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We present detailed benchmark ground-state calculations of the one- and two-dimensional Hub-
bard model utilizing the cluster extensions of the rotationally invariant slave-boson (RISB) mean-
field theory and the density matrix embedding theory (DMET). Our analysis shows that the overall
accuracy and the performance of these two methods are very similar. Furthermore, we propose
a unified computational framework that allows us to implement both of these techniques on the
same footing. This provides us with a new line of interpretation and paves the ways for developing
systematically new generalizations of these complementary approaches.

I. INTRODUCTION

Understanding the physics of strongly correlated sys-
tems is still one of the most challenging problems in
condensed-matter physics. In this area, quantum em-
bedding approaches have proven to be invaluable tools
for studying their electronic structure. In particular, dy-
namical mean-field theory (DMFT)1, density matrix em-
bedding theory (DMET)2 and their respective cluster ex-
tensions have been successfully applied to many interact-
ing model Hamiltonians as well as to real materials1–16.
The common basic idea underlying these schemes is to
map the fully interacting lattice to a self-consistently de-
termined impurity problem, for which a fragment of the
original lattice, termed cluster, is treated as a correlated
impurity coupled to a self-consistently determined non-
interacting bath. The accuracy can be systematically
improved by increasing the reference cluster size towards
the thermodynamic limit (TL) and the size of the Hilbert
space representing the non-interacting bath.

Another important theoretical method widely used
for studying strongly correlated electron systems is the
rotationally-invariant slave-boson theory (RISB)17–19,
which is equivalent to the multi-orbital Gutzwiller ap-
proximation (GA) at the mean-field level20–22 and
generally provides predictions almost as accurate as
DMFT19,23–29 (especially for the ground-state proper-
ties) while being much less computationally demanding.
Even if the foundation of the RISB mean-field theory is
based on seemingly distinct ideas, it turns out that also
this framework can be viewed as a quantum-embedding
theory. In fact, it has been recently shown27 that the
RISB equations can be cast, similarly to DMET, in
terms of ground-state calculations of auxiliary impurity
systems named “embedding Hamiltonians”, whose non-
interacting bath is determined self-consistently based on
the variational principle. Subsequently, it has been also
shown30 that DMET can be formally recovered from the
RISB equation derived in Ref. 19 by setting to unity the

variational parameters encoding the mass renormaliza-
tion weights.

RISB and DMET are especially useful for studying the
systems in which the computational cost of DMFT be-
comes prohibitively large, e.g., due to the exponentially
growing Hilbert space and/or because of the sign problem
in the quantum Monte Carlo impurity solvers31. This
usually happens for the 5f systems, where the crystal-
field effects, spin-orbit-coupling interaction and lattice
relaxation have to be taken into account simultaneously,
and for the large-scale cluster simulations of the Hub-
bard model. Many challenging problems, such as the
equations of state of elemental actinides and the phase
diagram of the high Tc superconductors, rely on such ap-
proximations to gain a qualitative or even quantitative
understanding14,15,27. Hence, it is of important interest
to characterize the respective accuracy and performance
of these two approaches.

Here we perform comparative RISB and DMET bench-
mark calculations on the 1D and 2D Hubbard model
against the available exact solution and the DMET values
extrapolated to the TL.13,15 Our numerical results indi-
cate that the accuracy and the performance of these two
methods are very similar for all the quantities studied,
e.g., the total energy and local observables. Small differ-
ences between the two methods are found only for small
cluster sizes, where RISB provides slightly more accurate
predictions for the local observables (such as occupancy,
double occupancy and local moments) as well as for the
metal-insulator transition in the 2D Hubbard model.

Finally, we derive an alternative numerical imple-
mentation of DMET featuring a modified RISB algo-
rithm with mass renormalization weights set to unity30,
which provides us with a new line of interpretation
and paves the way for developing new generalizations
and synergistic combination of these approaches (e.g.,
to systems at finite temperature and/or with inter-
site electron-electron interactions or electron-phonon
interactions16,32–36). This implementation makes it
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also possible to pattern an interface between density
functional theory (DFT) and DMET after previous
DFT+RISB and DFT+DMFT works3,27.

The paper is organized as follows: The Hubbard model
is introduced in Sec. II. The RISB and DMET formalism
and algorithmic structure are outlined in Sec. III. In
Section IV are presented our benchmark simulation of
the Hubbard model in 1D and 2D. Finally, Sec. V is
devoted to concluding remarks.

