wave motion increases. Topological protection is56

induced and subsequently verified via SIS breaking at a selected location, and is shown to57

undergo an interface-to-bulk transition for increasing amplitude. This occurs solely as a re-58

sult of amplitude-dependent stiffness softening of the magnetic interaction, without requiring59

changes in the system’s physical topology.60

Following this introduction (Sec. I), Sec. II is devoted to the description of the considered61

lattice, its main physical parameters and the study of its corresponding analytical model,62

both in linear and nonlinear regimes. The experimental investigations are described in63

Sec. III. Finally, Sec. IV summarizes the key findings of the study and highlights potential64

extensions. Three Appendices supplement the work.65
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II. LATTICE CONFIGURATION AND ANALYTICAL RESULTS66

The investigations on TP and nonlinearities presented in16 have shown that localized67

modes arise at the interface between two spring-mass chains that are inverted copies of each68

other. In the presence of nonlinearities, amplitude-dependent frequency shifts cause the69

localized TP mode to migrate to the bulk spectrum. This behavior is further investigated in70

this paper through the physical implementation of a 1D lattice consisting of a dimer chain71

of spinners24, see Fig. 1. Each spinner is bolted to a linear guide, which fixes its position72

while letting it free to rotate about an axis perpendicular to the page. The spinners are73

coupled through permanent magnets in attraction that provide a force that tends to maintain74

the spinners in the aligned position (Fig. 1(a)). The magnitude of magnetic interactions is75

strongly related to the distance between the magnets, which is defined by the spacing between76

the spinners. Such spacing is here modulated to implement a dimer lattice configuration77

whereby the interaction coefficients are defined by two distance values, namely Da and Db78

(Fig. 1). An interface is created by joining the lattice with its mirror copy at a defined79

location as a result of broken SIS (Fig. 1(b)).80

A. Analytical model81

A simplified model is formulated according to the configuration of Fig. 2. The dynamic82

behavior of each spinner is described by its rotation angle θ, and governed by the spinner83

inertia I and by the interaction with its neighbors. Such interaction is evaluated based84

on the model of the magnetic force exchanged by the permanent magnets mounted on the85

spinner’s pegs, which can be approximated to varying orders in terms of the angular positions86

of the spinners. Details of the evaluation of the magnetic interactions and their simplified87

description can be found in Appendix A.88

According to the approximations made and the derivations reported in the Appendix A,89

the equations of motion for the i-th unit cell can be expressed as follows:90
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Iθ̈a,i + kθθa,i + kt,a(θb,i + θa,i) + kt,b(θa,i + θb,i−1) + γa(θb,i + θa,i)
3 + γb(θa,i + θb,i−1)

3 = 0

Iθ̈b,i + kθθb,i + kt,b(θa,i+1 + θb,i) + kt,a(θb,i + θa,i) + γb(θa,i+1 + θb,i)
3 + γa(θb,i + θa,i)

3 = 0

(1)

where I is the inertia of each spinner, kθa , kθb , kta , ktb are the linear interaction coefficients,91

while γa, γb define the nonlinear interaction coefficients. The equations for the inverted unit92

cell are formally identical, with the proper switching of the subscripts, and are reported in93

Appendix A for brevity.94

Analysis of the equations reveals that the motion of each spinner is governed by its rotary95

inertia, and by the magnetic interactions that in the linear regime manifest themselves96

as a term that is proportional to the rotation of each individual spinner. This effectively97

produces the effect of a torsional spring connected to the ground. An additional term couples98

neighboring spinners through a torque that is approximately proportional to the relative99

displacement between neighboring magnets in the direction transverse to the spinners chain,100

here measured by the sum of their respective rotation angles. The presence of the ground101

term, and the fact that nearest neighbor interactions are defined by the sum of the rotation102

angles, instead of their difference, make the system slightly different than a typical dimer103

chain of the kind investigated for example in16.104

B. Linear dispersion analysis and associated topology105

We first investigate the underlying linear behavior of the lattice, by considering small106

angular perturbations and neglecting the nonlinear terms in Eq. (1). We evaluate the dis-107

persion properties for the infinite lattice by imposing a plane wave solution in the form108

θp,i = θp,0e
j(iµ−ωt), where i is an integer defining the location of the unit cell, p = a, b,109

j =
√
−1, while ω denotes the angular frequency and µ the dimensionless wavenumber. Sub-110

stituting these expressions in Eqs. (1), we obtain an eigenvalue problem that identifies the111
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following two dispersion branches:112

ω2 =
1

I
(kθ + kt,a + kt,b)

± 1

I

√
k2t,a + k2t,b + 2kt,akt,b cosµ,

(2)

The branches are separated by one bandgap (shaded blue area in Fig. 3(a)). In addi-113

tion, a zero-frequency gap extending up to a cut-off is produced by the grounding constants114

kθ. Breaking of spatial inversion symmetry by inverting the order of the distance modula-115

tions, produces dispersion curves that differ in terms of the associated topological invariants.116

