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Motivated by recent experiments demonstrating intricate quantum Hall physics on the surface of elemental
bismuth, we consider proximity coupling an s-wave superconductor to a two-dimensional electron gas with
strong Rashba spin-orbit interactions in the presence of a strong perpendicular magnetic field. We focus on the
high-field limit so that the superconductivity can be treated as a perturbation to the low-lying Landau levels. In
the clean case, wherein the superconducting order parameter takes the form of an Abrikosov vortex lattice, we
show that a lattice of hybridized Majorana modes emerges near the plateau transition of the lowest Landau level.
However, unless magnetic-symmetry-violating perturbations are present, the system always has an even number
of chiral Majorana edge modes and thus is strictly speaking Abelian in nature, in agreement with previous
work on related setups. Interestingly, however, a weak topological superconducting phase can very naturally
be stabilized near the plateau transition for the square vortex lattice. The relevance of our findings to potential
near-term experiments on proximitized materials such as bismuth will be discussed.

I. INTRODUCTION

The past decade has witnessed a flurry of activity, both the-
oretical and experimental alike, on engineering topological
phases of matter by piecing together less exotic, more well-
understood components. For example, a common paradigm
involves realizing spinless p-wave superconductivity, in ei-
ther one1 or two2 dimensions, by proximity coupling (much
more abundant) s-wave superconductors with spin-orbit cou-
pled materials in the presence of modest magnetic (Zeeman)
fields3–78. The one-dimensional (1D) version of this pursuit
has achieved remarkable experimental maturity in the past
few years; and while still hotly debated, the effort has led
to mounting evidence for the existence of Majorana modes
at the ends of 1D superconductor-semiconductor heterostruc-
ture devices (see Ref.9 for a recent review) and ferromag-
netic atom chains on the surface of strongly spin-orbit coupled
superconductors10.

In the abovementioned proposals, the primary role of the
magnetic field is to Zeeman split the bands at zero momen-
tum, thereby producing a “one-band” regime across which s-
wave pairing can, due to presence of the spin-orbit coupling,
pair states on opposite sides of the Fermi surface11. Here, we
focus on the case of two spatial dimensions (2D) in a quite dif-
ferent physical regime. We consider applying a strong perpen-
dicular magnetic field to an s-wave superconductor proximity
coupled to a Rashba spin-orbit coupled two-dimensional elec-
tron gas (2DEG). In this situation, orbital effects due to the
magnetic field dominate: screening of the magnetic field by
the superconductor draws the field into hc/2e flux tubes while
preserving the average flux, which subsequently organizes the
single-particle states of the 2DEG into Landau levels (on the
other hand, Zeeman effects are likely less important).

We consider a minimal Hamiltonian for this heterostructure
setup,

H = H2DEG +H∆, (1)

where

H2DEG =

∫
d2rΨ†

[
(p− e

cA)2

2m
− µ+ V (r) (2)

− αR σ ×
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A
)
· ẑ + EZσ

z

]
Ψ,

H∆ =

∫
d2rΨ†↑∆(r)Ψ†↓ + H.c. (3)

Here e is the (single) electron charge; m is the effective elec-
tron mass; µ is the chemical potential; αR and EZ are the
Rashba and Zeeman coupling strengths, respectively; A =
A(r) is the vector potential (with B(r) = ∇×A(r) = B(r)ẑ
the magnetic field felt by the electrons); V (r) is a scalar po-
tential; ∆(r) is the superconducting pair field; and the σj are
Pauli matrices acting in the spin space Ψ† = (Ψ†↑,Ψ

†
↓). B(r),

V (r), and ∆(r) will in general all be spatially nonuniform
due to formation of vortices in the superconductor.

We assume the high-field limit of this problem, so that
the cyclotron gap ~ωc is the largest energy scale, and focus
primarily on the case of a clean system. Additionally, we
take the external magnetic field to be near the upper critical
field Hc2 of the assumed type-II superconductor. This allows
us to (i) use for ∆(r) the well-known lowest-Landau-level
form for the Abrikosov vortex lattice arising in Ginzburg-
Landau theory12,13 (see Fig. 1) and (ii) ignore at leading or-
der screening-induced inhomogeneities in the magnetic field,
i.e.,B(r) ≈ Bẑ. In contrast to most previous approaches14–16,
we are then able to employ a standard Landau gauge and write
H∆ in the corresponding magnetic Bloch basis appropriate for
the vortex lattice solution, considering both square and trian-
gular vortex lattices simultaneously. (An exception is Ref.17,
where the authors take a similar approach in the related con-
text of a spinless p+ip superconductor in the presence of a tri-
angular vortex lattice.) Furthermore, assuming that the pairing
strength is sufficiently small relative to the Landau-level spac-
ing, we can project the Bogoliubov-de Gennes (BdG) Hamil-
tonian into the lowest Landau level (LLL) of H2DEG. The
resulting BdG problem closely resembles that of a spinless
p+ ip superconductor2, albeit with a modified odd-parity gap
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function—denoted ∆̃10(k) in Sec. III B below—which ex-
hibits an intricate structure with multiple Dirac nodes. That
is, purely orbital effects and spin-orbit coupling conspire to
provide an intriguing means of obtaining spinless supercon-
ductivity deep in the quantum Hall regime.

Sweeping the chemical potential µ through the LLL gives
rise to a quantum Hall plateau transition, the nature of which
is governed by the pairing ∆̃10(k) rather than disorder. If
the magnetic translation symmetry of the vortex lattice is pre-
served, we find that all phases in the vicinity of the plateau
transition are necessarily Abelian with integer Chern number
C (in a convention where a single copy of the integer quan-
tum Hall effect has C = 1). Preclusion of non-Abelian half-
integer C states due to magnetic symmetry was also pointed
out recently in a related context by Jeon et al.18 and also earlier
in Ref.17. Interestingly, in the case of a square vortex lattice
we find that the intermediate-µ phases are weak topological
superconductors, and consequently a dislocation in the vortex
lattice will trap an unpaired Majorana zero mode.

All of the realized Abelian integer-Chern states harbor a
lattice of hybridized Majorana modes (located at the po-
sitions of the original vortices)—a highly nontrivial phys-
ical system which has garnered significant recent theoreti-
cal attention14–16,19–27. By taking the approach summarized
above, we are able to provide both a fresh theoretical per-
spective on this system, as well as a straightforward recipe for
how to realize such a Majorana lattice in experiment. Impor-
tantly, by working in the high-field limit where we can project
into a single Landau level, the entirety of the low-energy den-
sity of states necessarily corresponds to a band of Majorana
modes: a Landau level has one fermionic mode (quantum di-
mension 2) per flux quantum hc/e, while each vortex carries
one superconducting flux quantum hc/2e; hence, the number
of states per vortex is 1

2 (a Majorana, with quantum dimension√
2). All states other than the Majorana modes are separated

away by an energy on the order of ~ωc, which can easily be
∼10 meV. This is in contrast to other platforms and regimes
wherein the density of states is polluted by other low-energy
modes in the vortex cores28–3031.

We now discuss potential laboratory realizations of the
above system and associated considerations that arise. In-
deed, models such as Eq. (1) are now on the near-term experi-
mental horizon in light of recent advances in epitaxial growth
for superconductor-semiconductor hybrid devices (see, e.g.,
Ref.32). Proximitizing the strongly Rashba spin-orbit coupled
surface states of elemental bismuth33,34 is one enticing possi-
bility. Bismuth is an extremely clean electronic system (with
a bulk mean free path on the order of mm) which has long
played a central role in the development of electronic charac-
terization techniques35 and has more recently become a play-
ground for novel topological phenomena36–41. Recently, by
performing scanning tunneling microscope (STM) measure-
ments on the (unproximitized) Bi(111) surface in high perpen-
dicular magnetic fields, Feldman et al.42 provided evidence
for the emergence of a gapped nematic quantum Hall state
(arising from a combination of local strain and Coulomb inter-
actions spontaneously lifting the six-fold Landau-level valley
degeneracy characteristic of the anisotropic hole states on this

surface). However, any such Rashba coupled surface could in
principle suffice for the 2DEG portion of the system in our
setup, so as long as it can be grown epitaxially with a sizable
proximity effect on the surface of a strong type-II supercon-
ductor. We note that while our simplified model, Eq. (1), is
seemingly far-removed from complicated band structures like
the Bi(111) surface, it can be viewed as a (fully isotropic)
proxy for Landau-level states arising from a single electron
pocket centered about the Γ point in a real material.

As discussed above, we approach Eq. (1) from the rather
unusual limit in which the proximitized superconductivity
can be treated as a perturbation to the Landau levels, an as-
sumption which amounts to working in the regime where the
cyclotron gap is much larger than the characteristic s-wave
proximity-induced pairing gap ∆0: ~ωc = ~eB

mc � ∆0. To
obtain this limit, it is thus of course desirable to use a 2DEG
whose carriers have a small effective mass, as is the case for
Bi(111)34,42. Furthermore, for our analysis to apply, we re-
quire ∆0 to be much larger than the characteristic disorder
and electron-electron interaction strengths (we briefly address
the former in Sec. V; the latter certainly constitutes an intrigu-
ing issue which we leave for future work and comment on in
our concluding remarks in Sec. VI). In a real experiment, this
will require a superconductor with a sufficiently large Hc2 so
as to be able to withstand the requisite large magnetic fields
and still have appreciable ∆0. Promising candidate supercon-
ductors include epitaxially grown thin films of FeSe or NbN:
both of which show upper critical fields of ∼16 T, and in both
cases, previous experiments have been able to image vortex
lattices using spectroscopic mapping with the STM43,44. The
spin-orbit coupled 2DEG—such as Bi(111)—has to be grown
epitaxially on the surface of these thin film superconductors at
a thickness that is comparable or below the coherence length
(e.g., 5 nm for FeSe) to allow for at least a weak supercon-
ducting gap to develop on the Landau levels. Thus, in addition
to simplifying the theoretical analysis in several respects, the
high-field limit is also quite experimentally reasonable.

