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A crystalline topological phase is a topological phase with spatial symmetries. In this work, we
give a very general physical picture of such phases: a topological phase with spatial symmetry
G (with internal symmetry Gint ≤ G) is described by a defect network : a G-symmetric network
of defects in a topological phase with internal symmetry Gint. The defect network picture works
both for symmetry-protected topological (SPT) and symmetry-enriched topological (SET) phases,
in systems of either bosons or fermions. We derive this picture both by physical arguments, and
by a mathematical derivation from the general framework of [Thorngren and Else, Phys. Rev. X
8, 011040 (2018)]. In the case of crystalline SPT phases, the defect network picture reduces to a
previously studied dimensional reduction picture, thus establishing the equivalence of this picture
with the general framework of Thorngren and Else applied to crystalline SPTs.

A topological phase of matter is a gapped phase of
matter that is characterized by patterns of quantum en-
tanglement in the ground state, rather than by sponta-
neous symmetry breaking1. A key aspect of topologi-
cal phases is the interplay between the low-energy topo-
logical features and the microscopic symmetries of the
system. In particular, systems which are smoothly con-
nected in the absence of symmetry may become distinct
phases when a symmetry is enforced, distinguished by the
symmetry action on the topological degrees of freedom;
these are called symmetry-protected topological (SPT)2–19

or symmetry-enriched topological (SET)20–26 phases, de-
pending on whether in the absence of symmetry they are
the trivial phase or not.

Of the realistic microscopic symmetries that can act
on a quantum lattice model, we can divide them into two
classes: an internal symmetry (such as charge conserva-
tion, spin rotation or time-reversal) acts locally on each
site on the lattice, whereas a spatial symmetry (such as
spatial reflection or rotation) moves lattice sites around
in space. We call a topological phase with spatial sym-
metry (or more generally, a symmetry group combining
both internal and spatial symmetries) a crystalline topo-
logical phase21,25–52. The development of the theory of
crystalline topological phases, especially with strong in-
teractions, has lagged behind the theory of topological
phases with internal symmetry, despite their intrinsic in-
terest. The reason is perhaps that, whereas purely in-
ternal symmetries can be understood simply in terms of
a action of symmetry on the field theory describing the
low-energy, long wavelength field theory of the system,
spatial symmetries relate to more microscopic properties
of the underlying lattice.

Nevertheless, two competing general frameworks have
emerged that are hypothesized to give a general classifi-
cation of crystalline topological phases. The first, stated
in Ref.53 for point groups and then extended in Ref.54,
applies to invertible topological phases. These are conjec-

tured to be captured by layers of k-dimensional internal-
symmetry topological phases arranged in some spatial
configuration in d-dimensional space, where k ranges
from 0 to d. We call this the “block state” picture of
crystalline topological phases.

The second framework was proposed by us in Ref. 55.
This framework works also for non-invertible phases, i.e.
phases which contain non-trivial topological excitations
such as anyons. We gave two physical pictures in Ref. 55,
which were argued to lead to the same classification. One
picture was based on smooth states, which are states that
vary very slowly in space, with a radius of spatial varia-
tion R that is much larger than the lattice spacing and
the correlation length (but nevertheless must be on the
order of the unit cell size of the spatial translation sym-
metry, if it is present). The other picture was based on
the idea that topological phases with symmetry should be
distinguished by their responses to gauge fields, supple-
mented by a proposal for the meaning of gauging a spa-
tial symmetry. An important consequence of the frame-
work of Ref. 55 is the Crystalline Equivalence Principle,
which states that the classication of phases with spatial
symmetry G is in one-to-one correspondence with the
classification of phases with internal symmetry G (mod-
ulo some “twists”; for example, a unitary but spatially
orientation-reversing spatial symmetry such as reflection
maps to an anti-unitary internal symmetry such as time-
reversal). The same result was obtained from a tensor
network point of view in the case of bosonic group coho-
mology SPTs in Ref. 52.