Specifically, the topological properties of the second and third bandgaps can be switched by117

permutation of the intra-cell and inter-cell connecting springs, i.e. inverting the unit cell, or118

by considering kt,a > kt,b or vice versa, i.e. kt,b > kt,a. The topological invariant, the Zak119

phase25 in the case of a 1D lattice, is evaluated through numerical integration of the eigen-120

vector change along each band as described in16,26,27. It is found that the Zak phase is Z = π121

for both dispersion bands when kt,a < kt,b, while it is Z = 0 otherwise. Hence, the interface122

of Fig.1(b) connects two lattices with same bandgap, but inverted geometry and different123

band topology. Thus, the interface supports modes whose frequency can be predicted from124

the solution of the eigenvalue problem for a finite system. The eigenvalues obtained for two125

reversed lattices with 20 spinners each confirm the existence of the two branches separated126

by the gap, along with the presence of two additional modes (black and green solid dots),127

one of which appears inside the bandgap (black solid dot). Both modes are localized at the128

interface as illustrated by the corresponding eigenvectors shown in Fig. 3(c). The two inter-129

face modes are characterized by distinct spatial profiles, whereby the lower frequency mode130

is odd relative to the interface, while the higher frequency mode is symmetric, or even, with131

respect to it. Of interest is the mode in the bandgap, which is topologically protected (TP)132

as a result of broken SIS and according to Zak phase computations presented in16. This TP133

mode is the focus of the investigations in the remainder of the paper.134
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C. Effects of nonlinear interactions135

We evaluate the effect of increasing amplitude on the eigenvalues and associated eigen-136

modes of the system. To this end, we consider the governing equations for the finite137

N + N = 40 system with interface, which are obtained from the assembly of equations138

in Eq. (1). Assuming harmonic motion θne
jωt and applying harmonic balance, we obtain the139

general matrix form:140

K(θ)θ = ω2Iθ. (3)

where θ = [θa,1, θb,1, ..., θa,N , θb,N ]T is a vector including the complex amplitudes of all angular141

degrees of freedom of the lattice, K(θ) denotes the effective stiffness matrix and θejωt.142

For low amplitudes |θ| � 1, the stiffness matrix K is independent of θ and the solution143

is straightforward. However, when nonlinearities play a role the effective stiffness matrix144

depends on the amplitudes of motion, which requires an iterative analysis. Specifically, we145

use a Newton-Raphson scheme28.146

To write the nonlinear governing equations in canonical form, Eq. (3) is rearranged as:147

[
K(θ)− ω2I

]
θ = 0. (4)

This system of 2N equations has 2N + 1 unknown variables {θ, ω}, and therefore infinite148

solutions. To extract specific {θ, ω} pairs, we impose particular values to the total amplitude149

of the chain A, defined as the L2 norm of θ. Thus we add the additional equation |θ|2−A = 0,150

where A has a numeric value. When A→ 0 is imposed, the linear solution is recovered.151

We start by solving for a small value of A (e.g. A = 10−3), and we use the linear152

eigenvector-eigenvalue pair {θl, ωl} as initial guess. The linear eigenvector θl is simply scaled153

as θg = θl/|θl|2A and the linear eigenvalue ωl is used as is. This way we ensure that the initial154

guess θg is the eigenvector of the linear problem and that its total amplitude |θg| is A. The155

algorithm yields a new solution that is then used as the initial guess for a slightly higher value156

of A, and so on. With this procedure we calculate the evolution of the eigenvalue-eigenvector157

pair for increasing values of total amplitude A.158

Depicted in Figs. 4(a)-(d) are results for the TP mode for the values of γa(b) = −366(−188)159

Nm/rad3 (see Appendix B 1). Results show that the nonlinear “eigen-frequency” decreases160
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with amplitude, along with an amplitude-dependent transition whereby the frequency exits161

the bandgap (shaded blue area in Fig. 4.a) and enters the bulk spectrum of the linear system.162

This is consistent with the negative value of γa(b) that defines a softening nonlinearity in the163

connecting springs, by which their effective stiffness decreases for increasing total amplitude164

A. When the nonlinear eigenvalue abandons the bandgap, the bulk attenuation of this165

otherwise localized wave mode no longer holds, and the wave mode extends to the bulk.166

This is illustrated in Fig. 4(b), which presents the variation of the corresponding eigenvector167

for increasing amplitude A. In the figure, the colors are associated with the magnitude of each168

mode normalized to its maximum value, i.e. θ(A)/|θ(A)|∞. Also, the markers correspond169

to the normalized angular motion of the individual spinner, while the continuous solid lines170

are spline interpolations that improve visualization.171

Both plots in Fig. 4(a),(b) illustrate the occurrence of an interface-to-bulk transition as172

the amplitude of wave motion increases, and show the importance of nonlinearities. The173

transition is denoted by the thick, solid red lines in both figures at A ≈ 0.09 rad and is174

further illustrated in Fig. 4(c), which compares the magnitude of the eigenvector at spinner175

n = 22 close to the interface (solid blue line), and away from the interface at n = 1 (dashed176

green line). For low amplitudes, motion at n = 1 is very limited, and negligible compared to177

the motion at the interface n = 22. As amplitude grows, there is an evident increase in the178

motion at n = 1 as a result of the mode becoming global in nature and no longer localized179

at the interface. A thick red line at A ≈ 0.09 rad is added to the plot for reference purposes.180