Finally, while our ultimate goal here is geared more towards
engineering a Majorana lattice and not necessarily a non-
Abelian topological superconductor with half-integer Chern
number2, the latter naturally arises near the plateau transi-
tion in our model provided that the magnetic translation sym-
metry is broken (for example by a unit-cell-doubling super-
lattice potential)17. Even without such doubling, however,
the resulting symmetry-respecting phases for the square vor-
tex lattice are of interest for topological quantum comput-
ing applications45 as dislocations in the vortex lattice trap
an unpaired Majorana zero mode. We note that our work is
closely related to previous work by Qi, Hughes, and Zhang46,
in which the authors discussed a similar setup, but focused
mainly on proximity coupling a quantum anomalous Hall
state. In contrast, we here consider the analogous problem
of proximity coupling a (Rashba spin-orbit coupled) 2DEG in
the quantum Hall regime, while also carefully accounting for
the presence of vortices in the superconductor.

The rest of the paper is organized as follows. In Sec. II, we
describe the technical details underlying our calculations, in-
cluding reviews of the high-field Abrikosov vortex lattice so-
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lution (Sec. II A) and the Landau-level structure of a Rashba-
coupled 2DEG (Sec. II B); the most important part is Sec. II C
wherein we derive expressions for the gap function in the ap-
propriate magnetic Bloch basis. Appendix A contains addi-
tional details relevant to Sec. II. Secs. III and IV contain our
main results. Sec. III concerns the nature of the quantum Hall
plateau transition in the vicinity of the LLL. In Sec. III A, as
a warmup, we first consider the lowest spinful Landau level
in the absence of Rashba coupling. Then, in Sec. III B we
work out the much more interesting case of the lowest spin-
less Rashba-coupled Landau level discussed above. The weak
topological phases harboring Majorana zero modes at lattice
dislocations, which emerge near this plateau transition, are de-
scribed in Sec. IV. In Sec. V, we briefly discuss the effects of
disorder on the system, and we finally conclude in Sec. VI.

II. SETUP AND TECHNICAL INGREDIENTS

A. Abrikosov vortex lattice in the high-field limit

In the case of a clean system, the applied perpendicular
magnetic field induces a perfect Abrikosov vortex lattice in
the superconductor12. The spatial dependence of B(r), V (r),
and |∆(r)| in Eq. (1) will thus all have a periodicity given
by the resulting Bravais lattice. For technical simplicity, we
choose for ∆(r) the well-known solution of the Ginzburg-
Landau (GL) equations valid at the upper critical field Hc2.
In this limit, which is not inconsistent with the high-field limit
described in Sec. I, screening of the magnetic field by the su-
perconductor can be ignored at leading order in ∆12; one then
solves the “linearized Ginzburg-Landau” equation, i.e., the
single-particle Schrödinger equation for charge 2e particles in
a constant background magnetic field B0 = ∇×A0 (equiva-
lent to the applied external field). Working in a Landau gauge
A0 = Bxŷ, the resulting lowest-Landau-level vortex lattice
solution at Hc2 reads12

∆(r) =

∞∑
j=−∞

Cj e
ikjy− 1

2ξ2
(x−xj)2 , (4)

where kj ≡ 2πj
a (with a the intervortex separation), xj ≡

1
2kj`

2
B , and ξ ≡ `B√

2
with `B =

√
~c/eB the magnetic length

for the charge e electrons of H2DEG
47.

We will treat both square and triangular vortex lattices, each
with lattice constant a, on the same footing. Since each vortex
by definition carries magnetic flux equal to a superconducting
flux quantum Φ0 = hc/2e, we can relate the lattice constant
a to the magnetic length `B via the angle θ between primitive
translation vectors (see Fig. 1) as follows:

a2 sin θ =
hc

2eB
= π`2B , θ =

{
π/2 (square)

π/3 (triangular)
. (5)

For the coefficients Cj in Eq. (4) we have:

Cj = C0 e
−iπj2 cos θ =

{
C0 (square)

C0 e
−iπ2 j

2

(triangular)
, (6)

FIG. 1. Spatial dependence of the pairing potential, |∆(r)|, for the
square (left) and triangular (right) Abrikosov vortex lattice solutions
[see Eqs. (4) and (6)]. Also shown are the respective primitive trans-
lation vectors a1,2 (separated by the angle θ) and magnetic unit cells
(dashed rectangles).

where C0 ∈ R is an energy scale parameterizing the strength
of the proximity-induced superconducting pairing. In Fig. 1,
we show the resulting |∆(r)| for each respective vortex lat-
tice solution, as well as the corresponding primitive transla-
tion vectors and magnetic unit cells48. While this solution for
∆(r) is, within GL theory, valid exactly at Hc2, we do expect
our qualitative conclusions to hold more generally for fields
Hc1 � B . Hc2

49 since our analysis is largely symmetry-
based.

We remark that most treatments of Abrikosov vortex lat-
tices in related contexts (see, for example, Refs.14,15,50) typi-
cally work in the “London” limit appropriate for intermediate
flux densities,Hc1 . B � Hc2. In this regime, the supercon-
ducting coherence length ξ is much less than the intervortex
separation, i.e., ξ � a, so that |∆(r)| = const. except near the
vortex cores of radius ∼ ξ; furthermore, the magnetic field is
strongly inhomogeneous and is governed by a London-type
equation12,51. Our choice of working in the high-field limit
B . Hc2 with a ∼ ξ is advantageous from a technical stand-
point in that it affords us the luxury of working with an ex-
plicit form for ∆(r) in the presence of a constant magnetic
field. We later account for spatial inhomogeneities in the field
due to screening, B(r) = B0 + δB(r) with δB ∼ O(∆2), at
a phenomenological level by introducing Landau-level broad-
ening via a dispersion relation. By then casting the pairing in
a Landau-gauge-based magnetic Bloch basis adapted to ∆(r)
(see Sec. II C below) and subsequently performing Landau-
level projection, we circumvent the need for ingenious gauge
transformations14–16 (see also Ref.17).

B. Landau levels of a Rashba spin-orbit coupled 2DEG

We now review the Landau-level structure of the single-
particle eigenstates which diagonalize H2DEG [see Eq. (2)]
taking a constant perpendicular magnetic field and zero ex-
ternal potential, V (r) = 052–55. Working in the same Lan-
dau gauge (A0 = Bxŷ) which was used to obtain ∆(r)
and defining the standard Landau-level ladder operators a =
1√
2
[(x/`B − k`B) + ipx`B/~], with [a, a†] = 1 and k the
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FIG. 2. Landau-level energies εN± [Eq. (10)] as a function of re-
duced Rashba coupling gR [Eq. (8)] evaluated at zero Zeeman cou-
pling, gZ = 0. Levels labeled by N ≥ 1 are obtained by diag-
onalizing HN [Eq. (9)] in the subspace {|N, ↑〉 , |N − 1, ↓〉}; the
N = 0 level corresponds to the unpaired state |0, ↑〉 with energy
ε0 = ~ωc( 1

2
+ gZ).

plane-wave the momentum in the y direction, the single-
particle Hamiltonian for each k reads

H2DEG = ~ωc
[(
a†a+

1

2

)
+ gZσ

z + gR
(
aσ− + a†σ+

)]
(7)

where σ± = (σx ± iσy)/2 and

gR ≡
√

2αR
`Bωc

=
2m2c

~e

(
αR√
B

)
, gZ ≡

EZ
~ωc

=
g

4

m

me
(8)

parameterize the Rashba and Zeeman coupling strengths, re-
spectively, in units of the cyclotron gap (in the latter case,
we have used EZ = 1

2gµBB with g the Landé g-factor and
µB = e~/2mec the Bohr magneton).

The full single-particle Hilbert space is spanned by states
|N, σ〉 with (bare) Landau-level index N = 0, 1, . . . ,∞ and
spin projection σ = ↑, ↓. It is clear that H2DEG only couples
states within spaces {|N, ↑〉 , |N − 1, ↓〉}. In each such space,
given that N ≥ 1, we are left to contend with

HN = ~ωc
[
N + gR

√
Nσx + (1/2 + gZ)σz

]
, (9)

resulting in an energy spectrum given by

εN± = ~ωc
[
N ±

√
(1/2 + gZ)

2
+Ng2

R

]
. (10)

In addition, there is an unpaired level |0, ↑〉 whose energy
ε0 = ~ωc( 1

2 + gZ) is independent of the Rashba coupling. In
Fig. 10, we show the evolution of the spectrum as a function
of gR for gZ = 0. Note that gR → 0 corresponds either to the
limit αR → 0 or B →∞. Likewise, gR →∞ corresponds to
eitherαR →∞ orB → 0; in this limit, εN± ≈ ±~ωc gR

√
N ,

which is the Dirac spectrum.

C. Representing superconducting pairing in the Landau and
magnetic Bloch bases

With the eventual goal of diagonalizing H∆ [Eq. (3)] upon
projection into a given Landau level of H2DEG [Eq. (7)],
we aim to express the former in magnetic Bloch bases
adapted to the respective symmetries of the square and tri-
angular vortex lattice pairing potentials ∆(r). Our proce-
dure is completely general in that it applies to arbitrary Lan-
dau levels. As a first step, we transform the pairing op-
erator into the Landau basis without Rashba coupling. In
Landau gauge, the single-particle wave functions on the
infinite plane are φmk(r) = 〈r|m, k〉 = 1√

2π
φm(x −

k`2B)eiky with φm(x) ≡ 1√
`B
√
π2mm!

Hm(x/`B)e−
1
2 (x/`B)2

(Hm being Hermite polynomials). Writing H∆ =

∆̂ + H.c., we have ∆̂ ≡
∫
d2rΨ†↑(r)∆(r)Ψ†↓(r) =∑

m,n

∫
k,k′

Ψ†m↑(k) ∆mn(k, k′) Ψ†n↓(k
′), where

∫
k
≡
∫
dk
2π

and Ψ†mσ(k) are the creation operators for the φmk(r) orbitals.
The matrix elements in question are thus

∆mn(k, k′) ≡
∫
d2r φ∗mk(r)∆(r)φ∗nk′(r). (11)

Using the form of the pairing potential given in Eq. (4), we
evaluate this integral in Appendix A 1 and find

∆mn(k, k′) =
∑
j

Cj δ(k + k′ − kj)

×Amn
1√
2
e−

1
4 q

2`2BHm+n

(
q`B√

2

)
, (12)

where q ≡ k − k′ and

Amn ≡
(−1)m

2m+n
√
m!n!