Given the competing nature of the two frameworks just
described, it is natural to ask whether they are equiva-
lent. In this work, we will unify the two frameworks
under the roof of a single mathematical formalism, and
thereby answer this question in the affirmative. We will
first generalize the “block state” picture of Refs. 53 and
54 to one which works also for non-invertible topologi-
cal phases, which we call the “defect network” picture.
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FIG. 1. A defect network in 2-D consists of a bulk topological
phase, 1-D defects, and 0-D defect junctions (of course, one
can also consider the case where the 1-D defects are trivial, in
which case a “0-D defect junction” is just a point defect). In
higher dimensions, one can also have higher-order junctions.

(Ref. 53 also briefly discussed a path to extend “block
states” to non-invertible phases.) A “defect network”
consists of a G-symmetric network of defects in a Gint-
symmetric topological phase (where Gint ≤ G is the sub-
group of internal symmetries). See Figure 1 for illustra-
tion.

We show that the defect network picture can be de-
rived in two different ways: first, by physical arguments
along the lines of those of Refs. 53 and 54; and, second,
as a mathematical consequence of our general classifica-
tion from Ref. 55. This proves the equivalence of the
two approaches. In the case of invertible phases, the
equivalence between block states and smooth states can
be viewed as a manifestation of the mathematical phe-
nomenon of Poincaré duality: that is, the isomorphism
between generalized homology and cohomology theories
on finite-dimensional manifolds.

The outline of our paper is as follows. In Section I, we
discuss the physical picture of defect networks that we
are advocating, and motivate it by physical arguments.
In Section II we review the notion of smooth states, and
explain intuitively why one might expect a classification
by smooth states to be equivalent to defect networks. In
Section III, we review the precise mathematical frame-
work of Ref. 55, which can be viewed as formalizing the
notion of smooth states with symmetry. Then, in Sec-
tion IV we show rigorously how the defect network pic-
ture arises from the mathematical formalism of Ref. 55.
In Section V we discuss defect networks for topological
phases in two dimensions with only translation symme-
try. In Section VI we outline a mathematical tool, called
a “spectral sequence”, which we expect to be useful for
computing properties of defect networks. Finally, in Sec-
tion VII, we discuss avenues for future investigation and
related works.

0-cell

1-cell

2-cell

FIG. 2. A (portion of) a cell decomposition of a 2-dimensional
manifold X. In the defect network picture, the 2-cells will
carry a 2-D topological phase, the 1-cells will carry 1-D de-
fects, and the 0-cells will carry junctions between 1-D defects.

I. DEFECT NETWORKS: THE PHYSICAL
PICTURE

A. Defect networks (physical)

A crystalline topological phase exists inside a d-
dimensional manifold X which represents the physical
space in which the system is embedded. We assume that
X is acted upon by a symmetry group G (some elements
of G can act trivially on X, in which case they repre-
sent internal symmetries). In most physical cases, we
would want to take X = Rd, and the G action to be
by isometries of Euclidean space, for example reflections,
rotations, translations, glide reflections, and so forth.

The geometrical picture of a crystalline topological
phase (both SPT and SET phases) will be an object that
we refer to as a defect network. For simplicity of ex-
position, we will define a defect network in terms of a
cell decomposition of X (see Figure 2), although we ex-
pect that similar notions exist in the continuum. We will
choose the cell decomposition such that the image of a
cell under the action of any g ∈ G is itself a cell. More-
over, for each cell Σ, let GΣ be the subgroup of G that
maps Σ to itself. We require that each element of GΣ

leaves each point in Σ fixed. (One can show that if G is a
group of isometries of Euclidean space acting on Rd, then
a cell decomposition satisfying the required properties al-
ways exists. In fact, the minimal such cell decomposition
is closely related to the “Wyckoff positions” of the space
group.)