III. EXPERIMENTS181

We experimentally evaluate the existence of TP mode and the influence of amplitude182

and associated nonlinearities through the 40 spinner array shown in Fig. 5. The spinners are183

bolted to a longitudinal aluminum beam at distances Da and Db. The magnets employed are184

bonded to the pegs of the spinners, with aligned magnetization vectors poled in attraction.185

The method used to experimentally characterize the magnetic interaction as a function of186

the distance between the magnets is described in Appendix B. The key model parameters187

identified through the experiments are listed in Table B.1. Additional details of geometric188
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properties of the magnets, spinners and the chain are provided in Appendix C.189

In the experiments, excitation is provided by an electrodynamic shaker controlled by a190

signal generator that provides the desired input. Specifically the signals used in the exper-191

iments are a white noise signal band-limited to the frequency range of interest (0 − 80 Hz)192

and a sine wave at the target frequency and amplitude. The response of the spinner array193

is recorded by a single point Laser Doppler vibrometer (LDV) pointed at selected locations.194

Experiments are conducted for excitation applied at spinner n = 1 at the left boundary of the195

array, and at spinner n = 20 close to the interface (Fig. 5). The first configuration evaluates196

the transmissibility through the array, while the excitation right at the interface (n = 22)197

directly probes the TP modes and investigates changes as a function of amplitude. Video198

recordings of the response of the spinner arrays are also taken through a high speed camera,199

the results of which are processed to provide the spatial distribution of the response and show200

mode localization and to produce the animations presented as part of the Supplementary201

Material (SM)29. In the SM videos, we show the spinners chain oscillating at the nonlinear202

normal frequencies of three different values of the amplitude denoted as low A = 0.002 rad,203

medium A = 0.070 rad and high A = 0.179 rad. We superimpose a circle on top of every204

spinner whose radius is proportional to the spinner amplitude of motion |Θn| for improved205

visualization. The interiors of these circles are colored to indicate the instantaneous phase of206

each spinner measured as the argument of the complex number θne
jωt in absolute value, go-207

ing from cyan to magenta from lowest to highest value of the spinner oscillation magnitude.208

A small oscillating white circle is also attached to the perimeter of each circle to further209

highlight the angular motion. For verification of the LDV measurements, one point of each210

spinner, located next to the one of the magnets, is tracked to extract the spinner motion θn211

from the videos. The points are marked in the animations with a blue dot surrounded by a212

red square. We track the motion by comparing the relative position of the pixel set inside213

the red square among subsequent frames.214

As in the analytical investigations, we first probe the linear behavior of the system by215

evaluating its dynamic behavior at low amplitude. To this end, we measure the frequency216

response at n = 22 for white noise excitation applied at spinner n = 1 during 20 seconds, and217

averaged for 150 repetitions. The results are presented in Fig. 6 (black solid line). For ref-218
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erence the figure also reports the corresponding analytical predictions (red solid line), along219

with the predicted eigenvalues (red circles), and the frequency bandgaps (shaded beige, cyan220

and purple regions). The results show a good match between analytical and experimental221

results, and confirm the overall behavior of the system, including the existence of bandgaps222

and of the two interface modes, both highlighted in the figure, one being the TP mode of223

interest.224

We investigate amplitude effects around the frequency of the TP mode by imposing225

harmonic motion at n = 20 and record the applied force through a load cell mounted on the226

stinger connected to the shaker, and the velocity of spinner n = 22. All results presented227

herein are at steady-state for frequency varying between 35 Hz and 55 Hz, and amplitude of228

imposed motion θ20e
jωt increasing approximately between |θ20| = 0.001 rad and |θ20| = 0.07229

rad. Since the shaker is controlled in open-loop, we control the amplitude of the electronic230

signal that excites it, and θ20 is evaluated as the magnitude of the motion of spinner n = 20,231

recorded by an accelerometer. The amplitude θ22 of spinner n = 22 is also calculated as the232

first harmonic of its motion θ22, measured with the LDV. The amplitude of applied force233

f0 is calculated as the first harmonic of the instantaneous force measured by the load cell.234

