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We study the semi-classical theory of wave packet dynamics in crystalline solids extended to include the
effects of a non-uniform electric field. In particular, we derive a correction to the semi-classical equations of
motion (EOMs) for the dynamics of the wave packet center that depends on the gradient of the electric field and
on the quantum metric (also called the Fubini-Study, Bures, or Bloch metric) on the Brillouin zone. We show
that the physical origin of this term is a contribution to the total energy of the wave packet that depends on its
electric quadrupole moment and on the electric field gradient. We also derive an equation relating the electric
quadrupole moment of a sharply-peaked wave packet to the quantum metric evaluated at the wave packet center
in reciprocal space. Finally, we explore the physical consequences of this correction to the semi-classical EOMs.
We show that in a metal with broken time-reversal and inversion symmetry, an electric field gradient can generate
a longitudinal current which is linear in the electric field gradient, and which depends on the quantum metric
at the Fermi surface. We then give two examples of concrete lattice models in which this effect occurs. Our
results show that non-uniform electric fields can be used to probe the quantum geometry of the electronic bands
in metals and open the door to further studies of the effects of non-uniform electric fields in solids.

Electron wave packets in a solid placed in an applied elec-
tric field experience an anomalous contribution to their veloc-
ity which has its origin in the Berry curvature of the electronic
bands. This anomalous velocity is responsible for the quan-
tized Hall conductivity of Chern insulators, and the intrinsic
contribution to the anomalous Hall effect in metals, among
other things, and these effects can all be understood within
a framework based on the semi-classical equations of motion
(EOMs) for electron wave packets in solids1–8 (see also the
review9). Combining the semi-classical EOMs with a Boltz-
mann equation approach to transport is particularly useful in
the search for novel physical consequences of band geometry
and topology5,6,10–13.

One issue which is not addressed by the current semi-
classical framework is the effect of a non-uniform electric
field on wave packet motion. However, it is known that non-
uniform electric fields probe some of the most subtle and in-
teresting effects in condensed matter systems, for example
the Hall viscosity in quantum Hall systems14,15 and electrical
multipole moments in insulators16–18. In addition, it is likely
that non-uniform electric fields can have significant effects in
metals where the partially filled conduction band can respond
quickly to an applied field. These expectations motivate a sys-
tematic study of the semi-classical EOMs in an expansion in
spatial derivatives of the external electric field.

In this article we initiate this study by considering the semi-
classical dynamics of electron wave packets in the presence of
a constant electric field gradient. We derive a correction to the
usual semi-classical EOM for the time derivative of the wave
packet center in real space. This correction depends on the
gradient of the electric field, and on the quantum metric19 on
the Brillouin zone (BZ) for the electronic band whose states
are used in the construction of the wave packet. The quan-
tum metric (also called the Fubini-Study metric, Bures metric,
Bloch metric, etc.) has previously been studied in the context
of band theory and the semi-classical EOMs in Refs. 20–36.

The correction to the semi-classical EOMs that we derive
depends on the derivative of the quantum metric. As a conse-

quence, we show that this correction does not affect transport
in insulators. On the other hand, we show one direct effect
of this correction on transport in metals where it can lead to
a longitudinal current proportional to the electric field gradi-
ent and to the quantum metric at the Fermi surface. Thus, our
result shows that the quantum geometry of bands in metals
can be probed by a transport experiment using a non-uniform
electric field. We now turn to an explanation of our results.

Setup: We study the dynamics of electrons of charge Q =
−e in a crystal and in the presence of a time-independent elec-
tric field E(x). Let x̂µ, p̂ν , µ, ν = 1, . . . , D, denote the posi-
tion and momentum operators for a single electron in D spa-
tial dimensions, with [x̂µ, p̂ν ] = i~δµν . The single particle
Hamiltonian is

Ĥ = Ĥ0 +Qϕ(x̂) , (1)

where Ĥ0 is a Hamiltonian for an electron in a periodic po-
tential V (x̂), for example the standard non-relativistic Hamil-
tonian Ĥ0 = 1

2mδ
µν p̂µp̂ν + V (x̂) for particles of mass m.