What we want to imagine is that the cells can be cho-
sen to be very large compared to the lattice spacing and
the correlation length. This is easy to do in the case
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where G is just a point group; if G also contains spatial
translations, then this will require that the translation
unit cell size a be much greater than the lattice spacing
and the correlation length. The restriction to phases that
admit ground states satisfying this property underlies the
framework both of Ref. 55 and of Refs. 53 and 54

First consider the top-dimensional cells, i.e. d-cells (in
that case, GΣ is just the subgroup of internal symmetries,
which we call Gint). In the interior of each d-cell, we
can forget about all the symmetries except the internal
ones, and specify the Gint symmetric topological phase
Sd of the system inside the d-cell. Then, while respecting
the whole G symmetry, it is possible to symmetrically
deform the system such that inside each d-cell the state of
the system is a fixed reference ground-state for the Gint-
symmetric topological phase on the cell (by choosing a
Gint-symmetric local unitary on one element of an orbit of
cells underG, and then using theG-related local unitaries
on each of the other cells in the orbit53).

Next consider a (d − 1)-cell Σ. In general, its sym-
metry group GΣ contains the symmetry group of the
d-cells which it adjoins, but might be larger. We can
identify the state of the system on the d− 1-cell as being
a d − 1-dimensional GΣ symmetric defect between the
d-dimensional topological phases carried on the adjoin-
ing d-cells. Such defects can have distinct classes which
cannot be deformed into each other. We will choose to
deform the state of the system inside of the d − 1-cell
into a fixed reference configuration for the class of defects
which it is in (this can always be done G-symmetrically
by similar arguments to before).

Crucially, in this paper we will only consider a sub-
set of all possible defects, which are sufficient to describe
the kind of crystalline topological phases that are classi-
fied by the approach of Ref. 55 (which were there called
“crystalline topological liquids”). The class of defect we
consider is called a smoothable defect. A smoothable de-
fect is one which can be implemented in the arena of
smooth states as defined in Ref. 55 and discussed here in
Section II; this means that one can write down a parent
Hamiltonian for the defect which varies very slowly as a
function of space, such that the state remains gapped at
all points in space. Note that this immediately implies
that the d-dimensional Gint symmetric topological phases
carried on top-dimensional cells must be equal, because if
they are connected by a smoothable defect then this im-
plies they are a connected as a function of Hamiltonian
parameters without a phase transition.

What we expect (and will prove in the case where the
bulk phase is invertible, but not in the general case) is
that a defect d is smoothable if and only if it is invertible:
that is, the defect does not separate two different bulk
phases and, if the symmetries are allowed to be lifted
explicily, there is an inverse defect d such that the fusion
d × d gives a trivial defect56. An example of a defect
which is explicitly not invertible (and we therefore do
not consider) would be a 2-D toric code embedded in a
3-D system.

Now let us move on, and consider a (d− 2)-cell Σ. We
can think of the state of the system on Σ as representing
a (d−2)-dimensional defect junction between the (d−1)-
dimensional defects on the adjoining (d−1)-cells. We can
continue in this way until we reach 0-dimensional higher
defect junctions. Moreover, by deforming the state of the
system on each k-cell to the appropriate reference con-
figuration, we find that up to deformations, the overall
system can be specified by the d-dimensional topological
phase carried on d-cells and by the defect class carried
on k-cells for 0 ≤ k < d. This data specifies what we call
a defect network.

In order to turn these ideas into a general classifica-
tion of crystalline topological phases, one needs a general
understanding of invertible defects in topological phases
(possibly with higher symmetry than the phase itself),
which to our knowledge has not yet been developed. In
some sense, such a theory will be obtained in this paper,
from a mathematical perspective, in the course of deriv-
ing the defect network picture from the general frame-
work of Ref. 55.

However, if we specialize to the case of crystalline SPT
phases (or, more generally, invertible crystalline topolog-
ical phases), we can be more concrete. Indeed, it is easy
to argue (see, for example Ref. 53) that k-dimensional
invertible GΣ-symmetric defects in a d-dimensional in-
vertible phase form a torsor over the classification of k
invertible topological phases with symmetry GΣ [the tor-
sor becomes a group, i.e. it has a natural identity el-
ement, in the case where all the k′-dimensional defects
are trivial for k′ > k]. Note that on each k-cell Σ, GΣ

is effectively acting as an internal symmetry. Thus, we
can leverage what we already know about the classifica-
tion of topological phases with internal symmetries to
understand crystalline topological phases; this idea was
deployed to great effect in Refs. 53 and 54.