II. MODEL

Let us consider the 1D and 2D Hubbard model with
the nearest neighbor hopping,

H = t
∑
σ,〈i,j〉

c†iσcjσ +
∑
i

Uni↑ni↓, (1)

where t is the hopping amplitude, i and j are the indices
for the lattice sites, and the σ is the spin label, and U

is the local Coulomb interaction. c
(†)
iσ is the annihilation

(creation) operator for the electron at site i and spin σ.
The cluster extensions of RISB and DMET are both

implemented by tiling the original lattice with clusters
of increasing size4. Thus, the degrees of freedom of the
single-band Hubbard model belonging to each cluster are
treated as a single impurity, i.e., as if they were elemen-
tary (orbital) degrees of freedom of a multi-orbital Hub-
bard Hamiltonian represented as follows:

H =
∑
〈ij〉,α,β

t̃αβij c
†
iαcjβ +

∑
i

Hloc[{ciα, c†iα}], (2)

where the indices i, j = 1, ...,N/Nc denote the enlarged
unit cell, N is the total number of atoms and Nc is
the number of atoms within each cluster and the labels
α, β = 1, ..., 2Nc indicate the cluster spin and atom de-
grees of freedom.

In order to utilize the RISB and DMET theory, it is
useful to define the inter-cluster hopping matrix as fol-
lows:

t̃αβij =
{

tαβij if i 6= j
0 otherwise

. (3)

The terms corresponding to the intra-cluster hopping
parameters tiα,iβ are included within the operator

Hloc[{ciα, c†iα}], along with the chemical potential and
the local Coulomb interaction.

In our calculations, the translational invariance is ex-
ploited only partially, i.e., we represent the hopping ma-
trix defined as:

ε̃αβk =
∑
i

e−ik·ri t̃αβi0 , (4)

where the momentum k belongs to the reduced Brillouin
zone (RBZ) of the enlarged unit cell containing the clus-
ter. The resulting Hamiltonian in the momentum space
is represented as follows:

H =
∑

k∈RBZ,α,β

ε̃αβk c†kαckβ +
∑
i

Hloc[{ciα, c†iα}], (5)

where Hloc[{ciα,c†iα}] contains all the local one- and two-
body terms.

III. METHODS

As shown in Refs. 2, 27, and 30, the RISB and DMET
ground-state solution of the Hubbard Hamiltonian [Eq.
(5)] is obtained by solving recursively two auxiliary sys-
tems: (i) a non-interacting system termed “effective-
medium” or “quasiparticle Hamiltonian” and (ii) an in-
teracting embedding impurity problem called “embedding
Hamiltonian.”

The structure of the effective-medium Hamiltonian is
the following:

Heff =
∑

k∈RBZ

[
Raαε̃

αβ
k R†βb + λab

]
f†kafkb, (6)

where ε̃k was defined in Eq. (4), R and λ are 2Nc × 2Nc
complex matrices (the factor 2 arises from the spin de-
grees of freedom) and λ is Hermitian. As we are going
to show in Sec. III A, in RISB both R and λ are deter-
mined self-consistently19 and their converged entries are
connected to the self-energy Σ(ω) as follows:18,37

Σ(ω) = −ω 1−R†R
R†R

+
1

R
λ

1

R†
. (7)

On the other hand, in DMET only the entries of λ (called
u in the DMET literature) can vary while R = 1, i.e.,
the self-energy consist exclusively of the part representing
the on-site energy shifts:2

Σ(ω) = λ, (8)

see Sec. III A.
The embedding Hamiltonian describes a multi-orbital

dimer molecule containing a correlated impurity c
(†)
α and

a non-correlated bath f
(†)
a . It reads:

Hemb = Hloc

[
{c†α, cα}

]
+
∑
αa

(
Daαc†αfa + H.c.

)
+
∑
ab

λcabfbf
†
a , (9)

where Hloc is defined in Eq. (2), D and λc are 2Nc×2Nc
complex matrices and λc is Hermitian. The entries of
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both matrices are determined self-consistently2,19,27,30,
see Secs. III A and III B. The size of the Hilbert space of
Hemb grows exponentially with the cluster size as 24Nc .
After convergence, the reduced density matrix of the im-
purity degrees of freedom (which is formally obtained
by tracing out the bath degrees of freedom) provides
the local reduced density matrix of the original phys-
ical system. In other words, the expectation value of
any local operator Ô

[
{c†α, cα}

]
, such as the double occu-

pancy or the local stagger magnetic moment, can be cal-
culated from the ground state wavefunction |Φ〉 of Hemb

as follows:27

〈O〉 = 〈Φ|Ô
[
{c†α, cα}

]
|Φ〉 . (10)