In fact, our only requirement for Ĥ0 is that it be subject to
Bloch’s theorem. The second term in Ĥ captures the coupling
to the electric field E(x), which is determined by the potential
ϕ(x) as Eµ(x) = −∂ϕ(x)∂xµ .

Bloch’s theorem implies that Ĥ0 has a basis of eigenstates
(“Bloch waves”) |ψn,q〉 which are labeled by a band index n
and a wavevector q (in the first BZ) and obey Ĥ0|ψn,q〉 =
En(q)|ψn,q〉, where En(q) are the energy eigenvalues. In ad-
dition, we can write |ψn,q〉 = eiqµx̂

µ |un,q〉 where the func-
tion un,q(x) := 〈x|un,q〉 has the periodicity of the crystal
lattice. Note that the Bloch states are time-independent since
we have made the simplifying assumption that our Hamilto-
nian is time-independent. We normalize the Bloch states so
that 〈ψn,q|ψn′,q′〉 = δn,n′δ

(D)(q − q′), which implies that
〈un,q|un′,q〉 = δn,n′ . Here, the the inner product of the |un,q〉
is defined as integration over the real space unit cell times a
factor of (2π)D

vc
, where vc is the volume of the real space unit
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cell37. We also introduce a crystal momentum operator q̂µ
which is diagonal in the basis of Bloch states and satisfies
q̂µ|ψn,q〉 = qµ|ψn,q〉.

We are interested in the leading corrections to the semi-
classical EOMs due to a non-zero electric field gradient, and
so we choose a potential of the form ϕ(x) = −E(0)

µ xµ −
1
2E

(0)
µν xµxν , where E(0)

µ and E(0)
µν (with E(0)

µν = E
(0)
νµ ) are two

sets of constant parameters. The components of the electric
field are then Eµ(x) = E

(0)
µ + E

(0)
µν xν . We see that E(0)

µ

specify the uniform part of the electric field, while E(0)
µν spec-

ify the electric field gradient.
Wave packets and their first moments: We study the time-

evolution (using the full Hamiltonian Ĥ) of a wave packet
|Ψ(t)〉 constructed from the Bloch states |ψn,q〉. We assume
that the wave packet is constructed from states within a single
band, and so we drop the band index n from the notation. We
define this wave packet state as |Ψ(t)〉 =

∫
dDq a(q, t)|ψq〉,

where a(q, t) is a complex amplitude which must satisfy the
normalization condition

∫
dDq |a(q, t)|2 = 1 (q integrals run

over the first BZ). By plugging into the Schrodinger equation
i~ d
dt |Ψ(t)〉 = Ĥ|Ψ(t)〉, one can show that a(q, t) satisfies

i~ȧ(q, t) = a(q, t)E(q) +Q

∫
dDq′ a(q′, t)〈ψq|ϕ(x̂)|ψq′〉 ,

(2)

where the dot denotes a time derivative.

The semi-classical EOMs for wave packet dynamics in
solids can be derived by studying the dynamics of the first
moments Xµ(t) and Kµ(t) of the wave packet in position
and reciprocal space, respectively. These are defined by
Xµ(t) = 〈Ψ(t)|x̂µ|Ψ(t)〉 and Kµ(t) = 〈Ψ(t)|q̂µ|Ψ(t)〉 =∫
dDq qµ|a(q, t)|2. We derive the semi-classical EOMs for

Xµ(t) and Kµ(t) by first computing the exact expressions
for Ẋµ(t) and K̇µ(t), and then truncating these expressions
using the assumption that the wave packet is sharply-peaked
about the locations Xµ(t) and Kµ(t) in position and recip-
rocal space. To derive the equations for Ẋµ(t) and K̇µ(t)
we simply differentiate the expressions for Xµ(t) and Kµ(t)
with respect to time, and then we substitute in for ȧ(q, t) and
ȧ(q, t) using Eq. (2) and its complex conjugate.