B. Anomalies (physical)

The above arguments demonstrate that we can always
(subject to the condition about the correlation length be-
ing much less than the lattice spacing) deform any ground
state into a canonical “defect network” state. So in or-
der to classify crystalline phases we have to characterize
defect networks. The idea is that we should first classify
the phase on d-dimensional cells, then classify defects of
dimension d − 1 in said phase, then for any configura-
tion of dimension-d− 1 defects on d− 1-cells, classify the
possible junctions on d − 2-cells, and so forth. Here we
want to emphasize a subtlety: the need for there to be an
invertible defect junction on k-cells places a non-trivial
restriction on which defect classes are allowed on r-cells
for r > k. In general, we say that an anomaly occurs on a
k-cell Σ when there is no possible invertible junction be-
tween the defect classes on higher-dimensional cells. (In
a gapped symmetric defect network state, there should
be no anomalies).
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SPT

FIG. 3. A 1-D defect (in this case, a 1-D SPT) inducing an
anomaly on a 0-cell

p+ip

FIG. 4. A C2 symmetric p+ ip superconductor in 2-D (with
R2 = 1) induces an “anomaly”, i.e. a Majorana zero mode,
two dimensions lower.

To illustrate this phenomenon, let us restrict ourself
to the case of invertible phases, and for simplicity we
will assume that the data associated to r-dimensional
cells is trivial for r > k0. Then the data associated to a
k0-cell Σ simply a k0-dimensional invertible phase with
symmetry GΣ. The statement then is that some such
data assignments are anomalous. A simple example of
anomalous data is shown in Figure 3, for the case where
the whole symmetry G acts internally. Because, in the
configuration shown in Figure 3, the 1-D SPT terminates
at a point, there must be degenerate edge modes at this
point, transforming under a non-trivial projective repre-
sentation of the symmetry. Therefore, Figure 3 cannot
depict a gapped non-degenerate symmetric ground state,
and hence a crystalline SPT.

The above discussion is an example of the general
statement that the data associated with k0-cells can lead
to an anomaly in dimension k = k0 − 1. More generally,
the anomaly could appear for any k < k0. In such cases,
the cause of the anomaly can be more subtle. As an ex-
ample, consider a fermionic system in d = 2 with C2 ro-
tation symmetry [with the rotation symmetry satisfying
R2 = +1, not R2 = (−1)F ], where the top-dimensional
cells carry a (p + ip) superconductor. Now let us try to
write down a field theory to describe the long-wavelength

limit of this system. It is well known that the (p + ip)
superconductor can be described in the continuum by the
Hamiltonian

H =

∫
d2r

[
Ψ†
(
− 1

2m
∇2 − µ

)
Ψ

+ ∆Ψ†(∂x + i∂y)Ψ† + h.c.

]
, (1)

where Ψ(r) is a fermionic field, and ∆,m and µ are con-
stants. The problem is that we want the continuum the-
ory to preserve the C2 rotation symmetry, and the pair-
ing term is not rotationally invariant, as can be seen by
writing it in polar coordinates (r, θ):∫

d2rΨ†(∂x + i∂y)Ψ† =

∫
rdrdθ eiθΨ†(∂r + ir∂θ)Ψ

†.

(2)
On the other hand, we can make Eq. (2) rotationally
invariant if we redefine Ψ† → eiθ/2Ψ†, which removes
the eiθ factor. However, this introduces a new problem:
the field redefinition changes the boundary conditions for
circling around the origin, thus effectively introducing a
π vortex (flux of fermion parity) at the origin; in a p+ ip
superconductor, this binds an emergent Majorana zero
mode. Thus, in this case putting p + ip superconductor
on 2-cells gives rise to an anomaly two dimensions lower.