. (13)

Of particular importance below are the matrix elements corre-
sponding to m = n = 0:

∆00(k, k′) =
∑
j

Cj δ(k + k′ − kj)
1√
2
e−

1
4 (k−k′)2`2B . (14)

We next transform from the Landau basis to the magnetic
Bloch basis. Let T1,2 be the magnetic translation operators
which translate by one primitive translation vector along di-
rections a1,2 (see Fig. 1). With one superconducting flux
quantum penetrating each unit cell of the vortex lattice (i.e.,
φ
φ0

= p
q = 1

2 with φ0 = hc/e = 2Φ0, so that each magnetic
unit cell contains two vortices, cf. Fig. 1), T1 and T2 do not
commute with each other but rather satisfy T1T2 = −T2T1.
We can thus construct a basis—the magnetic Bloch basis—
which simultaneously diagonalizes T1, T 2

2 , as well as the
Hamiltonian. This basis is constructed via a linear superposi-
tion of Landau orbitals |N, ky〉 as follows (see Appendix A 2
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for details):

|N,k〉 =

√
Q`2B
2π

∞∑
r=−∞

eikxky`
2
B
(
eik·a2T2

)2r |N, ky〉 (15)

=

√
Q`2B
2π

∞∑
r=−∞

eikx(ky+rQ)`2B−i2πr
2 cos θ |N, ky + rQ〉 ,

where we have defined the wave vector Q ≡ 2π
a and chosen

a normalization 〈m,k|n,k′〉 = δmnδ
(2)(k − k′); the choice

of phase factor is motivated by the Landau gauge center of
mass relation 〈x〉ky = ky`

2
B . Equation (15) encapsulates both

the square and triangular vortex lattices through the parameter
θ = π/2, π/3, respectively [cf. Eq. (5)]; note also that the
length scale Q`2B = 2a sin θ is lattice-type-dependent.

In this Bloch basis, with associated creation operators
Ψ†mσ(k), the lattice momentum is conserved and the pairing
operator takes the form

∆̂ =
∑
m,n

∫
k

Ψ†m↑(k)∆mn(k)Ψ†n↓(−k), (16)

where the integral is over the magnetic Brillouin zone (mBZ;
see Fig. 3):

∫
k
≡
∫

mBZ
d2k

(2π)2 . It suffices to first focus on
the pure LLL matrix elements ∆00(k). Applying the trans-
formation in Eq. (15) to the Landau basis matrix elements of
Eq. (14) yields

∆00(k) = ∆0

∑
r

e−ikx(2ky+rQ)`2B− 1
4 (2ky+rQ)2`2B+iπr2 cos θ.

(17)

Here, we have defined ∆0 ≡ C0/
√

2 and also assumed that
k ∈ mBZ. For evaluation, this expression can be cast in terms
of the Jacobi theta function,

ϑ3(z; τ) ≡
∞∑

n=−∞
eiπτn

2+2πniz, (18)

as follows:

∆00(k) = ∆0e
(kx−iky)2`2B−k

2
x`

2
B

× ϑ3

[
z = (kx − iky)`B

√
sin θ

π
; τ = eiθ

]
. (19)

In Appendix A 3, we show how one can obtain arbitrary ∆mn

by taking derivatives of ∆00. Specifically, we find

∆mn(k) = AmnHm+n

(
i∂kx
`B
√

2

)
∆00(k). (20)

Note that ∆00 is parity even so that ∆mn has parity (−1)m+n:

∆mn(−k) = (−1)m+n∆mn(k). (21)

These expressions for ∆mn(k) will be used below in Sec. III
to compute the phase diagram in the vicinity of a plateau tran-
sition of the superconductor-2DEG hybrid system.

III. PHASE DIAGRAM IN THE VICINITY OF A
QUANTUM HALL PLATEAU TRANSITION

We now envision sweeping the chemical potential µ56

through one of the low-lying Landau levels of H2DEG, the
energies of which are depicted in Fig. 2 (for gZ = 0 and no
Landau-level broadening). In the limit of large Landau-level
separation relative to the pairing gap, we can formally project
the problem into a single Rashba-coupled Landau level using
the machinery developed in Sec. II. Due to the presence of
the vortex lattice, the functions ∆mn(k) computed above ex-
hibit intricate nodal structures which govern the nature of the
plateau transition of interest.

A. Lowest spinful Landau level at gR = 0

As a warmup, we first address the nature of the plateau
transition upon sweeping the chemical potential through the
lowest spinful Landau level in the limit of vanishing Rasbha
coupling: gR = 0. Assuming ~ωc � ∆0, we can project the
Hamiltonian into this Landau level (consisting of states |0, ↑〉,
|0, ↓〉) leading to a BdG HamiltonianH =

∫
k

Ψ†kHBdG(k)Ψk

in the basis Ψ†k = [Ψ†0↑(k),Ψ0↓(−k)] with

HBdG(k) =

(
EZ + εk − µ ∆00(k)

∆∗00(k) EZ − εk + µ

)
. (22)

Here we have included a phenomenological broadening of the
Landau level εk to account for any periodic variation in B(r)
and V (r) that we have so far neglected (εk = 0 for a com-
pletely flat Landau level; see also Sec. III B below), and the
chemical potential is measured relative to ε0(gZ = 0) = ~ωc

2 .
The resulting energy spectrum reads

E(k) = EZ ±
√

(εk − µ)2 + |∆00(k)|2. (23)

In Fig. 3, we show plots of the gap function ∆00(k)
for the square and triangular vortex lattice pairing poten-
tials as derived in Sec. II. ∆00(k) contains Dirac nodes
located at momenta k∗ such that (kx − iky) 2

Q sin θ =[(
m+ 1

2

)
+
(
n+ 1

2

)
cos θ

]
+ i
(
n+ 1

2

)
sin θ withm,n ∈ Z;

for each lattice, there are two such nodal points in the mBZ
(see Fig. 3). The phase winding of both nodes in each case
have the same, say, “positive” chirality.

Further taking the limit EZ = 0 allows a simple under-
standing of the plateau transition from the viewpoint of a
Chern-number-changing transition involving the Dirac nodes
of ∆00(k). We denote the Chern number C as the topolog-
ical invariant which counts the net number of complex spin-
less fermions propagating along the edge of the sample57. For
EZ = 0, the system becomes gapless at (relative) chemical
potential µc = εk∗ . If the dispersion relation respects symme-
tries of the vortex lattice (specifically, magnetic translations
plus an additionalC2 symmetry for the triangular lattice case),
then the Fermi surface passes through both nodes simultane-
ously at which point the spectrum will reveal two Dirac cones.
In the spinful BdG basis of Eq. (22), each of the two Dirac
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FIG. 3. Pairing gap function ∆00(k) for the square (left column) and
triangular (right column) vortex lattices. In the top row, the amplitude
|∆00(k)| is plotted on the z axis, while the phase arg ∆00(k) is
represented by color. In the bottom panel, we show the locations of
the Dirac nodes of ∆00(k) in the magnetic Brillouin zone (mBZ).
For each lattice, the mBZ is rectangular with an M point located at
M(θ) =

(
Q

4 sin θ
, Q

2

)
.

cones will change the Chern number by one; therefore, the to-
tal change in Chern number is ∆C = 2. This is the expected
behavior: For µ < µc, the system is trivial with C = 0, while
for µ > µc, we have a topological superconducting analog of
two copies of integer quantum Hall with C = 2. Note that in
the presence of symmetry-breaking perturbations, the single
transition will generically be split into an extended C = 1 re-
gion; however, non-Abelian states with half-integer C cannot
appear.

B. Lowest Rashba-coupled Landau level for gR > 0

A much more interesting situation arises if we consider the
lowest Rashba-coupled “spinless” Landau level at finite gR.
The pertinent Landau-level states are those with energy

ε1− = ~ωc
[
1−

√
(1/2 + gZ)2 + g2

R

]
(24)

obtained by diagonalizing

H1 = ~ωc [1+ gRσ
x + (1/2 + gZ)σz] . (25)

[see Eqs. (10) and (9) with N = 1.]
We first briefly describe the procedure for projecting the

superconducting pairing into a given Rashba-coupled Landau

FIG. 4. Same as in Fig. 3, but now plotting the pairing gap func-
tion ∆10(k) which enters Eq. (27) [after being renormalized by
β(gR, gZ), cf. Fig. 5]. Dirac nodes with positive (negative) phase
winding are indicated in the bottom panels by blue circles (orange
crosses). As explained in Sec. IV, the gap function for the square
lattice case (left panel) gives rise to weak TSC phases.

level of H2DEG. If the solution to the eigenvalue problem of
HN in the subspace {|N, ↑〉 , |N − 1, ↓〉} readsHN |N,±〉 =
εN± |N,±〉, we can expand the eigenstates in the original
Landau basis as

|N,±〉 = UN±N↑ |N, ↑〉+ UN±N−1,↓ |N − 1, ↓〉 . (26)

The associated electron creation operators are thus Ψ†N± =

UN±N↑ Ψ†N↑ + UN±N−1,↑Ψ
†
N−1,↓, which upon inverting allows

us to express the “bare” electron operators Ψ†Nσ in terms of
these “dressed” operators Ψ†N±. After inserting the Ψ†Nσ into
Eq. (16), it is straightforward to project the pairing operator
into any one of the (dressed) Rashba-coupled Landau levels.
Since the pairing operator contains all Landau levels, this pro-
jection is of course appropriate only when the state in question
is sufficiently separated in energy from all other states.