A. Rotationally invariant slave-boson mean-field
theory

The RISB theory is, in principle, an exact reformu-
lation of the Hubbard system constructed by introduc-
ing auxiliary “slave” bosons coupled to “quasiparticle”
fermionic degrees of freedom.18,19,27 As shown in Ref. 27,
the RISB mean-field theory is entirely encoded in the
following Lagrange function:

L[|Φ〉, R, λ,∆p;Ec,D, λc] =

− 1

β

Nc
N

∑
k∈RBZ

∑
iωn

Tr log
[
iωn1−Raαε̃αβk R†βb − λab

]
eiωn0+

+
∑
i

Tr
[
Ec(〈Φ|Φ〉 − 1) + 〈Φ|Hemb|Φ〉

]
−
∑
iab

(
λab + λcab

)
∆p
ab −

∑
icaα

(
DaαRcα + c.c

)[
∆p(1−∆p)

]1/2
ca
, (11)

where: R and λ are the renormalization coefficients of the
quasiparticle Hamiltonian introduced in Eq. (6), Hemb,
D and λc are the parameters of the embedding Hamilto-
nian introduced in Eq. (9), |Φ〉 is the ground state wave-
function of Hemb, Ec is a Lagrange multiplier enforc-
ing the normalization of |Φ〉 and ∆p is the local density
matrix of Heff (see Eq. (12)). Note that Eq. 11 can

be equivalently derived from the Gutzwiller approxima-
tion, which is a variational method in the limit of infinite
dimension20–22,38.

The self-consistency conditions determining the pa-
rameters of Hemb and Heff, see Eqs. (6) and (9), are ob-
tained by extremizing the mean-field Lagrange function
with respect to |Φ〉, R, λ, ∆p, Ec, D, and λc, which
leads to the following equations:

∆p
ab =

Nc
N

∑
k∈RBZ

[
fT (Rε̃kR

† + λ)
]
ba
, (12)

[
∆p(1−∆p)

]1/2
ac
Dcα =

Nc
N

∑
k∈RBZ

[
ε̃kR

†fT (Rε̃kR
† + λ)

]
αa
, (13)

∑
cbα

∂

∂dps

[
∆p(1−∆p)

] 1
2

cb

[
D
]
bα

[
R
]
cα

+ c.c +
[
l + lc

]
s

= 0, (14)

Hemb|Φ〉 = Ec|Φ〉, (15)[
F (1)

]
ab
≡ 〈Φ|fbf†a |Φ〉 −∆p

ab = 0, (16)[
F (2)

]
αa
≡ 〈Φ|c†αfa|Φ〉 −Rcα

[
∆p(1−∆p)

] 1
2

ca
= 0. (17)

where the symbol fT stands for the Fermi function of a
single-particle matrix at temperature T and we utilized
the following matrix parameterizations:

∆p =
∑
s

dps
ths, (18)

λc =
∑
s

lcshs, (19)
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Figure 1. Schematic representation of the RISB and DMET
algorithm.

λ =
∑
s

lshs, (20)

R =
∑
s

rshs, (21)

where the set of matrices hs are an orthonormal basis
of the space of Hermitian matrices (with respect to the
canonical trace inner product). The parameters dps , l

c
s

and ls are real, while rs is complex. The RISB saddle-
point equations can be solved as follows:

1. Starting with an initial guess of R and λ, compute
∆p from Eq. (12).

2. From ∆p, calculate D from Eq. (13).

3. With D and ∆p, compute λc from Eq. (14).

4. From D and λc, construct Hemb from Eq. (9) and
calculate its ground state |Φ〉.

5. From |Φ〉 and ∆p, calculate Eqs. (16) and (17) and
utilize quasi-Newton methods to estimate the new
R and λ.

6. The convergence is achieved if Eqs. (16) and (17)
are satisfied. Otherwise, continue the root search-
ing with the new R and λ.