Observe that in the two examples above share the fea-
ture that when an anomaly appears on a k-cell, it is al-
ways classified by hk+1(BGσ), where hk(BH) denotes
the classification of invertible phases in k spatial dimen-
sions with internal symmetry H. In other words, the
anomaly looks like the boundary of a k + 1-dimensional
Gσ-symmetric phase. In Section IV B, we will show that
in invertible crystalline topological phases the anomalies
always take this form.

One consequence of this result is that (at least for in-
vertible crystalline topological phases) the anomaly can
always be resolved at the surface of a d+ 1-dimensional
state with symmetry G. Observe that, since the d +
1-dimensional state by definition admits an invertible
gapped boundary while preserving the symmetries, it is
necessarily a trivial crystalline SPT. For example, the
C2 symmetric p+ ip superconductor discussed above can
occur at the surface of a 3-D state with C2 rotation sym-
metry which carries a Kitaev chain on the rotation axis.
In the next section, we will explain why such a state is a
trivial crystalline SPT in 3-D.

Finally, let us note that, in the case of invertible
bosonic phases, anomalies on 0-cells [which are char-
acterized by projective representations of GΣ, classified
by group cohomology H2(GΣ, U(1))] can be “cancelled”
if the microscopic degrees of freedom, i.e. those used
to define the Hilbert space in which the ground state
lives, also carry a projective representation at the cor-
responding points (one can think of this as a special
case of the surface terminations discussed in the previous
paragraph). This has interesting consequences for Lieb-
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Schultz-Mattis type theorems, which will be explored in
more detail in a forthcoming work57.

C. Deformations (physical)

Any defect network which is not anomalous as dis-
cussed in the previous section represents some allowed
state. But we still have to determine which such states
cannot be smoothly connected in the presence of the
symmetry, i.e. what are the equivalence classes of defect
networks that characterize crystalline topological phases?
Therefore, we introduce the notion of a defect network
deformation. Although we have so far worked in terms
of a cell structure on X, deformations are most naturally
understood in the continuum. It should be clear how the
notion of a defect network generalizes to the continuum:
we simply allow k-dimensional defects to exist on any k-
dimensional submanifold, instead of only on the k-cells of
the cell structure. Then a deformation just means that
we allow the configuration of the defects to vary in a
smooth way, as long as the spatial symmetry is always
respected. We also have to consider the possibility of
fusion of defects.

We emphasize that there will in general be fusion
moves that relate defects of different dimension. For ex-
ample, consider a 3-D phase with C2 rotation symmetry,
carrying a Kitaev chain on the rotation axis. There is
no deformation purely in the space of one-dimensional
defects which can trivialize this state. However, one can
imagine bringing in a C2 symmetric cylinder surrounding
the rotation axis, and carrying a p + ip superconductor.
By similar arguments to Section I B, we find that if we
shrink the cylinder to the rotation axis, it will leave be-
hind a Kitaev chain, which can cancels the Kitaev chain
that was originally on the rotation axis58.

It might not be obvious that deformations and fusions
of defect networks generate all possible deformations of
states (of which defect networks are just some limit). Let
us now show that any deformation of states can be under-
stood in terms of deformations of defect networks. This
will also provide a cellular formulation of defect network
deformations, which will be useful later on.

Recall that any deformation of gapped ground states
can be understood in terms of the action of a local unitary
(LU), i.e. a finite-depth quantum circuit6,59,60. Any such
local unitary U has a property that we call the “light cone
radius”, which, roughly, is the distance over which quan-
tum information spreads under the action of U (more
precisely, for a finite-depth quantum circuit of depth k
such that each layer is a product over non-intersecting
regions of diameter l, the light-cone radius is kl). We
consider only LUs with light-cone radius that is much
smaller than the size of the cells. (If there is no trans-
lation symmetry, there is no restriction on the light-cone
radius). Otherwise, if we tried to interpret the LU as
a deformation of gapped ground states, it would pass
through intermediate states which violate the condition

that the correlation length should be much less than the
size of the cells. We call an LU satisfying this condition
a cellular local unitary, or cLU.