If the level closest to the lowest Rashba-coupled Landau
level with energy ε1− is the unpaired level with energy ε0
(which occurs for sufficiently small gR in Fig. 2), project-
ing entirely into the former can be safely performed pro-
vided ε0 − ε1− = ~ωc

[√
(1/2 + gZ)2 + g2

R − 1
2

]
� ∆0

58.
For sufficiently strong Rashba coupling, this condition seems
quite reasonable given the high-field limit on which we have
based our entire analysis. After introducing a phenomeno-
logical broadening via ε1− → ε1− + εk and measuring
µ relative to ε1−, the projected BdG Hamiltonian is H =
1
2

∫
k

Ψ†kHBdG(k)Ψk, now in the spinless BdG basis Ψ†k =
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0 1 2
gR

0

1

2

g Z

∆̃0/∆0 = |β(gR, gZ)|

0

0.5

FIG. 5. Reduced pairing strength ∆̃0 in units of ∆0 ≡ C0/
√

2
[cf. Eq. (6)] as a function of gR and gZ . β(gR, gZ) is merely
the product of wave function amplitudes for the eigenstate of H1

with energy ε1−. Without spin-orbit coupling, the effective pairing
strength vanishes, i.e., β(gR = 0, gZ) = 0; while for modest gR,
∆̃0 ∼ ∆0, e.g., |β(gR = 1, gZ = 0)| ≈ 0.35.

[Ψ†1−(k),Ψ1−(−k)], with

HBdG(k) =

(
εk − µ ∆̃10(k)

∆̃∗10(k) −εk + µ

)
. (27)

The corresponding eigenenergies are

E(k) = ±
√

(εk − µ)2 + |∆̃10(k)|2. (28)

Here we have defined ∆̃10(k) ≡ β(gR, gZ)∆10(k) to be
the pairing function ∆10(k) renormalized by the product of
wave function amplitudes U1−

1↑ U
1−
0↓ ≡ β(gR, gZ) ∈ [− 1

2 , 0],
cf. Eq. (26). In what follows, we quote energies in units
of the reduced pairing strength ∆̃0 ≡ |β(gR, gZ)|∆0 (see
Fig. 5). Note that in the limit of vanishing Rashba cou-
pling, the Landau level is completely spin polarized giving
β(gR → 0, gZ) → 0; thus, as it very well should, the pro-
jected s-wave pairing function also vanishes in this limit:
∆̃10(k)→ 0.

The BdG Hamiltonian in Eq. (27) looks just like that of a
spinless p + ip superconductor2, but with a modified pairing
potential, ∆̃10(k), and dispersion, εk. The former however
takes on a nontrivial structure with multiple Dirac nodes of
both positive and negative chirality—see Fig. 4. In the bottom
panels of Fig. 4, we highlight the precise locations/chiralities
of these Dirac nodes: For the square lattice, there are four
(two) nodes with positive (negative) chirality, while for the
triangular lattice, there are six (four) nodes with positive (neg-
ative) chirality59.

Now, in this spinless BdG basis, when the Fermi surface
passes through a given Dirac node, the Chern number will
change by ∆C = ± 1

2 , depending on the chirality of the
node. (For reference, a single p + ip superconductor in the
continuum has a pairing function ∆(k) ∼ kx + iky with a
single Dirac node located at zero momentum, and so for a
quadratically dispersing band, the topological transition oc-
curs at µ = 02: The trivial phase for µ < 0 has Chern number
C = 0, while the non-Abelian topological phase for µ > 0
has Chern number |C| = 1

2
60, indicating the presence of a sin-

gle chiral Majorana edge mode and concomitant non-Abelian
Ising anyonic excitations.)

In the limit of a completely flat Landau level, εk = 0, the
chemical potential passes through all nodes of ∆̃10(k) simul-
taneously. Therefore, the system undergoes a Chern-number-
changing transition at µ = 0 (recall here µ is measured rela-
tive to the energy ε1− of the Landau level) with ∆C = 1 for
both lattice types61. For µ < 0, the ground state has C = 0,
while for µ > 0, the system is a topological superconductor
(TSC), albeit with C = 1 (this phase is adiabatically con-
nected to the ν = 1 integer quantum Hall state).

The C = 0 and C = 1 phases can natually be inter-
preted as the two possible states arising from a Majorana lat-
tice hopping model embedded in a host non-Abelian p + ip
superconductor14,15,19,22–24. The latter without a vortex lattice
has C = 1

2 , as would arise if we had kept the Zeeman en-
ergy but neglected the orbital effect of the magnetic field5–7,62.
Adding orbital effects, the resulting vortex lattice would trap a
lattice of Majorana modes, and the total Chern number would
include the contributionCχ from the band structure of the Ma-
joranas: C = 1

2 +Cχ. µ then tunes a Chern-number-changing
transition of the Majorana lattice: Cχ = − 1

2 → 1
2 . (As will

be discussed, the intermediate non-Abelian phase, Cχ = 0,
is forbidden by the magnetic algebra.) However, it appears
to us there is an obstruction to determining a microscopic
relation between our Landau-level-projected Bloch operators
Ψ†k = [Ψ†1−(k),Ψ1−(−k)] and the real-space orbitals of such
a Majorana lattice (e.g., the γm,n of Ref.63), precisely because
the two pictures differ by a non-Wannier-localizable C = 1

2
phase.

This scenario of a single, direct C = 0→ 1 plateau transi-
tion is, however, fine tuned: In general, the Landau level will
be broadened by spatially periodic variations in the magnetic
field and/or electric potential, so that the Fermi surface will
no longer pass through all nodes of ∆̃10(k) at once. We now
explore the phase diagram in the vicinity of the above plateau
transition in the presence of these more general perturbations.
We focus here on the case of the square vortex lattice, as it—
in contrast to the triangular lattice—gives rise to weak TSC
phases which we discuss in Sec. IV. For concreteness, we con-
sider the following dispersion for the Landau level:

εk = ε
(sym)
k + ε

(CDW)
k , (29)

where

ε
(sym)
k = −tb (cos 2kxa+ cos 2kya) , (30)

ε
(CDW)
k = VCDW cos kya. (31)

The first term, ε(sym)
k , represents a phenomenological broad-

ening of the Landau level which preserves all symmetries of
the vortex lattice, namely magnetic translations and spatial
rotations; the corresponding bandwidth is tb. The second
“charge density wave” (CDW) term, ε(CDW)

k , arises from a
perturbation of period 2a in the x direction which doubles the
unit cell of the original square lattice and dimerizes the Ma-
jorana modes bound to the two corresponding vortices. This
unidirectional superlattice perturbation, in contrast, explicitly
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<latexit sha1_base64="FKYh7iYpsw55+G4RBpIDsYrmJc4=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfsh3236tW8ucgq+AVUoVCj7371BgnLYq6QSWpM1/dSDHKqUTDJp5VeZnhK2ZgOedeiojE3QT5fdUrOrDMgUaLtU0jm7u+JnMbGTOLQdsYUR2a5NjP/q3UzjK6DXKg0Q67Y4qMokwQTMrubDITmDOXEAmVa2F0JG1FNGdp0KjYEf/nkVWhd1HzL95fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5kjnxXl3PhatJaeYOYY/cj5/AE/ejc0=</latexit><latexit sha1_base64="FKYh7iYpsw55+G4RBpIDsYrmJc4=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfsh3236tW8ucgq+AVUoVCj7371BgnLYq6QSWpM1/dSDHKqUTDJp5VeZnhK2ZgOedeiojE3QT5fdUrOrDMgUaLtU0jm7u+JnMbGTOLQdsYUR2a5NjP/q3UzjK6DXKg0Q67Y4qMokwQTMrubDITmDOXEAmVa2F0JG1FNGdp0KjYEf/nkVWhd1HzL95fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5kjnxXl3PhatJaeYOYY/cj5/AE/ejc0=</latexit><latexit sha1_base64="FKYh7iYpsw55+G4RBpIDsYrmJc4=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfsh3236tW8ucgq+AVUoVCj7371BgnLYq6QSWpM1/dSDHKqUTDJp5VeZnhK2ZgOedeiojE3QT5fdUrOrDMgUaLtU0jm7u+JnMbGTOLQdsYUR2a5NjP/q3UzjK6DXKg0Q67Y4qMokwQTMrubDITmDOXEAmVa2F0JG1FNGdp0KjYEf/nkVWhd1HzL95fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5kjnxXl3PhatJaeYOYY/cj5/AE/ejc0=</latexit><latexit sha1_base64="FKYh7iYpsw55+G4RBpIDsYrmJc4=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfsh3236tW8ucgq+AVUoVCj7371BgnLYq6QSWpM1/dSDHKqUTDJp5VeZnhK2ZgOedeiojE3QT5fdUrOrDMgUaLtU0jm7u+JnMbGTOLQdsYUR2a5NjP/q3UzjK6DXKg0Q67Y4qMokwQTMrubDITmDOXEAmVa2F0JG1FNGdp0KjYEf/nkVWhd1HzL95fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5kjnxXl3PhatJaeYOYY/cj5/AE/ejc0=</latexit>