This structure is summarized schematically in Fig. 1.
Note that the Lagrange function [Eq. 11] evaluated for

the converged parameters reduces to:

E =
∑

k∈RBZ

∑
ab

[
Rε̃kR

†fT (Rε̃kR
† + λ)

]
ab

+
∑
i

〈Φ|Hi,loc

[
c†iα, ciα

]
|Φ〉, (22)

which is the total energy of the system.19 It can be
straightforwardly verified that, as long as Eqs. (12)-(17)
are satisfied, the total energy can be equivalently ex-
pressed also as follows:

E =
∑
i

〈Φ|
∑
αa

(Dαac
†
αfa) +Hi,loc[{c†αcα}]|Φ〉 . (23)

B. Density matrix embedding theory

The self-consistency conditions determining the pa-
rameters of Hemb and Heff in DMET can be formulated
as follows:30

∆p
ab =

Nc
N

∑
k∈RBZ

[
fT (ε̃k + λ)

]
ba
, (24)

[
∆p(1−∆p)

]1/2
ac
Dcα =

Nc
N

∑
k∈RBZ

[
ε̃kfT (ε̃k + λ)

]
αa
, (25)

∑
cb

∂

∂dps

[
∆p(1−∆p)

] 1
2

cb

[
D
]
bc

+ c.c +
[
l + lc

]
s

= 0, (26)

Hemb|Φ〉 = Ec|Φ〉, (27)[
F (1)

]
ab
≡ 〈Φ|fbf†a |Φ〉 −∆p

ab, (28)[
F (2)

]
αa
≡ 〈Φ|c†αfa|Φ〉 −

[
∆p(1−∆p)

] 1
2

αa
, (29)[

F (3)
]
αβ
≡ 〈Φ|c†αcβ |Φ〉 −∆p

αβ , (30)

λmin := argmin
λ

(
‖F (1)‖F + ‖F (2)‖F + ‖F (3)‖F

)
, (31)

where the symbol ‖...‖F in Eq. 31 indicates the Frobenius norm. Note that Eqs. (24)-(29) are equivalent to Eqs.
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(12)-(17) with R = 1 and the constraint Eq. (30) was
originally considered also in the GA (equivalent to RISB),
but later was found to be unnecessary39.

The DMET equations can be solved as follows, see
Fig. 1:

1. Starting with an initial guess of λ, calculate ∆p

using Eq. (24).

2. Compute D and λc from Eq. (25) and Eq. (26)
and construct the Hemb.

3. Compute the ground state |Φ〉 and the correspond-
ing single-particle density matrix, i.e.: 〈Φ|fbf†a |Φ〉,
〈Φ|c†αfa|Φ〉 and 〈Φ|c†αcβ |Φ〉.

4. From 〈Φ|fbf†a |Φ〉, 〈Φ|c†αfa|Φ〉 and 〈Φ|c†αcβ |Φ〉, de-
termine the entries of λmin that minimize Eq. 3140

(note that such a minimum is generally larger than
zero in interacting systems2,30).

5. Iterate until λmin is converged.

A quasi-Newton method41 is usually utilized to accelerate
the convergence of DMET iteration. Once convergence
is reached, the DMET total energy is computed from Eq.
(23).2

IV. RESULTS

Here, we benchmark RISB and DMET with cluster
sizes Nc = 1, 2, 4, 6 on the Hubbard model with the
nearest neighbor hopping in 1D and 2D (on a square
lattice). We use Lanczos exact-diagonalization (ED) as
embedding solver. The DMET calculations below were
all performed utilizing the implementation outlined in
Sec. III B, featuring a modified RISB algorithm with
mass renormalization weights set to unity. Our results
are compared to the DMET data obtained in Refs. 13
and 15.

A. 1D Hubbard model

In Fig. 2 the DMET and RISB behaviors of the ener-
gies as a function of the occupation n for U = 1t, 4t, 8t
with Nc = 1, 2, 4 are shown in comparison with the ex-
act Bethe Ansatz (BA)42 solutions. Overall, the DMET
and RISB approximations to the total energies are very
similar for all cluster sizes, and both techniques repro-
duce the BA results with less than 2% error already
for Nc = 4. The only difference observed is that the
DMET energies are slightly more accurate at half-filling,
while the RISB energies are more accurate away from
half-filling.