We note that allowing non-cellular LUs in our equiv-
alence relation might logically decrease the number of
phases in the classification (because phases previously
considered distinct could be related by a non-cellular
LU). However, for any space group G with a transla-
tion symmetry, there are subgroups H < G isomorphic
to G with arbitrarily large unit cell. Our classification,
as derived based on the cellular LU equivalence relation,
has the property that for some infinite subset of these
subgroups, any pair of phases which are distinct with
G symmetry are also distinct with H symmetry. We
demonstrate this in Appendix C. Thus, if we have a (pos-
sibly non-cellular) LU circuit U which maps between two
G-symmetric states, then since the light-cone radius is fi-
nite, there is an H < G where U can be made cLU for an
H-invariant coarse graining of the cell structure; hence
they are equivalent H-phases according to our classifica-
tion, so by the property mentioned above they are also
equivalent G-phases in our classification. It follows that
allowing non-cellular cLU doese not change the number
of phases after all.

We say that a cLU is a k-cLU if it acts only in the
vicinity of the k-skeleton, i.e. the union of the cells of
dimension k. We say that a k-cLU is a strict k-cLU if
acts trivially near the k− 1-skeleton. One can show that
any k-cLU can be written as a product Uk = Uk−1V ,
where Uk−1 is a (k − 1)-cLU an V is a strict k-cLU. We
say two states are k-equivalent if they can be related by
a k-cLU.

Now consider a defect network C0, and suppose a de-
fect network C is k-equivalent to C0. Then there exists a
k-LU Uk such that Uk|C0〉 = |C〉, where |C〉 and |C0〉 are
the corresponding states. We can always Uk as Uk−1V ,
where Uk−1 is a (k−1)-cLU and Vk is a strict k-cLU (see

Figure 5). Thus, Vk|C〉 = U†k−1|C0〉. Note that U†k−1|C0〉
looks the same as |C0〉 inside of k-cells, i.e. inside of k-
cells it still looks like a canonical representative of a de-
fect class. Moreover, we know from the fact that C and
C0 are k-equivalent that they must have the same defect
class on k-cells, and in particular (since |C〉 is a defect
network) it must look like the same canonical represen-
tative on k-cells. In other words, acting with Vk has no
effect inside of k-cells. So the only possible effect is to cre-
ate k−1-dimensional defects near the edge of the k-cells.
Therefore, we interpret the equation |C〉 = Uk−1Vk|C0〉
as saying that we create k − 1-dimensional defects near
the edge of k-cells and then fuse them onto k-cells to cre-
ate a defect network state (see Figure 6). Note that for
a given Vk (that is, a given pattern of defects created on
k-cells) and a given C0, there may still be several dif-
ferent defect networks C that can be created by such a
process, according to different ways of doing the fusion
at k − 1-cells. For example, suppose that Uk−1Vk|C0〉
and U ′k−1Vk|C0〉 are both defect network states, which
we call |C〉 and |C ′〉. Then we see that that |C〉 and |C ′〉
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FIG. 5. A k-cLU can be written as the product of a strict
k-cLU and a k − 1-cLU

.

FIG. 6. The effect of Vk is to create new defects near the
boundary of each k-cell. In the langauge of defect network
deformations, we can think of these as having been created
out of the vacuum along each k-cell. The newly created exci-
tations then fuse onto k − 1-cells. In this illustration, k = 1.

are k − 1-equivalent, because |C〉 = (U ′k−1)−1Uk−1|C ′〉.
Hence, we can conclude inductively that the process of
creating defects and fusing them as described indeed gen-
erates all possible deformations between defect networks.

II. THE “DUAL” PHYSICAL PICTURE:
SMOOTH STATES

In this section we will review a different picture of crys-
talline topological phase in terms of smooth states, as
previously introduced in Ref. 55. One of the goals of this
paper is that show that the two pictures from this section
and the previous section are actually equivalent.