Second and higher harmonics of all the measurements have been found more than an order235

of magnitude lower than the first harmonic.236

Each experiment produces a triplet of values: the amplitude of the response θ22, its237

frequency, and the amplitude of the applied force f0. Mapping these values through a series of238

experiments leads to a surface that correlates frequency, amplitude of response and amplitude239

of applied force. The surface can be represented as contours that relate frequency and240

amplitude of response at constant applied force. In this representation, resonance frequencies241

are identified as points of minimum required force, i.e. as the valley of this surface. The242

results in Fig. 7(a) show the natural frequencies as the black dotted line. The corresponding243

backbone curve presents a sharp change in slope as the frequency leaves the bandgap (shaded244

blue region), which presumably indicates a transition in dynamic behavior. In addition,245

we record the dynamic deformed shape for excitation at the backbone frequencies. The246

measurements are conducted by repeating LDV recordings at each spinner location and then247

combining the corresponding amplitude and phase to obtain each of the curves shown in248
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Fig. 7(b). For these, the LDV head is manually moved between locations and the data249

acquisition device is programmed to synchronize the measurements by starting them always250

at the same time interval after the excitation signal is triggered. The figure presents the251

change in the dynamic deformed shapes as a function of total amplitude A = |θ|2, which252

clearly illustrates how the lattice exhibits the predicted change in the linear-regime TP253

mode, and documents its transition from being localized at small amplitudes, to bulk mode254

for higher values of A. As in the analytical results, the amplitude of motion at spinner255

n = 1 is negligible in the linear regime, but grows for increasing nonlinearities (Fig. 7(c)).256

Evidence of a transition, although not as sharp as the one predicted by the theoretical model257

(in Fig. 4), is marked by the vertical solid red line at A = 0.08 rad. We note that Fig. 7(a)258

differs slightly from its analytical counterpart in Fig. 4(b), possibly due to the presence of259

dissipation in the physical system. Evidence of dissipation can be observed in the spatially260

decaying amplitude from the interface in Fig. 7(a), and in the significantly lower Q-factors261

observed for the experimental lattice in the linear frequency response function of Fig. 6. Also,262

dissipation could contribute to the discrepancy between 4(c) and 7(c). While we believe263

that the effect of dissipation is important and could affect the robustness of TP modes, we264

do not specifically investigate it in this work, and we limit to identifying it as the object of265

future studies.266

An alternative visualization of the transition is obtained by recording the motion of the267

spinners through a high speed camera. The experiments are conducted by repeating the268

measurements over 15 separate portions of the lattice, as the entire length exceeds the269

aperture of the camera. Measurements are phase-matched and stitched to obtain a single270

recording for an assigned amplitude of motion, snapshots of which for 3 values of amplitude271

A are shown in Fig. 8. As the angular rotation of the spinners in all cases remain relatively272

hard to observe from the pictures, circles of radius proportional to the amplitude of motion273

are superimposed to each spinner to facilitate visualization and to better appreciate the274

extent of the penetration of the mode into the bulk. Such penetration is very limited for low275

amplitudes Fig. 8(a), as the mode is strongly localized at the interface, and progressively276

increases for higher values of amplitude to eventually reach the end of the chain in the case277

shown in Fig. 8(c). Also for visualization purposes, the interior of the circles indicating278
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amplitude is colored to indicate the instantaneous phase of each spinner measured as the279

argument of the complex number θne
jωt, where values according to a color scheme varying280

from cyan for the lowest values to magenta for the highest ones. A small white circle is also281

added to the perimeter of the circles to aid visualization.282

IV. CONCLUSIONS283

The paper investigates the occurrence of topologically protected interface modes produced284

by broken spatial inversion symmetry. Experimental observations are conducted on a one285

dimensional dimer chain consisting of spinners coupled through permanent magnets. Spa-286

tial modulation of the interaction strength relies on setting the distance between magnets of287

neighboring spinners. Guided by a simplified analytical model, dynamic measurements high-288

light the presence of frequency bandgaps and of a TP mode whose frequency lies inside the289

bandgap. The experiments also probe the behavior of the chain when nonlinearities affect290

lattice interactions. A softening-type nonlinearity cause the frequency of the topologically291

protected modes to progressively merge with the linear bulk bands, causing an interface-to-292

bulk transition of the corresponding mode. Such transition is first predicted by the analytical293

model, and then confirmed by the measured response of the chain. Laser vibrometry and294

full field optical capture of the dynamic deformed configurations of the lattice are employed295

to quantify and characterize the interface localization of the topologically protected modes,296

and their extinction as the amplitude of motion increases. A transition amplitude is pre-297

dicted numerically and also observed experimentally, with a good level of agreement. The298

study paves a path towards the understanding of the robustness of topologically protected299

modes and lack thereof in the presence of the type of nonlinearities investigated as part of300

this study. The results also suggest a potential mechanism for the control of localization and301

the transition to bulk propagation that exploits topological protection in conjunction with302

nonlinear interactions.303
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(a)

(b)

FIG. 1: One-dimensional spinner lattice. (a) Detail of two interacting spinners, and (b)

diatomic chain with interface generated through spatial inversion symmetry (SIS).