1.0

0.8

0.6

0.4

0.2

0.0

E
/t

(a) DMET

U= 1t

U= 4t

U= 8t

0.0 0.2 0.4 0.6 0.8 1.0
n

1.0

0.8

0.6

0.4

0.2

0.0

E
/t

(b) RISB

U= 1t

U= 4t

U= 8t
BA

Nc=1

Nc=2

Nc=4

Figure 2. Energy E/t for (a) DMET and (b) RISB as a
function of occupancy n in the 1D Hubbard model with the
nearest neighbor hopping at U = 1t, 4t, 8t for cluster size
Nc = 1, 2, 4, indicated by the blue solid, green dashed, and
red dotted lines, respectively. The solid black lines denote the
results from BA.
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Figure 3. Occupancy n for (a) DMET and (b) RISB as a
function of chemical potential µ in the 1D Hubbard model
with the nearest neighbor hopping at U = 1t, 4t, 8t for cluster
size Nc = 1, 2, 4, indicated by the blue solid, green dashed,
and red dotted lines, respectively. The solid black lines denote
the results from BA.
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Nc = 1 Nc = 2 Nc = 4 Nc = 6 TL
Method DMET RISB DMET RISB DMET RISB DMET RISB BA
U/t = 4 -0.5506 -0.4696 -0.5515 -0.5290 -0.5598 -0.5540 -0.5639 -0.5616 -0.5737
U/t = 8 -0.2366 -0.0586 -0.2914 -0.2756 -0.3074 -0.3098 -0.3141 -0.3164 -0.3275

Table I. Energy E/t for DMET and RISB in the PM phase of the 1D Hubbard model at half-filled n = 1 with the nearest
neighbor hopping for Nc = 1, 2, 4, 6 at U = 4t, 8t. The values in the last column are the BA solutions.

Nc = 1 Nc = 2 Nc = 4 Nc = 6 TL
Method DMET RISB DMET RISB DMET RISB DMET RISB BA
U/t = 4 -0.8399 -0.7764 -0.8203 -0.7893 -0.8131 -0.8002 -0.8115 -0.8032 -0.8061
U/t = 8 -0.7610 -0.6188 -0.7041 -0.6390 -0.6817 -0.6531 -0.6785 -0.6606 -0.6635

Table II. Energy E/t for DMET and RISB in the PM phase of the 1D Hubbard model at n = 0.75 with the nearest neighbor
hopping for Nc = 1, 2, 4, 6 at U = 4t, 8t. The values in the last column are the BA solutions.

In Figure 3 are shown the behaviors of the DMET and
RISB occupancies n as a function of the chemical poten-
tial µ for U = 1t, 4t, 8t with Nc = 1, 2, 4, in com-
parison with the BA. The Mott insulating phase is char-
acterized by a constant n with compressibility dn

dµ = 0.

At the Mott insulator-metal transition point µc the com-
pressibility dn

dµ diverges43. In the metallic phase, n de-

creases monotonically by decreasing µ. We observe that
both DMET and RISB capture the correct behavior for
Nc ≥ 2. Moreover, RISB yields more accurate n and µc
at Nc = 2. However, at Nc = 4 both DMET and RISB
predicts very precise occupancy and µc with less than 5%
error.

0.00
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0.20

0.25

〈 n ↑n
↓
〉

(a) DMET

0 2 4 6 8 10
U/t
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0.10

0.15

0.20

0.25

〈 n ↑n
↓
〉

(b) RISB

BA

Nc=1

Nc=2

Nc=4

Figure 4. Double occupancy 〈n↑n↓〉 for (a) DMET and (b)
RISB as a function of interaction U in the half-filled 1D
Hubbard with the nearest neighbor hopping for cluster size
Nc = 1, 2, 4, indicated by the blue solid, green dashed, and
red dotted lines, respectively. The solid black lines denote the
results from BA.

In Fig. 4 are shown the behaviors of the DMET and
RISB double occupancies 〈n↑n↓〉 with Nc = 1, 2, 4, in
comparison with the BA. At Nc = 1 the DMET solutions
are always metallic for every U ; consequently, the double
occupancy deviates from the BA results at large U . On
the other hand in RISB, the double occupancy vanishes
at the critical point Uc ∼ 10t, i.e., the charge fluctuations
are not captured in the Mott phase44. For Nc = 2 both
methods predict behaviors of 〈n↑n↓〉 that closely follow
the BA values, although RISB is slightly more accurate.
At Nc = 4, both methods are very accurate with less
than 7% error compared to BA.
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E
/t

BA

(a) U=4t n=1
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(b) U=8t n=1
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(c) U=4t n=0.75
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1/Nc
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E
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(d) U=8t n=0.75

DMET PM
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Zheng et. al AFM

Figure 5. Energy E/t as a function of inverse cluster size 1/Nc

in the 1D Hubbard model with the nearest neighbor hopping
for (a) U = 4t and n = 1, (b) U = 8t and n = 1, (c) U = 4t
and n = 0.75, and (d) U = 8t and n = 0.75. The blue circles
correspond to the DMET values in our simulation. The red
squares are our RISB results. The green triangles are the data
from Zheng et al. with antiferromagnetic order13. The black
solid lines are the results from BA.
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We also analyze the convergence of the energy as a
function of cluster size at filling n = 1 and n = 0.75 with
U = 4t and U = 8t for DMET and RISB as shown in Fig.
5. DMET gives a better estimation for the ground-state
energy at half-filling, while RISB yields more accurate
energies at n = 0.75. However, as the cluster size grows,
both methods converge to the BA value rapidly. Note
that DMET is known to be non-variational hence its en-
ergy can be lower than the exact value2,11.