A smooth state is supposed to represent a particular
kind of physical state. As in the previous section, we as-
sume that the correlation length ξ and microscopic lattice
spacing a0 are much less than the translation unit cell size
a. In contrast to the previous section, we assume that on
scales much less than some radius of variation R (which
is much larger than ξ and a0) there is an approximate
translation symmetry (we emphasize that this is distinct
from the translation subgroup of the spatial symmetry G,
which is exact if it is present). That is, on scales small
compared with R, the state varies only very slowly with
space.

Now the idea is to assume that the details of the lattice
at the microscopic scale are not very important, and so
we can “abstract out” and define a smooth state on a
spatial manifold X to be a map

f : X → Θd (3)

for some space Θd which is an abstraction of the d-
dimensional states in the neighborhood of a given point.
One (albeit very abstract) way55 to think of Θd is as the
space of all topological quantum field theories, where a
point in the space Θd is a TQFT, a continuous path in
Θd is an isomorphism between TQFTs, a deformation
between paths is an equivalence between isomorphisms,
and so forth. We can also implement internal or spa-
tial symmetries in smooth states by requiring the map f
to be G-equivariant (we leave the precise mathematical
formulation to the next section).

Let us note that, in general, if the tangent bundle of X
is non-trivial, we should think of the space of local states
at every point as forming a non-trivial fiber bundle over
X with fiber Θd; in that case we replace Eq. (3) with a
section of this bundle (for details, see Appendix A).

Now we must ask why the “smooth state” picture
should be equivalent to the “defect network” picture. We
will give the detailed argument later on, but the idea is
basically to “sharpen” the smooth state by deforming it,
concentrating its spatial variation, so that near any k-cell
in the cell decomposition of X discussed in the previous
section, the smooth state is approximately constant in
the directions tangent to the cell. This is describing a
k-dimensional defect localized near the cell. Since the
defect is obtained from sharpening a smooth state, it is
obviously smoothable in the sense defined in Section I A.
(Note that, in some sense, this is just applying the argu-
ments of Section I A at the level of smooth states).

Finally, in the case of invertible phases, there is one
additional idea involved in the relationship between de-
fect networks and smooth states. Recall that, physi-
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(a) Smooth state (b) Forgetting about microscopic details

FIG. 7. The duality principle for smooth states. Smooth
states on a manifold with boundary, of dimension n+k, which
can be contracted to a manifold M of dimension k, are in
one-to-one correspondence with smooth states on M . In this
picture, k = 0 and n = 2.

cally a k-dimensional invertible defect in a trivial phase
is supposed to be equivalent to a k-dimensional invert-
ible phase (from which it follows that k-dimensional de-
fects in a non-trivial invertible phase are a torsor over
k-dimensional invertible phases). Since we claimed (so
far, without proof) that an invertible defect is the same
as a smoothable defect, it follows that smooth states on
a k + r-dimensional tubular neighborhood N of an k-
dimensional manifold M , constrained so that the local
state on the boundary of N is trivial, are in one-to-one
correspondence with smooth states on M (for example,
see Figure 7). This should hold even if there are spatial
symmetries acting on N that leave M fixed; in that case,
on M they act as internal symmetries. We call this the
duality principle. This implies highly non-trivial relations
between the spaces Θk for different k; the mathematical

formulation is the “generalized cohomology” assumption
discussed in the next section.

III. IMPLEMENTING SYMMETRIES IN A
SMOOTH STATE: GENERAL CLASSIFICATION

OF CRYSTALLINE PHASES

Now let us discuss how to implement the symmetries
in a smooth state; this will allow us to recover the gen-
eral classification of Ref. 55. Our starting point is the
following conjecture

Conjecture 1. The classification of topological phases
(SPT or SET) in d dimensions with internal symmetry
G is given by homotopy classes of maps

f : BG→ Θd, (4)

Here BG is the so-called “classifying space” of a group
G; up to homotopy equivalence, it is specified as BG =
EG/G, where EG is any contractible space with a free
action of G.