FIG. 2: Schematic of analytical model with key physical parameters.
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(a) (b)

(c)

FIG. 3: (a) Linear dispersion diagram for the periodic lattices. (b) Eigenvalues for a 20+20

spinners lattice with the non-trivial interface showing the existence of two interface modes:

one populates the bandgap and is topologically protected (black solid dot), a second

interface mode appears above the second branch (green circle). (c) Corresponding

eigenvectors illustrating the symmetric (even) and antisymmetric (odd) spatial distribution

of the interface modes. The TP mode corresponds to the thick black line with solid dots,

while the other interface mode is denoted by the thin green line and superimposed circles.
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(a) (b)

(c)

FIG. 4: Effects of nonlinearities on the odd TP mode. (a) Variation of the eigenvalue

versus amplitude (black dots); shaded blue area outlines the linear bandgap, while the

vertical solid red line marks the amplitude corresponding to the interface-to-bulk transition

at A ≈ 0.09 rad. (b) Variation of eigenmodes in terms of amplitude (colorbar is associated

to the normalized magnitude of each mode). (c) Variation of normalized magnitudes at

locations n = 1 (red line with squares) and n = 22 (blue line with blue circles) and

transition amplitude (solid red line).
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FIG. 5: Physical 40 spinner system mounted on a beam. Distances

Da = 7 mm, Db = 6 mm are denoted by an empty and a full blue circle respectively

(rubber band colors indicate magnets polarity). This is the setup when motion is imposed

to spinner 20.

FIG. 6: Experimental frequency response at spinner n = 22 in the linear regime for white

noise excitation at n = 20. For reference, the theoretical predictions are reported in the

thin red line, along with the theoretical eigenvalues (red and blue circles) and the frequency

corresponding to the interface modes (TP mode: black dot, interface mode: green circle

and vertical dashed lines). The shaded blue region denotes the analytical linear bandgap.
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(a)

(b) (c)

FIG. 7: Experimentally observed effects of nonlinearities on the odd TP mode. (a)

Amplitude |Θ22| versus frequency relation for nonlinear normal modes. Shaded blue area

outlines the linear bandgap, while the horizontal solid red line marks the amplitude

corresponding to the interface-to-bulk transition at |θ22| ≈ 0.035 rad. The contours

represent the frequency-response correlation for oscillations excited at constant force

amplitude. (b) Variation of steady-state dynamic deformed shapes in terms of total

amplitude A (the colorbar denotes the magnitude of the applied force). The transition

occurs at amplitude A ≈ 0.08 rad. (c) Variation of normalized magnitudes at locations

n = 1 (dashed red line and squares) and n = 22 (thick blue line and circles) and transition

amplitude (solid red line).
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(a)

(b)

(c)

FIG. 8: Experimentally measured snapshots of the chain motion for increasing values of

amplitude: (a) low amplitude A = 0.002 rad; (b) medium amplitude A = 0.070 rad, and (c)

high amplitude A = 0.179 rad. Circles of radius proportional to the normalized angular

motion of each spinner are superimposed to the picture to aid visualization.
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Appendix A: Model of magnetic interaction351

The magnetic force is evaluated by computing the interaction between magnetically rigid352

dipole moments ma and mb, which is given by30:353

fba = − 3µ0

4πd5
(d (ma ·mb) + ma (d ·mb) + mb(d ·ma)−

5d

d2
(d ·ma) (d ·mb)) (A.1)

where fba is the force that magnetic dipole mb exerts over dipole ma, d is the vector between354

magnet centers (d = |d|) and µ0 is the value of the vacuum magnetic permeability. Here,355

the magnitude of the magnetic dipoles are considered equal, i.e. |ma| = |mb| = m.356

FIG. A.1: Sketch of two spinners interacting through permanent magnets: degrees of

freedom and relevant parameters.

According to the schematic of Fig. A.1, the dipole moments are expressed as357

ma = m(i cos θa + j sin θa), mb = m(i cos θb + j sin θb),

while the relative distance vector is358

d = i [D −R (cos θa + cos θb)]− j [R (sin θa + sin θb)] .

The interaction force can be conveniently resolved in terms of the unit vector pair i, j,359

i.e. fab = fxi+ fyj, where the two force components can be approximated through a Taylor360

series expansion about the equilibrium position θa, θb ≈ 0. Truncation to the first order361

gives:362

fx =
3m2µ0

2π (D − 2R)4
+O

(
θ2a, θ

2
b , θaθb

)
,

fy = −3m2µ0(D + 2R)

4π (D − 2R)5
(θa + θb) +O

(
θ2a, θ

2
b , θaθb

)
.