After a tedious but straightforward calculation, we find that
the equation for Ẋµ(t) takes the form

Ẋµ(t) =
1

~

〈∂E(q̂)

∂qµ

〉
t
− 1

~
QE(0)

ν

〈
Ωµν(q̂)

〉
t
− 1

2~
QE

(0)
νλ

〈
{x̂λ,Ωµν(q̂)}

〉
t
− 1

2~
QE

(0)
νλ

〈∂gνλ(q̂)

∂qµ

〉
t
, (3)

where 〈·〉t denotes an expectation value in the state |Ψ(t)〉,
and {·, ·} denotes an anti-commutator (third term on the right-
hand side). In this equation Ωµν(q) is the Berry curvature,
which is expressed in terms of the Berry connectionAµ(q) =

i
〈
uq

∣∣∣∂uq

∂qµ

〉
as Ωµν(q) = ∂Aν(q)

∂qµ
− ∂Aµ(q)

∂qν
. The quantity

gµν(q) is the quantum metric on the BZ, and is defined as

gµν(q) =
1

2

(〈∂uq
∂qµ

∣∣∣∂uq
∂qν

〉
−
〈∂uq
∂qµ

∣∣∣uq〉〈uq∣∣∣∂uq
∂qν

〉
+ (µ↔ ν)

)
. (4)

Both Ωµν(q) and gµν(q) are invariant under a gauge trans-
formation |uq〉 → e−if(q)|uq〉 for any function f(q). The
equation for K̇µ(t) is much simpler, and it takes the form

K̇µ(t) =
1

~
QEµ(X(t)) , (5)

where Eµ(X(t)) = E
(0)
µ + E

(0)
µνXν(t) is the electric field at

the location of the first moment Xµ(t).
To derive these equations, it is necessary to use ex-

plicit expressions for the matrix elements 〈ψq|x̂µ|ψq′〉 and

〈ψq|x̂µx̂ν |ψq′〉 of the position operator in the Bloch states.
We record these expressions in Eqs. (3) and (4) of the Supple-
mental Material38. In the derivation we also used several in-
tegrations by parts in integrals over the BZ, and we neglected
boundary terms. If the amplitudes a(q, t) or the Berry con-
nectionAµ(q) are not single-valued, then there could be some
interesting, subtle additions to these modified EOMs. In the
Supplemental Material we show that by a suitable choice of
gauge for the Bloch states |ψq〉, we can make a(q, t) single-
valued for all t. In that case the only possible source of bound-
ary corrections is the Berry connection. Here we assume that
no boundary corrections arise, and we leave a detailed discus-
sion of any alternatives to future work.

To obtain the semi-classical EOMs forXµ(t) andKµ(t) we
make the substitutions x̂µ → Xµ(t) and q̂µ → Kµ(t) in all
expectation values in Eq. (3) and Eq. (5). Our result, which is
one of the main results of this article, is that the semi-classical
EOMs take the form

Ẋµ =
1

~
∂E(K)

∂Kµ
− Ωµν(K)K̇ν −

1

2~
QE

(0)
νλ

∂gνλ(K)

∂Kµ
(6a)

K̇µ =
1

~
QEµ(X) , (6b)

where we also used the second equation to rewrite part of
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the Ẋµ(t) equation in terms of K̇µ(t). The main differ-
ence compared to the usual semi-classical EOMs is the term
− 1

2~QE
(0)
νλ

∂gνλ(K)
∂Kµ

. This new term depends on the gradient

of the electric field, since it depends on E(0)
νλ but not E(0)

µ ,
and it also probes the geometry of the band structure since it
involves the quantum metric gνλ(K).

Interpretation: We now show that the new term in (6) arises
from an electric field-induced correction to the energy of the
wave packet. In the absence of an electric field we have
〈Ψ(t)|Ĥ0|Ψ(t)〉 =

∫
dDq |a(q, t)|2E(q) ≈ E(K), where

K(t) is the wave packet center. In the presence of the elec-
tric field, we show in the Supplemental Material that the wave
packet energy takes the form

〈Ψ(t)|Ĥ|Ψ(t)〉 ≈ E(K)−QE(0)
µ Xµ

− 1

2
QE(0)

µν

(
XµXν + gµν(K)

)
(7)

≡ Eeff (X,K) . (8)

As a result, the corrected semi-classical EOM for Ẋµ(t) can
be rewritten as

Ẋµ =
1

~
∂Eeff (X,K)

∂Kµ
− Ωµν(K)K̇ν . (9)