µ
<latexit sha1_base64="8nh7aonYi8Ake4aYf7zdRbOipH0=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHivYD2qVk02wbmmSXZFYopT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMG6VSWPT9b6+wtr6xuVXcLu3s7u0flA+PmjbJDOMNlsjEtCNquRSaN1Cg5O3UcKoiyVvR6HZWbz1xY0WiH3Gc8lDRgRaxYBSd9dBVWa9c8av+XGQVghwqkKveK391+wnLFNfIJLW2E/gphhNqUDDJp6VuZnlK2YgOeMehporbcDJfdUrOnNMncWLc00jm7u+JCVXWjlXkOhXFoV2uzcz/ap0M4+twInSaIdds8VGcSYIJmd1N+sJwhnLsgDIj3K6EDamhDF06JRdCsHzyKjQvqoHj+8tK7SaPowgncArnEMAV1OAO6tAABgN4hld486T34r17H4vWgpfPHMMfeZ8/XWCN1g==</latexit><latexit sha1_base64="8nh7aonYi8Ake4aYf7zdRbOipH0=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHivYD2qVk02wbmmSXZFYopT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMG6VSWPT9b6+wtr6xuVXcLu3s7u0flA+PmjbJDOMNlsjEtCNquRSaN1Cg5O3UcKoiyVvR6HZWbz1xY0WiH3Gc8lDRgRaxYBSd9dBVWa9c8av+XGQVghwqkKveK391+wnLFNfIJLW2E/gphhNqUDDJp6VuZnlK2YgOeMehporbcDJfdUrOnNMncWLc00jm7u+JCVXWjlXkOhXFoV2uzcz/ap0M4+twInSaIdds8VGcSYIJmd1N+sJwhnLsgDIj3K6EDamhDF06JRdCsHzyKjQvqoHj+8tK7SaPowgncArnEMAV1OAO6tAABgN4hld486T34r17H4vWgpfPHMMfeZ8/XWCN1g==</latexit><latexit sha1_base64="8nh7aonYi8Ake4aYf7zdRbOipH0=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHivYD2qVk02wbmmSXZFYopT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMG6VSWPT9b6+wtr6xuVXcLu3s7u0flA+PmjbJDOMNlsjEtCNquRSaN1Cg5O3UcKoiyVvR6HZWbz1xY0WiH3Gc8lDRgRaxYBSd9dBVWa9c8av+XGQVghwqkKveK391+wnLFNfIJLW2E/gphhNqUDDJp6VuZnlK2YgOeMehporbcDJfdUrOnNMncWLc00jm7u+JCVXWjlXkOhXFoV2uzcz/ap0M4+twInSaIdds8VGcSYIJmd1N+sJwhnLsgDIj3K6EDamhDF06JRdCsHzyKjQvqoHj+8tK7SaPowgncArnEMAV1OAO6tAABgN4hld486T34r17H4vWgpfPHMMfeZ8/XWCN1g==</latexit><latexit sha1_base64="8nh7aonYi8Ake4aYf7zdRbOipH0=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHivYD2qVk02wbmmSXZFYopT/BiwdFvPqLvPlvTNs9aOsLgYd3ZsjMG6VSWPT9b6+wtr6xuVXcLu3s7u0flA+PmjbJDOMNlsjEtCNquRSaN1Cg5O3UcKoiyVvR6HZWbz1xY0WiH3Gc8lDRgRaxYBSd9dBVWa9c8av+XGQVghwqkKveK391+wnLFNfIJLW2E/gphhNqUDDJp6VuZnlK2YgOeMehporbcDJfdUrOnNMncWLc00jm7u+JCVXWjlXkOhXFoV2uzcz/ap0M4+twInSaIdds8VGcSYIJmd1N+sJwhnLsgDIj3K6EDamhDF06JRdCsHzyKjQvqoHj+8tK7SaPowgncArnEMAV1OAO6tAABgN4hld486T34r17H4vWgpfPHMMfeZ8/XWCN1g==</latexit>

C = 0
<latexit sha1_base64="PmA3GjG4m4zJL4vWwsLPvfepKtM=">AAAB7HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFHvxWMG0hTaUzXbTLt1swu5EKKG/wYsHRbz6g7z5b9y2OWj1hYWHd2bYmTdMpTDoul9OaW19Y3OrvF3Z2d3bP6geHrVNkmnGfZbIRHdDargUivsoUPJuqjmNQ8k74aQ5r3ceuTYiUQ84TXkQ05ESkWAUreU3yQ1xB9WaW3cXIn/BK6AGhVqD6md/mLAs5gqZpMb0PDfFIKcaBZN8VulnhqeUTeiI9ywqGnMT5ItlZ+TMOkMSJdo+hWTh/pzIaWzMNA5tZ0xxbFZrc/O/Wi/D6DrIhUoz5IotP4oySTAh88vJUGjOUE4tUKaF3ZWwMdWUoc2nYkPwVk/+C+2Lumf5/rLWuC3iKMMJnMI5eHAFDbiDFvjAQMATvMCro5xn5815X7aWnGLmGH7J+fgGMduNnA==</latexit><latexit sha1_base64="PmA3GjG4m4zJL4vWwsLPvfepKtM=">AAAB7HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFHvxWMG0hTaUzXbTLt1swu5EKKG/wYsHRbz6g7z5b9y2OWj1hYWHd2bYmTdMpTDoul9OaW19Y3OrvF3Z2d3bP6geHrVNkmnGfZbIRHdDargUivsoUPJuqjmNQ8k74aQ5r3ceuTYiUQ84TXkQ05ESkWAUreU3yQ1xB9WaW3cXIn/BK6AGhVqD6md/mLAs5gqZpMb0PDfFIKcaBZN8VulnhqeUTeiI9ywqGnMT5ItlZ+TMOkMSJdo+hWTh/pzIaWzMNA5tZ0xxbFZrc/O/Wi/D6DrIhUoz5IotP4oySTAh88vJUGjOUE4tUKaF3ZWwMdWUoc2nYkPwVk/+C+2Lumf5/rLWuC3iKMMJnMI5eHAFDbiDFvjAQMATvMCro5xn5815X7aWnGLmGH7J+fgGMduNnA==</latexit><latexit sha1_base64="PmA3GjG4m4zJL4vWwsLPvfepKtM=">AAAB7HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFHvxWMG0hTaUzXbTLt1swu5EKKG/wYsHRbz6g7z5b9y2OWj1hYWHd2bYmTdMpTDoul9OaW19Y3OrvF3Z2d3bP6geHrVNkmnGfZbIRHdDargUivsoUPJuqjmNQ8k74aQ5r3ceuTYiUQ84TXkQ05ESkWAUreU3yQ1xB9WaW3cXIn/BK6AGhVqD6md/mLAs5gqZpMb0PDfFIKcaBZN8VulnhqeUTeiI9ywqGnMT5ItlZ+TMOkMSJdo+hWTh/pzIaWzMNA5tZ0xxbFZrc/O/Wi/D6DrIhUoz5IotP4oySTAh88vJUGjOUE4tUKaF3ZWwMdWUoc2nYkPwVk/+C+2Lumf5/rLWuC3iKMMJnMI5eHAFDbiDFvjAQMATvMCro5xn5815X7aWnGLmGH7J+fgGMduNnA==</latexit><latexit sha1_base64="PmA3GjG4m4zJL4vWwsLPvfepKtM=">AAAB7HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFHvxWMG0hTaUzXbTLt1swu5EKKG/wYsHRbz6g7z5b9y2OWj1hYWHd2bYmTdMpTDoul9OaW19Y3OrvF3Z2d3bP6geHrVNkmnGfZbIRHdDargUivsoUPJuqjmNQ8k74aQ5r3ceuTYiUQ84TXkQ05ESkWAUreU3yQ1xB9WaW3cXIn/BK6AGhVqD6md/mLAs5gqZpMb0PDfFIKcaBZN8VulnhqeUTeiI9ywqGnMT5ItlZ+TMOkMSJdo+hWTh/pzIaWzMNA5tZ0xxbFZrc/O/Wi/D6DrIhUoz5IotP4oySTAh88vJUGjOUE4tUKaF3ZWwMdWUoc2nYkPwVk/+C+2Lumf5/rLWuC3iKMMJnMI5eHAFDbiDFvjAQMATvMCro5xn5815X7aWnGLmGH7J+fgGMduNnA==</latexit>

C = �1
<latexit sha1_base64="rAi5SwYKpZFShvnUiqParXIQzpY=">AAAB7XicbZDLSgMxFIZPvNZ6q7p0EyyCG8uMCLoRit24rGAv0A4lk2ba2EwyJBmhDH0HNy4Ucev7uPNtTNtZaOsPgY//nEPO+cNEcGM97xutrK6tb2wWtorbO7t7+6WDw6ZRqaasQZVQuh0SwwSXrGG5FaydaEbiULBWOKpN660npg1X8sGOExbEZCB5xCmxzmrW8A0+93ulslfxZsLL4OdQhlz1Xumr21c0jZm0VBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4lCRmJshm207wqXP6OFLaPWnxzP09kZHYmHEcus6Y2KFZrE3N/2qd1EbXQcZlklom6fyjKBXYKjw9Hfe5ZtSKsQNCNXe7YjokmlDrAiq6EPzFk5eheVHxHd9flqu3eRwFOIYTOAMfrqAKd1CHBlB4hGd4hTek0At6Rx/z1hWUzxzBH6HPH51sjdQ=</latexit><latexit sha1_base64="rAi5SwYKpZFShvnUiqParXIQzpY=">AAAB7XicbZDLSgMxFIZPvNZ6q7p0EyyCG8uMCLoRit24rGAv0A4lk2ba2EwyJBmhDH0HNy4Ucev7uPNtTNtZaOsPgY//nEPO+cNEcGM97xutrK6tb2wWtorbO7t7+6WDw6ZRqaasQZVQuh0SwwSXrGG5FaydaEbiULBWOKpN660npg1X8sGOExbEZCB5xCmxzmrW8A0+93ulslfxZsLL4OdQhlz1Xumr21c0jZm0VBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4lCRmJshm207wqXP6OFLaPWnxzP09kZHYmHEcus6Y2KFZrE3N/2qd1EbXQcZlklom6fyjKBXYKjw9Hfe5ZtSKsQNCNXe7YjokmlDrAiq6EPzFk5eheVHxHd9flqu3eRwFOIYTOAMfrqAKd1CHBlB4hGd4hTek0At6Rx/z1hWUzxzBH6HPH51sjdQ=</latexit><latexit sha1_base64="rAi5SwYKpZFShvnUiqParXIQzpY=">AAAB7XicbZDLSgMxFIZPvNZ6q7p0EyyCG8uMCLoRit24rGAv0A4lk2ba2EwyJBmhDH0HNy4Ucev7uPNtTNtZaOsPgY//nEPO+cNEcGM97xutrK6tb2wWtorbO7t7+6WDw6ZRqaasQZVQuh0SwwSXrGG5FaydaEbiULBWOKpN660npg1X8sGOExbEZCB5xCmxzmrW8A0+93ulslfxZsLL4OdQhlz1Xumr21c0jZm0VBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4lCRmJshm207wqXP6OFLaPWnxzP09kZHYmHEcus6Y2KFZrE3N/2qd1EbXQcZlklom6fyjKBXYKjw9Hfe5ZtSKsQNCNXe7YjokmlDrAiq6EPzFk5eheVHxHd9flqu3eRwFOIYTOAMfrqAKd1CHBlB4hGd4hTek0At6Rx/z1hWUzxzBH6HPH51sjdQ=</latexit><latexit sha1_base64="rAi5SwYKpZFShvnUiqParXIQzpY=">AAAB7XicbZDLSgMxFIZPvNZ6q7p0EyyCG8uMCLoRit24rGAv0A4lk2ba2EwyJBmhDH0HNy4Ucev7uPNtTNtZaOsPgY//nEPO+cNEcGM97xutrK6tb2wWtorbO7t7+6WDw6ZRqaasQZVQuh0SwwSXrGG5FaydaEbiULBWOKpN660npg1X8sGOExbEZCB5xCmxzmrW8A0+93ulslfxZsLL4OdQhlz1Xumr21c0jZm0VBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4lCRmJshm207wqXP6OFLaPWnxzP09kZHYmHEcus6Y2KFZrE3N/2qd1EbXQcZlklom6fyjKBXYKjw9Hfe5ZtSKsQNCNXe7YjokmlDrAiq6EPzFk5eheVHxHd9flqu3eRwFOIYTOAMfrqAKd1CHBlB4hGd4hTek0At6Rx/z1hWUzxzBH6HPH51sjdQ=</latexit>