(A.2)
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The horizontal component is constant in linear regime, while the vertical one is proportional363

to the angle sum (θa + θb), i.e. to the relative displacement between neighboring magnets in364

the vertical direction. The equation of motion for spinner (a) is simply Iθ̈a−Tba(θa, θb) = 0,365

and includes the moment corresponding to the interaction force, which is given by Tba =366

|ra × Fba|, where ra = R(i cos θa + j sin θa) is the vector that goes from center of spinner a367

to the center of the magnet ma. This gives:368

Tba = − 3m2µ0R

4π(D − 2R)5
(2(D − 2R)θa

+ (D + 2R)(θb + θa)) +O
(
θa

3, θa
2θb, θaθb

2, θb
3
) (A.3)

The expression above include one term depending solely on θa and another that is directly369

proportional to (θa + θb). The first term is analogous to the torque exerted by a spring370

connected to the ground, and is the result of the horizontal attractive force component371

between the magnets. The second term is proportional to the relative angular motion of372

neighboring spinners and is associated with the vertical component of the interaction force.373

In order to account for nonlinearities in moderate rotation regimes, we extend the Taylor374

series expansion of the torque Tba up to order 3, which gives:375

Tba =− 3m2µ0R

4π(D − 2R)5

(
2(D − 2R)θa + (D + 2R) (θb + θa)

)
+

m2µ0R

8π(D − 2R)7

(
(3D3 + 12D2R + 3DR2 + 16R3) (θb + θa)

3

+ (9D3 + 4D2R− 46DR2)θa
3 + (3D3 − 6D2R + 42DR2 − 96R3)θa

2θb + (6DR2)θaθb
2

+ (−2D3 + 10D2R + 2DR2 − 32R3)θb
3
)

+O
(
θa

4, ...
)
.

(A.4)

The nonlinear part of the torque includes five terms whose importance can be evaluated376

for the considered values of D = 70.9 mm and R = 32.45 mm, which gives R/D ≈ 0.46.377

Numerical estimation of the coefficients reveals that the term for (θb + θa)
3 is at least an378

order of magnitude larger than all other nonlinear coefficients. Therefore, the torque can be379

further approximated as follows:380

Tba ≈ −kθθa − kt (θa + θb)− γ (θa + θb)
3 , (A.5)
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where381

kθ =
6m2µ0R

4π(D − 2R)5
(D − 2R)

kt =
3m2µ0R

4π(D − 2R)5
(D + 2R),

γ = − m2µ0R

8π(D − 2R)7
(3D3 + 12D2R + 3DR2 + 16R3).

(A.6)

which leads to the following governing equation of motion for the spinner:382

Iθ̈a + kθ,aθa + kt,a (θa + θb) + γa (θa + θb)
3 = 0 (A.7)

The negative sign in the nonlinear coefficient γ in equation (A.6) indicates that the cubic383

exponential term has a softening effect on the dynamic behavior of the spinner.384

Please note that kθ takes two different values in the chain kθ,a and kθ,b depending if the385

distance between spinners is Da or Db respectively. However, they add up in each spinner,386

since there is one spinner to the left and one to the right both contributing with a constant387

restoring longitudinal force fl. As a result, all of them are the same kθ,a+kθ,b = kθ,b+kθ,a = kθ,388

except for three spinners: the left boundary n = 1 is kθ,b, the right boundary n = 40 is kθ,a,389

and the interface n = 21 which is 2kθ,a. This is taken into account in the analytic calculations.390

Hence, the motion of regular i-th unit cell is expressed by Eq. (1) and the motion of the391

inverted i-th unit cell is formulated as392

Iθ̈b,i + kθθb,i + kt,b(θa,i + θb,i) + kt,a(θb,i + θa,i−1) + γb(θa,i + θb,i)
3 + γa(θb,i + θa,i−1)

3 = 0

Iθ̈a,i + kθθa,i + kt,a(θb,i+1 + θa,i) + kt,b(θa,i + θb,i) + γa(θb,i+1 + θa,i)
3 + γb(θa,i + θb,i)

3 = 0

(A.8)

Appendix B: Experimental evaluation of magnetic interaction coefficients393

1. Linear coefficients394

The analytical model relies on the experimental estimation of linear and nonlinear co-395

efficients kθ, kt and γ as a function of the distance between neighboring magnets faces396
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d0 = D − 2R − hm, where hm = 5 mm is the height of the magnets. To this end, we397

use a 3 spinner system which is tested dynamically. First, low-amplitude (linear) white noise398

excitation is applied to the left spinner n = 1 in Fig. B.1a. The resonant frequencies of the399

resulting 2 degree of freedom system are recorded based on the evaluation of the response400

peaks. Estimation of the linear coefficients is based on the analytical expressions for these401

resonant frequencies, which are:402

fr1,2
2 =

1

2π

(
3kθ + 3kt ±

√
kθ

2 + 2kθkt + 5kt
2
)
/2I

from which values of kθ(d0) and kt(d0) are inferred. Examplary results are shown in Fig. B.1b,403

while the full set of estimated coefficients are listed in Table B.1.404

The estimated coefficients are subsequently used to evaluate the attractive horizontal405

component of the force fx(d0), which is then compared with the data provided by the per-406

manent magnets manufacturer (D4H2 nickel plated neodymium magnets by K&J Magnetics,407