We can also rewrite the equation for K̇µ(t) as K̇µ =

− 1
~
∂Eeff (X,K)

∂Xµ .
In this form, the correction to the Ẋµ(t) and K̇µ(t) equa-

tions closely resembles a similar correction which occurs for
electrons in a magnetic field. In that case the correction to
the wave packet energy arises from the magnetic moment of
the wave packet6. In the present case of a non-uniform elec-
tric field, the corrections to the energy depend on the dipole
moment Xµ(t) of the wave packet (the term proportional to
E

(0)
µ ), and on the quadrupole moment of the wave packet (the

term proportional to E(0)
µν ). Indeed, in the Supplemental Ma-

terial we show that for a wave packet |Ψ(t)〉 sharply peaked
at position K in reciprocal space, the quadrupole moment is
given by

〈Ψ(t)|x̂µx̂ν |Ψ(t)〉 ≈ XµXν + gµν(K) . (10)

The correction due to the dipole moment is already present
in the case of a uniform electric field, and it does not alter
the semi-classical EOMs. On the other hand, the correction
proportional to the quadrupole moment is only present in a
non-uniform field, and it does alter the semi-classical EOMs.
We also note that to find the gµν(K) term in Eeff (X,K), we
need to expand Q〈Ψ(t)|ϕ(x̂)|Ψ(t)〉 to second order about the
wave packet center in real space, and so this term cannot be
found using the first order expansion of Ref. 7.

Physical consequences: We now discuss physical con-
sequences of the new term in Eq. (6) for transport in
solids. Within the semi-classical approach, the current den-
sity jµ(r) at position r in the material is given by jµ(r) =

Q
∫
dDX dDK

(2π)D
f(X,K, t)Ẋµδ(D)(X−r), where f(X,K, t)

is the non-equilibrium distribution function which specifies
the occupation, at time t, of the volume element dDX dDK

(2π)D

at position (X,K) in phase space. The full distribution
function can be obtained by solving the Boltzmann equa-
tion. In the relaxation time approximation, with relaxation
time τ , f(X,K, t) takes the form of a power series in τ ,
f(X,K, t) = f0(K) + O(τ), where f0(K) is the equilib-
rium distribution function specifying the occupied states in
reciprocal space at temperature T 5,6,10–13. In what follows,
we will be interested in the currents which come from this
zeroth order contribution, which captures the intrinsic part
of the linear response of the system to the applied electric
field. The zeroth order contribution to the current is then
jµ0 (r) = Q

∫
dDK
(2π)D

f0(K)Ẋµ
∣∣∣
X=r

. In D = 2, for exam-

ple, jµ0 (r) contains the intrinsic contribution to the anomalous
Hall effect. Using Eq. (6), we find that jµ0 (r) contains the
additional term

jµgeom.(r) = −Q
2

2~

∫
dDK

(2π)D
f0(K)E

(0)
νλ

∂gνλ(K)

∂Kµ
, (11)

which involves the electric field gradient and the quantum
metric. We will refer to jµgeom. as the geometric current.

The geometric current is easiest to understand in the case of
a metal inD = 1 dimension (so µ, ν = 1 in all equations). Re-
call that we considered wave packets constructed from states
in a single band. We assume a partial filling of this band such
that the Fermi level EF crosses the band at the set of wave
numbers {kI,+, kI,−}I∈{1,...,nF } for some integer nF (so
2nF is the total number of Fermi points). Our notation means
that ∂E(K1)

∂K1
is positive at a + Fermi point and negative at a −

Fermi point (we assume that EF is chosen so that there is no
Fermi point where ∂E(K1)

∂K1
vanishes). At temperature T = 0

the distribution function f0(K1) is equal to 1 if E(K1) ≤ EF
and zero otherwise. After an integration by parts, and using
∂f0(K1)
∂K1

=
∑nF
I=1 [δ(K1 −KI,−)− δ(K1 −KI,+)], we find

that (h = 2π~)

j1geom. = −1

2

Q2

h
E

(0)
11

nF∑
I=1

[
g11(KI,+)− g11(KI,−)

]
, (12)

which is non-zero if the sum does not equal zero.
Next, we consider a similar example for a metal in D = 2.