Our results are consistent with the data extracted from
Ref. 13, where an antiferromagnetic ground state was
assumed (in 1D the ground state is non-magnetic). The
numerical values of the energies are summarized in Tabs.
I and II.

B. 2D Hubbard model

Here we investigate the behaviors of the RISB and
DMET solutions of the 2D Hubbard model on a square
lattice with cluster sizes Nc = 1, 2, 4, 6, see Fig. 6.
These geometries are chosen so that the antiferromag-
netic (AFM) ground state can be reproduced for Nc ≥ 2
and that the paramagnetic (PM) and the AFM energetics
can be compared on the same footing.

(a) (b)

(c) (d)

Figure 6. Clusters with sizes (a) Nc = 1, (b) Nc = 2, (c)
Nc = 4, and (d) Nc = 6, used in our simulation. The red
arrows indicate the lattice vectors. The blue lines delimit the
unit cells.

8.6 8.8 9.0 9.2 9.4
0.40
0.39
0.38
0.37
0.36
0.35
0.34
0.33
0.32

Figure 7. Energy E/t for (a) DMET and (b) RISB as a func-
tion of interaction U in the half-filled 2D Hubbard model on
a square lattice with the nearest neighbor hopping at cluster
size, Nc = 1, 2, 4, indicated by the blue, green, and red line,
respectively. The solid, dashed, and dotted lines represent
the PM metal, PM insulator, and AFM solutions, respec-
tively. The critical interaction Uc is indicated by the verticle
line. The black solid circles indicate the results in the TL
from Ref. 13 and 15. The grey arrow indicates the Uc from
Cellular-DMFT with Nc = 4 in Ref. 45. The inset of (a)
shows the magnified plot around Uc.

In Fig. 7 are shown the behaviors of the DMET and
RISB total energy E as a function of the Hubbard in-
teraction U at half-filling n = 1 in the PM metal, PM
insulating and AFM insulating phase, with cluster sizes
Nc = 1, 2, 4.

At Nc = 1, DMET does not capture the Mott metal-
insulator transition (MIT), i.e., it predicts a metallic so-
lution for every value of U. On the other hand, RISB
predicts a MIT at Uc = 12.6t, where the total energy
vanishes44. For Nc ≥ 2, both methods capture a MIT,
as indicated by the crossing of the PM metal and PM
insulator energies. Moreover, the energies of the AFM
solutions are lower than the PM solutions, consistently
with previous studies2.

It is also interesting to see how Uc varies with the clus-
ter size. We observe that in DMET Uc is almost inde-
pendent of the cluster size, e.g., Uc = 8.95t for Nc = 2
and Uc = 9.65t for Nc = 4. On the other hand, in RISB
Uc decreases from 12.6t for Nc = 1 to 6.76t for Nc = 4
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Nc = 2 Nc = 4 Nc = 6 Nc = 413 TL15 TL15

Method DMET RISB DMET RISB DMET RISB DMET DMET AFQMC
U/t = 2 -1.1804 -1.1673 -1.1790 -1.1693 -1.1790 -1.1704 -1.179 -1.1764 -1.1763
U/t = 4 -0.8681 -0.8428 -0.8654 -0.8459 -0.8658 -0.8472 -0.863 -0.8604 -0.8603
U/t = 6 -0.6541 -0.6306 -0.6545 -0.6362 -0.6553 -0.6376 -0.652 -0.6562 -0.6568
U/t = 8 -0.5115 -0.4942 -0.5155 -0.5023 -0.5157 -0.5100 - -0.5234 -0.5247
U/t = 12 -0.3497 -0.3400 -0.3566 -0.3487 -0.3563 -0.3565 - -0.3685 -0.3693

Table III. Energy E/t for DMET and RISB in the AFM phase of the 2D Hubbard model at half-filled n = 1 with the nearest
neighbor hopping for Nc = 2, 4, 6 at U = 2t, 4t, 6t, 8t, 12t. The values in the last three columns are the DMET solutions at
Nc = 4 in Ref. 13 and the DMET and the AFQMC solutions in the TL in Ref. 15.