Inc.). The comparison in Fig. B.1c shows a very good agreement and confirms the accuracy408

of the estimated coefficients, which are then used as inputs to the analytical model.409

TABLE B.1: Experimental values of constants kθ and kt as a function of distance between

magnets d0 = D − 2R− hm.

d0 (mm) 1 2 3 4 5 6 7

kθ (Nm/rad) 0.194 0.115 0.072 0.056 0.045 0.036 0.028

kt (Nm/rad) 2.385 1.224 0.720 0.406 0.282 0.178 0.127

2. Nonlinear coefficients410

Subsequently, we estimate the nonlinear coefficient γ using the 2-spinner system shown in411

Fig B.2a. In this set-up, the left spinner 1 is forced to oscillate harmonically at a particular412

amplitude and frequency, while spinner 2 is clamped in the θ2 = 0 position. We run a set of413

dynamic nonlinear steady-state experiments in which the exerted periodic force is recorded414
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with a load cell (model 208C01 by PCB Piezotronics Inc.) from which the amplitude of its415

first harmonic f0 is extracted.416

Since the shaker is controlled in open-loop, we control the amplitude and frequency of the417

harmonic electronic signal sent to the shaker that imposes the motion θ1e
iωt, and its velocity418

is measured with the LDV, from which the amplitude of its first harmonic θ1 is calculated.419

Then, for each experiment, we get a triplet of values: the amplitude of the response θ1, its420

frequency, and the amplitude of the applied force f0. The experiment is repeated over a421

range of imposed amplitudes from 0 to 0.04 rad and frequencies from 30 to 43 Hz. Mapping422

the results produces a surface that correlates frequency, amplitude of response and amplitude423

of applied force. The contours of this surface correlate frequency and amplitude of response424

for constant amplitude of excitation force f0.425

For this range of amplitudes and based on the assumptions described in Appendix A,426

the governing equation of the forced response is equivalent to that of an undamped Duffing427

oscillator,428

Iθ̈1 + (kθ + kt) θ1 + γθ31 = f(t) (B.1)

where f(t) is the external force.429

The response amplitude for harmonic excitation f(t) = f0 cos(ωt) can be obtained ana-430

lytically from31
431 (

Iω2 − (kθ + kt)− 3/4γA2
)2
A2 = f 2

0 (B.2)

where A is the amplitude of the response in θ1e
iωt, with A = |θ1|. By comparing the measured432

response with the analytical predictions according to the expression above, we estimated433

a value for the nonlinear coefficient equal to γ = −320 Nm/rad3 for a distance between434

neighboring magnets d0 = 1.2 mm. The comparison is shown in Fig. B.2d, which illustrates435

the excellent match between analytical predictions (dashed lines) and experimental results436

(solid lines) for the estimated value of γ. In the figure, each color relates amplitude and437

frequency for a different value of excitation force amplitude f0. Through the same process,438

we estimate that γ(d0 = 1 mm) = −366 Nm/rad3 and γ(d0 = 2 mm) = −188 Nm/rad3.439
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(a)

(b) (c)

FIG. B.1: (a) Setup for the characterization of linear constants kθ and kt. The magnet

distance is set at d0 = 1 mm. (b) Frequency response function of the system showig the

occurrence of two resonance frequencies that are related to the constants kθ and kt and

recorded for their estimation, which is based on repeating the meausrements for varying

magnets distance d0. (c) Comparison of the longitudinal attraction force fx evaluated on

the basis of the estimated constants (black dots) and corresponding force provided in the

technical specifications from the retailer (red dashed line).

Appendix C: Experimental setup and methods440

The complete spinner chain is bolted to a straight slotted beam, which allows adjusting441

the inter-magnetic distances as needed by the experiments. The spinner radius is R = 32.45442
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(a)

(b)

FIG. B.2: (a) Setup for measuring the nonlinear forced response in a 1 dof system.

Harmonic motion is imposed and the exerted force is measured for different amplitudes and

frequencies. (b) Then the coefficient γ is fine-tuned so that the analytical solution of the

Duffing oscillator (dashed) matches the experimental results (solid) for different amplitudes

of the force f0.

mm, which leads to a rotary inertia value of I = 37.2 Kg mm2 including the magnets. We443

calculate the inertia using meticulous measurements of the volumes and masses of all the444

parts conforming each spinner. We measured all the geometry parameters of the spinners:445

the main body, the pegs, the bearings and the bearing balls. From a detailed CAD model,446

a view of which is provided in Fig. C.1, we calculated the volumetric inertias (m5) of three447

different parts: the spinner body and pegs, the bearing outer cylinder, and the bearing balls.448
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Those were obtained by numerical integration about the axis of gyration IV =
∑

(r2i δVi),449

where ri is the distance between the center of the i-th differential volume δVi and the axis of450

gyration. We also calculated the volumes and weighted the parts separately. Assuming that451

the materials are homogeneous, we estimate the density ρm of each part m. We calculate the452

mass inertia by multiplying the volumetric inertia by the density of each part I =
∑
IV,mρm.453