C = 2
<latexit sha1_base64="s0U067THJm3Po+wDFa1ztsD6o9M=">AAAB7HicbZBNSwMxEIZn61etX1WPXoJF8FR2i6AXodiLxwpuW2iXkk2zbWg2uySzQin9DV48KOLVH+TNf2Pa7kFbXwg8vDNDZt4wlcKg6347hY3Nre2d4m5pb//g8Kh8fNIySaYZ91kiE90JqeFSKO6jQMk7qeY0DiVvh+PGvN5+4tqIRD3iJOVBTIdKRIJRtJbfILek1i9X3Kq7EFkHL4cK5Gr2y1+9QcKymCtkkhrT9dwUgynVKJjks1IvMzylbEyHvGtR0ZibYLpYdkYurDMgUaLtU0gW7u+JKY2NmcSh7YwpjsxqbW7+V+tmGN0EU6HSDLliy4+iTBJMyPxyMhCaM5QTC5RpYXclbEQ1ZWjzKdkQvNWT16FVq3qWH64q9bs8jiKcwTlcggfXUId7aIIPDAQ8wyu8Ocp5cd6dj2VrwclnTuGPnM8fNOONng==</latexit><latexit sha1_base64="s0U067THJm3Po+wDFa1ztsD6o9M=">AAAB7HicbZBNSwMxEIZn61etX1WPXoJF8FR2i6AXodiLxwpuW2iXkk2zbWg2uySzQin9DV48KOLVH+TNf2Pa7kFbXwg8vDNDZt4wlcKg6347hY3Nre2d4m5pb//g8Kh8fNIySaYZ91kiE90JqeFSKO6jQMk7qeY0DiVvh+PGvN5+4tqIRD3iJOVBTIdKRIJRtJbfILek1i9X3Kq7EFkHL4cK5Gr2y1+9QcKymCtkkhrT9dwUgynVKJjks1IvMzylbEyHvGtR0ZibYLpYdkYurDMgUaLtU0gW7u+JKY2NmcSh7YwpjsxqbW7+V+tmGN0EU6HSDLliy4+iTBJMyPxyMhCaM5QTC5RpYXclbEQ1ZWjzKdkQvNWT16FVq3qWH64q9bs8jiKcwTlcggfXUId7aIIPDAQ8wyu8Ocp5cd6dj2VrwclnTuGPnM8fNOONng==</latexit><latexit sha1_base64="s0U067THJm3Po+wDFa1ztsD6o9M=">AAAB7HicbZBNSwMxEIZn61etX1WPXoJF8FR2i6AXodiLxwpuW2iXkk2zbWg2uySzQin9DV48KOLVH+TNf2Pa7kFbXwg8vDNDZt4wlcKg6347hY3Nre2d4m5pb//g8Kh8fNIySaYZ91kiE90JqeFSKO6jQMk7qeY0DiVvh+PGvN5+4tqIRD3iJOVBTIdKRIJRtJbfILek1i9X3Kq7EFkHL4cK5Gr2y1+9QcKymCtkkhrT9dwUgynVKJjks1IvMzylbEyHvGtR0ZibYLpYdkYurDMgUaLtU0gW7u+JKY2NmcSh7YwpjsxqbW7+V+tmGN0EU6HSDLliy4+iTBJMyPxyMhCaM5QTC5RpYXclbEQ1ZWjzKdkQvNWT16FVq3qWH64q9bs8jiKcwTlcggfXUId7aIIPDAQ8wyu8Ocp5cd6dj2VrwclnTuGPnM8fNOONng==</latexit><latexit sha1_base64="s0U067THJm3Po+wDFa1ztsD6o9M=">AAAB7HicbZBNSwMxEIZn61etX1WPXoJF8FR2i6AXodiLxwpuW2iXkk2zbWg2uySzQin9DV48KOLVH+TNf2Pa7kFbXwg8vDNDZt4wlcKg6347hY3Nre2d4m5pb//g8Kh8fNIySaYZ91kiE90JqeFSKO6jQMk7qeY0DiVvh+PGvN5+4tqIRD3iJOVBTIdKRIJRtJbfILek1i9X3Kq7EFkHL4cK5Gr2y1+9QcKymCtkkhrT9dwUgynVKJjks1IvMzylbEyHvGtR0ZibYLpYdkYurDMgUaLtU0gW7u+JKY2NmcSh7YwpjsxqbW7+V+tmGN0EU6HSDLliy4+iTBJMyPxyMhCaM5QTC5RpYXclbEQ1ZWjzKdkQvNWT16FVq3qWH64q9bs8jiKcwTlcggfXUId7aIIPDAQ8wyu8Ocp5cd6dj2VrwclnTuGPnM8fNOONng==</latexit>

C = 1
<latexit sha1_base64="V9SWXsOXA/WISffxNCWviplGwpw=">AAAB7HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFHvxWMG0hTaUzXbTLt1swu5EKKG/wYsHRbz6g7z5b9y2OWj1hYWHd2bYmTdMpTDoul9OaW19Y3OrvF3Z2d3bP6geHrVNkmnGfZbIRHdDargUivsoUPJuqjmNQ8k74aQ5r3ceuTYiUQ84TXkQ05ESkWAUreU3yQ3xBtWaW3cXIn/BK6AGhVqD6md/mLAs5gqZpMb0PDfFIKcaBZN8VulnhqeUTeiI9ywqGnMT5ItlZ+TMOkMSJdo+hWTh/pzIaWzMNA5tZ0xxbFZrc/O/Wi/D6DrIhUoz5IotP4oySTAh88vJUGjOUE4tUKaF3ZWwMdWUoc2nYkPwVk/+C+2Lumf5/rLWuC3iKMMJnMI5eHAFDbiDFvjAQMATvMCro5xn5815X7aWnGLmGH7J+fgGM1+NnQ==</latexit><latexit sha1_base64="V9SWXsOXA/WISffxNCWviplGwpw=">AAAB7HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFHvxWMG0hTaUzXbTLt1swu5EKKG/wYsHRbz6g7z5b9y2OWj1hYWHd2bYmTdMpTDoul9OaW19Y3OrvF3Z2d3bP6geHrVNkmnGfZbIRHdDargUivsoUPJuqjmNQ8k74aQ5r3ceuTYiUQ84TXkQ05ESkWAUreU3yQ3xBtWaW3cXIn/BK6AGhVqD6md/mLAs5gqZpMb0PDfFIKcaBZN8VulnhqeUTeiI9ywqGnMT5ItlZ+TMOkMSJdo+hWTh/pzIaWzMNA5tZ0xxbFZrc/O/Wi/D6DrIhUoz5IotP4oySTAh88vJUGjOUE4tUKaF3ZWwMdWUoc2nYkPwVk/+C+2Lumf5/rLWuC3iKMMJnMI5eHAFDbiDFvjAQMATvMCro5xn5815X7aWnGLmGH7J+fgGM1+NnQ==</latexit><latexit sha1_base64="V9SWXsOXA/WISffxNCWviplGwpw=">AAAB7HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFHvxWMG0hTaUzXbTLt1swu5EKKG/wYsHRbz6g7z5b9y2OWj1hYWHd2bYmTdMpTDoul9OaW19Y3OrvF3Z2d3bP6geHrVNkmnGfZbIRHdDargUivsoUPJuqjmNQ8k74aQ5r3ceuTYiUQ84TXkQ05ESkWAUreU3yQ3xBtWaW3cXIn/BK6AGhVqD6md/mLAs5gqZpMb0PDfFIKcaBZN8VulnhqeUTeiI9ywqGnMT5ItlZ+TMOkMSJdo+hWTh/pzIaWzMNA5tZ0xxbFZrc/O/Wi/D6DrIhUoz5IotP4oySTAh88vJUGjOUE4tUKaF3ZWwMdWUoc2nYkPwVk/+C+2Lumf5/rLWuC3iKMMJnMI5eHAFDbiDFvjAQMATvMCro5xn5815X7aWnGLmGH7J+fgGM1+NnQ==</latexit><latexit sha1_base64="V9SWXsOXA/WISffxNCWviplGwpw=">AAAB7HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFHvxWMG0hTaUzXbTLt1swu5EKKG/wYsHRbz6g7z5b9y2OWj1hYWHd2bYmTdMpTDoul9OaW19Y3OrvF3Z2d3bP6geHrVNkmnGfZbIRHdDargUivsoUPJuqjmNQ8k74aQ5r3ceuTYiUQ84TXkQ05ESkWAUreU3yQ3xBtWaW3cXIn/BK6AGhVqD6md/mLAs5gqZpMb0PDfFIKcaBZN8VulnhqeUTeiI9ywqGnMT5ItlZ+TMOkMSJdo+hWTh/pzIaWzMNA5tZ0xxbFZrc/O/Wi/D6DrIhUoz5IotP4oySTAh88vJUGjOUE4tUKaF3ZWwMdWUoc2nYkPwVk/+C+2Lumf5/rLWuC3iKMMJnMI5eHAFDbiDFvjAQMATvMCro5xn5815X7aWnGLmGH7J+fgGM1+NnQ==</latexit>

(weak TSC)

(weak TSC)

FIG. 6. Phase diagram in the vicinity of the plateau transition for the
square vortex lattice encountered upon sweeping the chemical poten-
tial µ through the lowest Rashba-coupled Landau level of energy ε1−
(µ is measured relative to ε1−). Here, tb is the bandwidth of the Lan-
dau level [see Eq. (30)], and the magnetic-symmetry-violating term
VCDW = 0. For a completely flat Landau level (tb = 0), there is
a direct Chern number C = 0 → 1 transition at µ = 0, while at
finite tb the transition splits into intermediate C = −1 or 2 states.
All phases consist of Majorana lattices; in particular, the C = −1, 2
states are weak TSCs (see Sec. IV).

breaks the magnetic translation symmetry (as well as the C4

rotational symmetry).
As can be gleaned by inspecting the bottom-left panel of

Fig. 4, all positive-winding nodes (blue circles) of ∆̃10(k)
can be related by some combination of the magnetic trans-
lations as well as C4 rotations. (For the former, recall that
since T1T2 = −T2T1 and T1 |k〉 = e−ikya |k〉, we can
identify T2 |k〉 ∼ |k + (0, Q2 )〉.) Similarly, the magnetic al-
gebra alone relates the two negative-winding nodes (orange
crosses). Therefore—since T1, T2, and C4 all commute
with the Hamiltonian—if these symmetries are preserved, the
Fermi surface must pass through all four of the positive-
winding nodes simultaneously thereby changing the Chern
number by ∆C = 1

2 ·4 = 2, and similarly for the two negative-
winding nodes with ∆C = − 1

2 ·2 = −1. In general, however,
these two transitions need no longer happen at the same chem-
ical potential.