Nc = 2 Nc = 4 Nc = 6 TL15 TL15

Method DMET RISB DMET RISB DMET RISB DMET AFQMC
U/t = 2 -1.312 -1.300 -1.309 -1.302 -1.310 -1.302 -1.306 -1.306
U/t = 4 -1.129 -1.083 -1.122 -1.086 -1.120 -1.091 -1.108 -1.110
U/t = 6 -1.015 -0.927 -1.002 -0.938 -1.002 -0.942 -0.977 -
U/t = 8 -0.950 -0.823 -0.932 -0.838 -0.923 -0.846 -0.880 -

Table IV. Energy E/t for DMET and RISB in the PM phase of the 2D Hubbard model at n = 0.8 with the nearest neighbor
hopping for Nc = 2, 4, 6 at U = 2t, 4t, 6t, 8t. The values in the last two columns are the DMET and the AFQMC solutions
in the TL in Ref. 15.

0.0

0.5

1.0

1.5

2.0

n

(a) DMET PM

8 6 4 2 0 2 4 6 8
µ/t

0.0

0.5

1.0

1.5

2.0

〈 n ↑n
↓
〉

(b) RISB PM

Nc=2

Nc=4

Figure 8. Occupancy n as a function of chemical potential µ
in the PM phase of the 2D Hubbard model on a square lattice
with the nearest neighbor hopping at U = 12t for cluster sizes
Nc = 2 and 4, indicated by the green dashed and red dotted
line, respectively.

(which is very close to the CDMFT value Uc = 6.05t for
the same cluster size45).

Figure 8 shows the DMET and RISB occupancy n as
a function of chemical potential µ at U = 12t with Nc =
2, 4. We observe that in DMET the difference in the
occupancy and the µc between Nc = 2 and Nc = 4 is
large, while in RISB, the discrepancy between the two

cluster sizes is small (less than 3% error). We conclude
that RISB provides a slightly better description of the
PM solutions.

The ground-state energy predicted from DMET and
RISB are shown in Tabs. III and IV for n = 1 AFM
phase and n = 0.8 PM phase, respectively, with various
U and Nc. Our numerical results are compared to the
DMET solutions at Nc = 4 in Ref. 13 and the auxiliary-
field quantum Monte Carlo (AFQMC) and the DMET
solutions in the TL in Refs. 15, which are also shown as
black solid dots in Fig. 7 at n = 1.

We observe that at half-filling n = 1 DMET gives over-
all more accurate predictions to the ground-state energies
in the AFM phase compared to the TL energies15 (see
Tab. III and Fig. 7). However, the discrepancy between
the two methods is already small at Nc = 4 (less than 3%
error). Away from half-filling (n = 0.8), the ground-state
energies predicted by RISB and DMET are equally accu-
rate compared to the energies in the TL15. Our DMET
results are consistent with previous studies13,15.

The double occupancies 〈n↑n↓〉 at n = 1 in the AFM
phase with different Nc and U are shown in Tab. V.
DMET yields slightly more precise double occupancy at
Nc = 2 for smaller U compared to the TL results15. How-
ever, for Nc = 4, both methods obtained very accurate
double occupancy close to the TL (less than 3% error).

In Tab. VI we present the prediction of the AFM mag-
netic moment m for both methods with different cluster
sizes Nc and U . Overall, we found the DMET and RISB
magnetic moment are very similar, with RISB slightly
closer to the TL15.
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Nc = 2 Nc = 4 Nc = 6 TL15 TL15

Method DMET RISB DMET RISB DMET RISB DMET AFQMC
U/t = 2 0.1937 0.1942 0.1934 0.1953 0.1935 0.1950 0.1913 0.1923
U/t = 4 0.1281 0.1314 0.1274 0.1300 0.1277 0.1300 0.1261 0.1262
U/t = 6 0.0819 0.0841 0.0815 0.0829 0.0816 0.0830 0.0810 0.0810
U/t = 8 0.0538 0.0548 0.0538 0.0542 0.0539 0.0541 0.0540 0.0540
U/t = 12 0.0268 0.0269 0.0272 0.0270 0.0272 0.0270 0.0278 0.0278

Table V. Double occupancy 〈n↑n↓〉 for DMET and RISB in the AFM phase of the half-filled 2D Hubbard model with the
nearest neighbor hopping for Nc = 2, 4, 6 at U = 2t, 4t, 6t, 8t, 12t. The values in the last two columns are the DMET and
the AFQMC solutions in the TL in Ref. 15.