The bearing balls contribute half because its motion is half of the rest of the spinner. We454

neglected the spinning of the bearing balls in the motion. The magnets, which are 5 mm tall455

and 6.35 mm diameter, are placed at distances d0,a = 1 mm and d0,b = 2 mm apart. The456

corresponding distances between the centers of the spinners are respectively Da = 70.9 mm457

and Db = 71.9 mm. Figure C.2 shows a top view of the experimentally tested 40 spinner458

chain.459

In the experiments we impose harmonic motion to the spinner at the left boundary θ1460

or the spinner next to the interface θ20 depending on each experiment goal, with a shaker461

controlled in open loop. The shaker, a model V201 by LDS LTD., is excited with an electronic462

signal programmed in the PC and sent through the data acquisition system (DAQ), (USB-463

6366 782263-01 by National Instruments TM). We measure the acceleration of the excited464

spinner using the accelerometer (model 352A24 by PCB Piezotronics Inc.) and calculate its465

motion by integration. The motion of the other spinners is calculated from integration of the466

velocities, which in turn are measured by LDV using a PDV-100 scanning head by Polytech467

GmbH. This is a single point LDV, so we repeat the experiments 40 times and move the468

LDV device manually between locations to measure the motion of all the spinners. The469

DAQ is used to trigger the excitations and measurements always with the same time interval470

between them, which ensures that the steady-state is reached and that phase is synchronized471

between experiments.472

The signal imposed to the shaker is either white noise over the frequency range of interest473

(0− 80 Hz) to provide the response of the system in the frequency domain, or harmonic for474

steady-state measurements. The signal is properly amplified to obtain the targeted ampli-475

tudes of displacement in the shaker. These amplitudes are monotonically but not propor-476

tionally related to the amplitude of the electronic signal that excites the shaker. Therefore,477

we can increase and decrease the amplitude of motion θ20 imposed to spinner n = 20 without478
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knowing its exact value a priori. The exact value of the motion is calculated a posteriori479

from the accelerometer measurements. At the same time, the force at the shaker tip is mea-480

sured using a force transducer model 208C01 by PCB Piezotronics Inc. These signals are481

amplified for acquisition using a signal conditioner model 482A21 by PCB Piezotronics Inc.482

Finally, videos of the motion in the steady-state nonlinear experiments are recorded using483

a high speed camera model 675K-M1 by Photron USA, Inc. placed right above the spinners484

system (not shown in the figure). Due to the length of the chain, all the 40 spinners do485

not fit in the camera frame if we want to maintain a good level of resolution. Therefore,486

we use 15 different camera positions, recording 2 or 3 spinners at a time. We use the DAQ487

to control and coordinate the excitation, the measurements and the camera trigger, so that488

we ensure phase synchronization between the videos. These were later post-processed and489

stitched together using Matlab software.490

The snapshots of the deformed configurations of the chain shown in Fig. 8 are extracted491

from the movies provided as supplementary material29. In the snapshots and in the movies,492

visualization of the angular rotation of the spinners is aided by superimposing to each spin-493

ner a colored circle of radius proportional to the amplitude of motion. Also, the rotation494

angle is extracted from the video by employing in-house Digitial Image Correlation software.495

The lengthwise variation of the rotation angle of the spinners is shown in the graphs accom-496

panying each of the response movie, which helps visualizing the spatial extent of motion and497

differentiating localized modes versus bulk-propagating modes.498

FIG. C.1: Solid model of a single spinner showing details of its construction.
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FIG. C.2: Physical 40 spinner system mounted on a beam. Distances between magnets are

d0,a = 1 mm and d0,2 = 2 mm. Transducers and data acquisition devices are also shown.

In detail, we provide the following movies as supplementary material29:499

SM1 Description of the experimental set-up and animation explaining the spinner lattice500

visualization in Fig. 8. The experiments are conducted by repeating the measurements501

over 15 separate portions of the lattice, as the entire length exceeds the aperture of the502

camera. Upon recording, the measurements are phase-matched and stitched to obtain503

a single recording for an assigned amplitude of motion.504

SM2 Experimental results recorded for low amplitude excitation, and corresponding to the505

still picture of Fig. 8(a). The recorded video data are used to extract angular informa-506

tion about the rotation of the spinners, which is plotted as a function of the spinner507

number in the bottom graph. This visualization helps observing the localized nature508

of the dynamic deformed lattice response at low amplitude excitation corresponding509

to the TP mode.510

SM3 Experimental results recorded for medium amplitude excitation, and corresponding to511

the still picture in Fig. 8(b). The plot of the angular motion of the spinners shows the512

increase in penetration of the dynamic response which extends away from the interface513

as amplitude increases.514

SM4 Experimental results recorded for high amplitude excitation, and corresponding to the515

still picture of Fig. 8(c). The plot of the spinners’ rotation clearly shows that the mode516

now extends to the entire length of the chain.517
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