One such example of a symmetry-preserving perturbation
is the Landau-level broadening term ε

(sym)
k introduced above.

The phase diagram in the space tb vs µ (at VCDW = 0) is
shown in Fig. 6. For tb > 0, the Chern number sequence upon
sweeping µ through the Landau level goesC = 0→ −1→ 1,
while for tb < 0, it is C = 0 → 2 → 1 (negative-winding
nodes get swept through first in the former case, positive-
winding ones first in the latter case). Interestingly, the inter-
mediate integer Chern C = −1, 2 phases are actually weak
TSCs, as we elaborate below in Sec. IV.

Figure 7 shows the total density of states (DOS) per mag-
netic unit cell,

DOS(E) =

∫
k

δ[E − E(k)], (32)

[with E(k) given by Eq. (28)] versus chemical potential at
tb = 0.15∆̃0 > 0. The first transition (with ∆C = −1)
upon increasing µ occurs at µc1 = −2tb = −0.3∆̃0, while
the second transition (with ∆C = 2) occurs at µc2 = 0. At
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FIG. 7. Total density of states, DOS(E), of the Landau-level pro-
jected BdG Hamiltonian, Eq. (27), versus chemical potential µ at
fixed Landau-level bandwidth tb = 0.15∆̃0 > 0 with VCDW = 0.
The black arrows indicate the critical points µc1 = −2tb and
µc2 = 0.

each transition (see arrows in Fig. 7), there is a clear Dirac
signature in the DOS at E = 0. Because we have projected
to a single Landau level, there is one state per magnetic unit
cell (area 2a2), or equivalently, 1

2 states (i.e. a Majorana) per
vortex (area a2):

∫
dEDOS(E) = 1

2
1
a2 . Unfortunately, such

total number of states per unit area is not directly accessible
with STM, which measures differential conductance, and thus
the density of states only up to a nonuniversal prefactor. Still,
as discussed in Sec. I, the Landau-level limit precludes other
low-energy states in the vortex cores, which should be verifi-
able experimentally.

We make the following observation: Because the magnetic
symmetry relates each node to a partner of the same chirality,
its presence prohibits the realization of non-Abelian topolog-
ical states with half-integer Chern number. In other words, to
obtain bona fide non-Abelian topological states, it is thus nec-
essary to introduce perturbations which violate the magnetic
translation symmetry (see also Ref.17 as well as Ref.18, where
in the latter case the considered pairing potential itself breaks
the magnetic symmetry). For illustrative purposes and for use
in Sec. V, we consider as a concrete example the unit-cell-
doubling CDW term in Eq. (31). The obtained phase diagram
as a function of VCDW and µ at fixed tb is shown in Fig. 8
(the two panels correspond to positive and negative tb). Now,
indeed the individual phase transitions from Fig. 6 split into
multiple transitions involving half-integer ∆C and thus inter-
mediate extended non-Abelian states with C = ± 1

2 ,
3
2 . The

extent of these phases, as well as their excitation gaps, are
both set by the strength of the perturbation VCDW. Here, the
phase boundaries were deduced by analyzing E(k) [Eq. (28)]
evaluated at the nodal points of ∆̃10(k) as functions of µ,
tb, and VCDW; the critical values of µ for which the disper-
sion vanishes evolve linearly with respect to tb and VCDW for
the simple cosine model potentials, thereby producing linear
phase boundaries. Note also that the phase diagram in Fig. 8 is
symmetric upon taking VCDW ↔ −VCDW, although the half-
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FIG. 8. Phase diagram near the plateau transition for the square lat-
tice, now including finite VCDW. Since this term breaks the magnetic
translation symmetry [see Eq. (31)], the transitions in Fig. 6 get split
into multiple transitions involving intermediate non-Abelian states
with half-integer C, as labeled in the diagram. The left and right
panels correspond to different signs of tb, and the phase diagram is
symmetric under VCDW ↔ −VCDW.

integer states related by flipping the sign of VCDW differ by
a weak topological index described in Sec. IV. We will return
to this point in Sec. V when discussing the effects of disorder
on this Majorana lattice system.

While in the above we have chosen to explicitly work out
the case of the square vortex lattice, similar considerations
apply equally well to the case of the triangular lattice17. As
is clear from the right panels of Fig. 4, half-integer Chern
phases are again precluded provided that magnetic transla-
tions, as well as an additional C2 (i.e., k ↔ −k) symmetry,
are preserved. One important difference, however, is that now
intermediate integer Chern phases are no longer weak TSCs
(see Sec. IV below). Finally, we note that the above proce-
dure also carries over to plateau transitions involving higher
Landau levels, with the only difference being the gap function
input to Eq. (27). For example, for the Landau level at energy
ε1+, one would work again with ∆10(k), so in that case the
above results apply directly. In general, for levels at εN±, one
needs to contend with the gap function ∆N,N−1(k).

IV. INTERMEDIATE INTEGER CHERN PHASES AS
WEAK TOPOLOGICAL SUPERCONDUCTORS

Weak 2D topological phases arise when an array of 1D
topological phases are “stacked” side-by-side along either
columns or rows. More formally, for a system with a Bra-
vais lattice generated by T1,2, we can associate weak indices
ν1,2 according to whether 1D topological phase νi is stacked
along direction Ti64,65. In our context, the relevant 1D phase
is the 1D Kitaev chain, which has a Majorana edge state1. The
Kitaev chain is the nontrivial νi = −1 element of a νi ∈ Z2

classification in the absence of further protecting symmetries.
The stacking picture makes evident two physical signatures
of a weak TSC. First, because each constituent 1D chain car-
ries a localized edge state, the boundary of the 2D system will

FIG. 9. Unpaired Majorana zero mode χdisloc occurring at the core
of a lattice dislocation in the intermediate C = −1, 2 phases of the
square vortex lattice (see Figs. 6 and 8). The model pairing potential
|∆(r)| shown here is merely meant to be illustrative and, in contrast
to Fig. 1, is not an accurate rendition of the actual form, Eq. (4), used
throughout.

host an array of edge states which hybridize into a 1D gapless
mode. This gapless mode is stable so long as the translation
symmetry of the boundary is preserved. Second, if a disloca-
tion is introduced in the bulk, the core of the dislocation will
carry the same zero mode as the edge of the 1D topological
phase. In the context of our system, if the realized phase is
a weak TSC then a dislocation in the superconducting vor-
tex lattice will carry an unpaired non-Abelian Majorana zero
mode, as shown in Fig. 9. We now show that the intermediate-
µ phases of the square lattice (C = −1 or C = 2 in Fig. 6) is
such a weak TSC.

To compute the weak invariant64, consider wrapping the
model onto a circumference Ly cylinder. According to the
stacking picture, viewed as a 1D system the cylinder is equiv-
alent to Ly copies of a 1D superconductor with index ν1 each;
the resulting 1D invariant is ν1D = ν

Ly
1 . So we can take

Ly = 1 and thereby read off ν1 by computing the 1D strong
invariant. Fixing Ly = 1 amounts to projecting onto ky = 0,
so the resulting 1D Hamiltonian is

H1D(k) = HBdG(kx = k, ky = 0) (33)

where HBdG(k) is defined in Eq. (27). The corresponding
1D dispersion is εk = εk=(k,0), cf. Eq. (29). To com-
pute ν1D, we then appeal to Kitaev’s weak-pairing criteria
for an inversion-symmetric TSC1. In the absence of pair-
ing, let ν(k) = (−1)Nocc(k) denote the parity of the num-
ber of bands below the Fermi surface at momentum k; then
ν1D = ν(0)ν( π2a ) (corresponding to the Γ and X points, re-
spectively, in the bottom-left panel of Fig. 4). For µ� εk, all
states are empty and so ν1D = 1 (trivial); likewise for µ� εk,
all states are full and ν1D = 1. But for min εk < µ < max εk,
one of k = 0, π2a will be empty while the other is occupied
[which depends on the shape of the dispersion, e.g., the sign
of tb in Eq. (30)]. In this intermediate regime, ν1D = −1
and so the 2D system is a weak TSC with ν1 = ν2 = −1
(ν2 is identical from C4 symmetry). The transition points are
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of course precisely where the Fermi surface passes through
k = 0, π2a and the superconductor becomes gapless due to the
nodes in the pairing ∆̃10(k) at Γ and X .

The triangular lattice, on the other hand, does not have an
intermediate weak TSC, because the weak invariant is incom-
patible with the C3 point-group symmetry. Nonetheless, the
identification of such weak TSC phases for the square lattice,
as demonstrated above, further bolsters our argument for the
presence of a Majorana lattice in this system.