To illustrate the nontrivial response we compute j1geom. as an
example. We again consider a single band and we assume the
Fermi surface consists of a single closed contour C. For sim-
plicity, we assume further that the parts of C to the left and
right of the K2 axis can be specified by single-valued func-
tions hL(K2), hR(K2), such that K1 = hL(K2) defines the
part of C to the left of the K2 axis, and K1 = hR(K2) de-
fines the part to the right (note that for a generic C the func-
tions hR/L(K2) would not be single-valued). Let K2,+ > 0
and K2,− < 0 be the two points where C intersects the
K2 axis. This situation is illustrated in Fig. 1. At T = 0
the distribution function for this metal is f0(K) = 1 for
K inside C, and zero otherwise. We then have ∂f0(K)

∂K1
=
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FIG. 1. A Fermi surface C (red contour), whose segments to the left
and right of the K2 axis are defined by the relations K1 = hL(K2),
K1 = hR(K2), respectively, where hR/L(K2) are single-valued
functions of K2.

δ(K1 − hL(K2))− δ(K1 − hR(K2)), and so

j1geom. = −Q
2

2h

E
(0)
νλ

2π

(∫ K2,+

K2,−

dK2 g
νλ(K)

∣∣
K1=hR(K2)

−
∫ K2,+

K2,−

dK2 g
νλ(K)

∣∣
K1=hL(K2)

)
. (13)

Since j1geom. involves an integral of gµν(K) only on C, we see
that this current is a Fermi surface property, like the intrinsic
contribution to the anomalous Hall effect8, and it vanishes in
insulators (which have a full band, f0(K) = 1 ∀K).

Symmetry analysis: In systems with time-reversal symme-
try we have E(K) = E(−K) and gµν(K) = gµν(−K), and
identical conditions hold in the case of inversion symmetry.
These conditions imply that jµgeom. = 0. To prove this we
use these conditions to first replace gµν(K) in Eq. (11) with
gµν(−K). Next, we use the fact that f0(K) = f0(−K) if
f0(K) is a function of E(K) only (as it would be in ther-
mal equilibrium or at T = 0). Finally, we change inte-
gration variables from K to −K to find that time-reversal
or inversion symmetry imply that jµgeom. = −jµgeom., and so
jµgeom. = 0. Therefore we must break these symmetries to ob-
tain jµgeom. 6= 0.

Examples in D = 1 and D = 2: We now discuss two
examples of lattice models of metals in D = 1 and D =
2 which yield a non-zero geometric current. We present the
detailed results for the geometric current in these models in
the Supplemental Material. In D = 1 we consider the two-
band model with Bloch Hamiltonian

H1D(k) = A sin(k)I+sin(k)σx+(m+1−cos(k))σz , (14)

where I is the 2 × 2 identity matrix and σx,y,z are the Pauli
matrices. In D = 2 we consider the two-band model with
Bloch Hamiltonian

H2D(k) = A sin(k1)I + sin(k1)σx + sin(k2)σy

+ (m+ 2− cos(k1)− cos(k2))σz . (15)

In both cases we choose the parameters m and A so that there
is an energy gap between the two bands of the model. We then

fill the lower band and partially fill the upper band to a Fermi
energy EF to obtain a model of a metal. In the Supplemental
Material we show that under these conditions, and when the
parameter A 6= 0, both of these models display a nontrivial
geometric current in the presence of a non-uniform electric
field in the X1 direction (i.e., E(0)

11 6= 0). In both cases the
condition A 6= 0 is required to break inversion and/or time-
reversal symmetry, which then allows for a non-zero jµgeom.
according to our previous discussion.

Discussion: A natural question to ask is how one can dis-
tinguish the geometric current of Eq. (12) from a more typical
longitudinal current of the Drude form. The Drude contribu-
tion has the form

j1Drude(r
1) = τ

Q2

h
E1(r1)

nF∑
I=1

[v(kI,+)− v(kI,−)] , (16)

where τ is the relaxation time and v(k) = ∂E(k)
∂k . To dis-

tinguish this from Eq. (12) we choose an electric field which
is a pure gradient around an origin, E1(r1) = E

(0)
11 r

1. We
then compute the average of the current over a spatial re-
gion centered at that origin r1 ∈ [−L2 ,

L
2 ]. We find that∫ L

2

−L2
dr1 j1Drude(r

1) = 0, while

∫ L
2

−L2
dr1 j1geom.(r

1) = −LQ
2E

(0)
11

2h

nF∑
I=1

[
g11(KI,+)− g11(KI,−)

]
.