Nc = 2 Nc = 4 Nc = 6 Nc = 413 TL13 TL15

Method DMET RISB DMET RISB DMET RISB DMET DMET AFQMC
U/t = 2 0.161 0.158 0.155 0.147 0.151 0.143 0.152 0.115 0.094
U/t = 4 0.304 0.293 0.298 0.289 0.296 0.288 0.299 0.226 0.236
U/t = 6 0.382 0.376 0.368 0.368 0.367 0.365 0.372 0.275 0.280

Table VI. Staggered magnetic moment m for DMET and RISB in the AFM phase of the half-filled 2D Hubbard model with
the nearest neighbor hopping for Nc = 2, 4, 6 at U = 2t, 4t, 6t. The values in the last three columns are the DMET solutions
at Nc = 4 and in the TL in Ref. 13 and the AFQMC solutions in the TL in Ref. 15.

V. CONCLUSIONS

We have performed comparative benchmark calcula-
tions of RISB and DMET on the 1D and 2D (square
lattice) Hubbard model with cluster sizes ranging from
Nc = 1 to 6. We found that the overall performances of
the two methods are very similar. Small differences are
observed only for small cluster sizes, where RISB gen-
erally predicts slightly more accurate Mott MIT critical
points, magnetic moments, occupancies and double occu-
pancies. The DMET ground-state energy is usually more
accurate around half-filling, while the RISB ground-state
energy is more precise away from half-filling.

Furthermore, we proposed an alternative implementa-
tion of DMET featuring a modified RISB algorithm with
a unity mass renormalization matrix. This formalism
paves the ways for many generalizations. For example,
the DFT+RISB derived in Ref. 27 can now be read-
ily transposed to DFT+DMET. The non-equilibrium ex-
tensions of both methods are also available46–49. A
systematic way of improving the accuracy of RISB
without breaking translational symmetry has been re-
cently proposed by introducing auxiliary “ghost” de-
grees of freedom37, and similar ideas have been ap-
plied also within the DMET framework50. Other
possible directions may be to generalize DMET to
finite-temperature32,34,48 or extending RISB to systems
with electron-phonon interactions or inter-site electron-
electron interactions16,35,36.

VI. ACKNOWLEDGEMENTS

T.-H. L. thanks G. Booth and Q. Chen for useful dis-
cussions on the DMET algorithm. Y. Y. thanks for the
supports from BNL CMS center. T.-H. L, T. A., and G.

K. were supported by the Department of Energy under
Grant No. DE-FG02-99ER45761. N. L. was supported
by the VILLUM FONDEN via the Centre of Excellence
for Dirac Materials (Grant No. 11744). This work used
the Extreme Science and Engineering Discovery Environ-
ment (XSEDE) funded by NSF under Grants No. TG-
DMR170121.



10

1 A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Reviews of Modern Physics 68, 13 (1996).

2 G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404
(2012).

3 G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko,
O. Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78,
865 (2006).

4 T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev.
Mod. Phys. 77, 1027 (2005).

5 M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pr-
uschke, and H. R. Krishnamurthy, Physical Review B 58,
R7475 (1998).

6 M. H. Hettler, M. Mukherjee, M. Jarrell, and H. R. Kr-
ishnamurthy, Phys. Rev. B 61, 12739 (2000).

7 A. I. Lichtenstein and M. I. Katsnelson, Physical Review
B 62, R9283 (2000).

8 G. Kotliar, S. Y. Savrasov, G. Pálsson, and G. Biroli,
Phys. Rev. Lett. 87, 186401 (2001).

9 G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin,
A. E. Antipov, M. I. Katsnelson, A. I. Lichtenstein, A. N.
Rubtsov, and K. Held, Rev. Mod. Phys. 90, 025003 (2018).

10 G. Knizia and G. K.-L. Chan, Journal of Chemical Theory
and Computation 9, 1428 (2013).
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22 N. Lanatà, P. Barone, and M. Fabrizio, Phys. Rev. B 78,
155127 (2008).

23 A. Isidori and M. Capone, Physical Review B 80, 115120
(2009).

24 M. Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet,
G. Kotliar, and A. Georges, Europhysics Letters 85, 57009
(2008).

25 M. Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet,
G. Kotliar, and A. Georges, Phys. Rev. B 80, 064501
(2009).

26 I. I. Mazin, H. O. Jeschke, F. Lechermann, H. Lee, M. Fink,
R. Thomale, and R. Valent́ı, Nature communications 5,
4261 (2014).
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