V. EFFECTS OF DISORDER

Finally, we comment at a qualitative (and rather specula-
tive) level on the effects of disorder, which will naturally arise
from imperfections in the vortex lattice. The analogous prob-
lem has been addressed previously in Refs.22,23 in the context
of disordered Majorana lattice hopping models (on the trian-
gular lattice). In the region of the phase diagram with a large
gap (e.g., µ large or small), the disorder will have little im-
pact. However, as µ approaches the C-changing transition,
the width of the disorder will become comparable to the gap.
We argue that disorder will broaden the transition into a re-
gion of “thermal Majorana metal”22,23 so long as the magnetic
translation symmetry is preserved on average. Consider, for
example, the critical point at µc1 = −2tb in the left panel of
Fig. 8. Local variations in µ and VCDW will nucleate domains
of the four competing phases. If all are present, there is a gap-
less intermediate phase because their boundaries carry a chiral
Majorana mode, resulting in a gapless network model.

A more delicate possibility, however, is the presence of
an intermediate regime in which only regions of C = − 1

2
appear (for example, if the variance in VCDW is large com-
pared to that in µ). More precisely, there are four such
C = − 1

2 phases corresponding to ε(CDW)
k=Q ≶ 0 at wavevectors

Q = (0, πa ), (πa , 0), which are related by T1, T2, and C4. Ac-
cordingly, we can label them with a Z4 index ψ = eiθ follow-
ing the order ε(CDW)

k=(0,π/a) > 0, ε
(CDW)
k=(π/a,0) > 0, ε

(CDW)
k=(0,π/a) <

0, ε
(CDW)
k=(π/a,0) < 0. While all are strong C = − 1

2 TSCs, in-
spection of their band structures verifies that the four phases
differ by weak indices. Specifically, the two phases related by
T1 (ψ = ±1) differ by ν2, and the two phases related by T2

(ψ = ±i) differ by ν1. Thus, for example, a domain wall be-
tween ψ = ±1 which locally preserves the T2 symmetry will
have a low-energy mode.

In the Majorana lattice picture, the situation is directly anal-
ogous to the C4-related columnar valence-bond-solid (VBS)
dimerization patterns of a spin- 1

2 antiferromagnet, with a
nearest-neighbor Majorana “pairing” (e.g., iγx,yγx,y+1) play-
ing the role of a singlet. Just as vortices in a VBS pattern
carry an unpaired S = 1

2 moment66, here we expect vortices
in ψ will carry a Majorana mode. Thus, disorder will nucle-
ate a dilute random lattice of Majorana modes which will hy-
bridize into the Majorana version of the random singlet phase.
Similar physics was investigated recently in the spin- 1

2 case67,
where a power-law spectrum of low-energy modes was pre-
dicted to arise from a disordered version of the Lieb-Schultz-

Mattis theorem. It would be interesting to extend their quan-
titative predictions to the present Majorana case68 since such
power laws might be observed in STM spectroscopy, although
interacting phases may intervene instead.

VI. DISCUSSION

The quantum Hall effect and superconductivity have tradi-
tionally been thought to be largely incompatible: the strong
magnetic fields required for the former will generally kill
the latter. However, for near-term superconductor-2DEG het-
erostructure devices, the marriage is not entirely unreasonable
if one can choose a 2DEG with a sufficiently small effec-
tive mass and a superconductor with a sufficiently large upper
critical field—then one can in principle attain large cyclotron
gaps without completely destroying proximity-induced super-
conducting pairing. We have analyzed a physically reason-
able limit of this scenario in which an s-wave superconduc-
tor at fields near its upper critical field Hc2—and exhibit-
ing the corresponding Abrikosov vortex lattice—is proximity
coupled to a strongly spin-orbit coupled 2DEG in the quan-
tum Hall regime. The Landau-level wave functions are na-
tively endowed with both spin components by the spin-orbit
coupling, thereby allowing s-wave superconductivity to give
rise to effective spinless superconductivity when projected
into a single Landau level. This is somewhat analogous to
the usual Zeeman-based recipe5–7,62 of engineering spinless
p-wave superconductivity2 with the exact same ingredients;
however, now orbital effects of the magnetic field dictate the
physics, while the Zeeman effect plays essentially no role.

All realized states involve a lattice of Majorana modes. In
fact, in this single Landau-level limit of the problem, sim-
ple state counting alone tells us that each vortex must nec-
essarily harbor a Majorana mode. However, the symmetries
of the underlying vortex lattice preclude the presence of any
non-Abelian states with half-integer Chern number C (an ad-
ditional vortex would thus not bind a Majorana zero mode).
While additional perturbations such as a superlattice modu-
lation could in principle give rise to bona fide non-Abelian
states (see Fig. 8 and Refs.17,18), for topological quantum
computing purposes, perhaps the most intriguing application
of our results involves the weak topological superconducting
states emerging near the plateau transition for the square vor-
tex lattice at intermediate µ. Can one experimentally pattern a
square vortex lattice with intentionally introduced lattice dis-
locations as a means of engineering the 1D Kitaev model site-
by-site69? Tuning the system to the weak TSC phase then
gives bona fide Majorana zero modes at the cores of the dis-
locations. Even in the absence of such applications though,
our proposal for engineering a Majorana lattice deep in the
quantum Hall limit seems experimentally appealing.

Finally, adding strong electron-electron interactions to this
problem leads to a number of interesting open questions.
For example, will the inclusion of interactions spontaneously
split the integer ∆C transitions into intermediate non-Abelian
states with half-integer C? Furthermore, the presence of
strong interactions in the 2DEG should be a promising means
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for engineering interacting Majorana lattice models, as have
begun to be discussed only recently63,70–75. More generally, it
is very interesting to contemplate what kinds of ground states
could emerge upon adding proximity-induced superconduct-
ing pairing to interacting fractional quantum Hall states. The
near-term experimental setup proposed herein gives new mo-
tivation for attacking this challenging problem, both theoreti-
cally and numerically.
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Appendix A: Calculational details pertinent to Sec. II

1. Evaluating Landau gauge pairing matrix elements
∆mn(k, k′) [Eq. (12)]

After performing the integration over y in Eq. (11), we need
to evaluate an integral of the form (setting `B = 1)

Gmn(q) =
1√

π2m+nm!n!

∫
dxHm(x− q/2)Hn(x+ q/2)

× e− 1
2 (x−q/2)2− 1

2 (x+q/2)2−x2

.
(A1)

First, note the generating function expansion

e2tx−t2 =
∑
n

Hn(x)
tn

n!
, ∂nt e

2tx−t2 |t=0 = Hn(x). (A2)

Thus, it will be sufficient to evaluate

O(t1, t2) =

∫
dx e2t1(x−q/2)−t21−2t2(x+q/2)−t22

× e− 1
2 (x−q/2)2− 1

2 (x+q/2)2−x2

(A3)

=
√
π/2 e−

1
4 q

2− 1
2 (t2−t1)2+(t2−t1)q (A4)

=
√
π/2 e−

1
4 q

2 ∑
j

Hj(q/
√

2)
(t2 − t1)j
√

2
j
j!

, (A5)

from which we obtain

Gmn(q) =
1√

π2m+nm!n!
∂mt1 ∂

n
t2O(0, 0) (A6)

= Amn
1√
2
e−

1
4 q

2

Hm+n(q/
√

2). (A7)

Reinserting `B gives the summand appearing in Eq. (12).
2. Details of the magnetic Bloch basis

As shown in Fig. 1, we take for primitive translation vectors

a1 = a(0, 1), (A8)
a2 = a(sin θ, cos θ), (A9)

where a is the intervortex separation [related to the magnetic
length via Eq. (5)]. For “π flux” per unit cell ( φφ0

= p
q = 1

2 ),
the corresponding magnetic translation operators are taken to
act on the Landau gauge orbitals |ky〉 (suppressing Landau-
level index) as follows:

T1 |ky〉 = e−ikya |ky〉 , (A10)

T2 |ky〉 =

{
|ky +Q/2〉 (square)

|ky +Q/2〉 e−iπ(ky/Q+1/4) (triangular)
,

(A11)

where recall Q ≡ 2π
a . T1 and T2 do not commute but rather

satisfy the magnetic algebra T1T2 = −T2T1; thus, the mag-
netic Bloch basis—as constructed in Eq. (15)—is that which
simultaneously diagonalizes T1 and T 2

2 . To obtain the second
line of Eq. (15), we have used

(T2)2r |ky〉 =

{
|ky + rQ〉 (square)

|ky + rQ〉 e−iπ(2rky/Q+r2) (triangular)
,

(A12)

which along with the relation Q`2B = 2a sin θ allows both
lattice types to be treated at once. Note that the additional ky-
independent phase for the triangular lattice case in Eq. (A11)
is chosen so as to leave the resulting phase in Eq. (A12) void
of terms proportional to r.

3. Evaluating magnetic Bloch basis pairing matrix elements
∆mn(k) for arbitary m,n [Eq. (20)]

The full expression analogous to Eq. (17) for arbitrarym,n
is
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∆mn(k) = ∆0Amn
∑
r

e−ikx(2ky+rQ)`2B− 1
4 (2ky+rQ)2`2B+iπ cos θ r2Hm+n

[
(2ky + rQ)`B√

2

]
. (A13)

To evaluate this, we delay dealing with the Hermite polynomial by using the simple identity, valid for any nth order polynomial,
Hn(x) = Hn(∂t)e

tx|t=0:

Hm+n

[
(2ky + rQ)`B√

2

]
= Hm+n(∂t)e

t(2ky+rQ)`B/
√

2 (A14)

= Hm+n

(
i∂t

`B
√

2

)
e−it(2ky+rQ)`2B . (A15)

Equation (20) can then be obtained after a few lines of algebra:

∆mn(k) = ∆0AmnHm+n

(
i∂t

`B
√

2

)∑
r

e−ikx(2ky+rQ)`2B− 1
4 (2ky+rQ)2`2B+iπ cos θ r2e−it(2ky+rQ)`2B (A16)

= ∆0AmnHm+n

(
i∂t

`B
√

2

)∑
r

e−i(kx+t)(2ky+rQ)`2B− 1
4 (2ky+rQ)2`2B+iπ cos θ r2 (A17)

= AmnHm+n

(
i∂kx
`B
√

2

)
∆00(k), (A18)

where in the last line we have used the expression for ∆00(k) in Eq. (17). We can thus obtain arbitrary ∆mn(k) by simply
taking appropriate derivatives of ∆00(k).
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