(17)
Thus, a spatial average of the current about the origin can
distinguish between these two kinds of responses when the
electric field is a pure gradient (“pure” refers to the fact that
E1(0) = 0 and E1(r1) is linear near r1 = 0).

Eq. (17) shows that information about the quantum metric
at the Fermi points can be extracted from a transport experi-
ment using an electric field which is a pure gradient. By av-
eraging the current over a spatial region which is symmetric
about the origin, any Drude contribution to the current will be
canceled. Then, since L (the length of the spatial region), Q,
E

(0)
11 , and h are known to the experimenter, the signed sum∑nF
I=1

[
g11(KI,+)− g11(KI,−)

]
can be extracted from this

transport data.
A second natural question concerns the conditions under

which the electric field gradient term is expected to signifi-
cantly alter the semi-classical dynamics. After all, if the elec-
tric field varies slowly over the width of the wave packet, then
it should be reasonable to neglect the gradient term. To un-
derstand the relevant scales we use Eq. (10), which implies
that the squared spread 〈Ψ(t)|x̂µx̂ν |Ψ(t)〉−XµXν of a wave
packet sharply peaked at K in reciprocal space is equal to
gµν(K). For simplicity, consider the case of D = 1. Then
the width of the wave packet is

√
g11(K) and so the change

of the electric field over the width of the wave packet is
∆E1 ≈ E

(0)
11

√
g11(K). If ∆E1 � E

(0)
1 (the uniform part

of the electric field), then we can neglect the gradient term.
On the other hand, we must include this gradient term if ∆E1

is comparable to or larger than E(0)
1 .



5

Conclusion: In this article we extended the semi-classical
theory of electron wave packet motion in solids to incorpo-
rate the effects of a non-uniform electric field. In particular,
we systematically calculated corrections to the semi-classical
EOMs in an expansion in derivatives of the electric field, and
we obtained the correction proportional to the first derivative
of the electric field. Our main result, shown in Eqs. (6), is
a correction to the semi-classical EOM for the wave packet
center in real space which depends on the electric field gra-
dient, and on the quantum metric gµν(q) on the BZ. We then
gave a physical interpretation of this new term as arising from
the energy associated with the electric quadrupole moment of
the wave packet in the presence of the non-uniform electric
field. We also showed that this correction to the semi-classical
EOMs does not affect transport in insulators, but does lead
to a nontrivial transport signature in metals with broken time-
reversal and inversion symmetry. Specifically, we showed that
in such metals an electric field gradient can generate a longi-
tudinal current which is proportional to the electric field gra-
dient and to the quantum metric at the Fermi surface. Since
the current depends only on the quantum metric at the Fermi
surface, we expect that it will be robust to the inclusion of in-
teraction or disorder effects, as in the case of the anomalous
Hall effect in metals8.

We envision at least two possible directions for future

work. The first would be to understand the corrections to
the semi-classical EOMs (6) which involve higher derivatives
of the electric field. The correction proportional to the sec-
ond derivative would be particularly interesting as it should
allow for a derivation of an analog of the formula of Hoyos
and Son14, which relates the finite wave vector Hall conduc-
tivity of a quantum Hall system to the Hall viscosity, but in
the context of Chern insulators (where there is no magnetic
field) instead of Landau levels. A second direction would be
to derive semi-classical EOMs for the higher moments of the
wave packet, for example the second moments Xµν(t) :=
〈Ψ(t)|x̂µx̂ν |Ψ(t)〉 and Kµν(t) := 〈Ψ(t)|q̂µq̂ν |Ψ(t)〉 in posi-
tion and reciprocal space, respectively. In particular, it would
be interesting to understand how these second moments re-
spond to non-uniform electric fields. We leave these topics
for future work.

Note added: After this work was completed we became
aware of Ref. 39, which obtained many of the same results
as part of a study of nonreciprocal directional dichroism in
crystalline solids.
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