This conjecture has previously appeared in various
forms55,61–65.

Ref. 55 proposed how to generalize this to describe
crystalline topological phases, in a way that also ex-
tends the notion of smooth states defined in the previous
section (by showing how to implement symmetries in a
smooth state):

Conjecture 2. The classification of topological phases
in d dimensions (SPT or SET) with spatial symmetry G
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which acts on (physical) space X (usually we would want
to take X = Rd) is given by homotopy classes of maps

f : X//G→ Θd (5)

where Θd is the same space as in Conjecture 1. Here
X//G denotes the “homotopy quotient” of X by the ac-
tion of G. Up to homotopy equivalence, this is specified
as X//G = (X × EG)/G, where EG, as before, is a
contractible space with a free action of G, and G acts
diagonally on the product space X × EG.

Conjectures 1 and 2 have an immediate corollary,
which Ref. 55 called the “Crystalline Equivalence Princi-
ple”. In the case where X = Rd (or, generally, X is any
contractible space), it is a mathematical fact that X//G
and BG are homotopy equivalent. (To see this note, just
observe that in this case X × EG is itself a contractible
space with a free action of G). Thus, one immediately
concludes

Corollary 1 (Crystalline Equivalence Principle). The
classification of topological phases with internal symme-
try G is the same as the classification of topological
phases with spatial symmetry G.

Let us note that for systems of fermions, and bosonic
systems with orientation-reversing symmetries, Conjec-
ture 2 must be slightly modified (even if X = Rd), as we
discuss in Appendix A; then the map f becomes a section
of a fiber bundle over X//G with fiber Θd. (This point
of view also accounts for the “twists” in the Crystalline
Equivalence Principle that we discussed in Ref. 55, such
as the orientation-reversing symmetries mapping to anti-
unitary symmetries). For simplicity, in the main body of
the paper we will assume that the bundle is trivial and
Conjecture 2 holds as written, but the arguments can
easily be extended to the general case.

Although the Crystalline Equivalence Principle can be
a useful way to compute the classification mathemati-
cally, it can be difficult to physically interpret the result-
ing phases, since (a) the connection between the topolog-
ical phase with spatial symmetry and the corresponding
topological phase with internal symmetry is often ob-
scure; and (b) generally spatial symmetry groups G are
quite large, and non-Abelian, making the interpretation
of the topological phase with internal symmetry G a chal-
lenge in itself.

In this work, we intend to address this issue by showing
that crystalline phases classified according to Conjecture
2 are described by defect networks.

A. Invertible phases and generalized cohomology

We will often want to restrict ourself to the case of
invertible crystalline topological phases. In this case, we
will need to make an additional assumption63–66:

Conjecture 3. For invertible phases, the spaces Θd ap-
pearing in Conjectures 1 and 2 can be taken to satisfy

Θd ' ΩΘd+1, (6)

where “'” denotes homotopy equivalence, and ΩΘd+1 is
the based loop space of Θd+1, i.e. the set of maps γ :
[0, 1] → Θd+1 such that γ(0) = γ(1) = ϑ∗ for a fixed
basepoint ϑ∗ ∈ Θd+1 (which is supposed to represent the
trivial “vacuum” state).

In mathematical terms, this is saying that the spaces
Θ• form an “Ω-spectrum”. Physically, it is the state-
ment of the “duality principle” mentioned in Section II,
for systems without spatial symmetries (it turns out that
it also implies the duality principle in the presence of
spatial symmetries, but this is non-trivial to show; see
Appendix A). Equivalently, it is saying that the classi-
fication of invertible phases is d space dimensions with
internal symmetry G can be expressed as hd(BG) [or
hd(X//G) in the spatial case], where h•(−) is a “gener-
alized cohomology theory”.

Let us note that a wide variety of proposed partial
classifications for invertible interacting phases of bosons
or fermions satisfy this property. Examples include the
“group cohomology”10 and “cobordism”14 classifications
of bosonic SPTs, and the “group supercohomology”15

and “spin cobordism”67,68 classifications of fermionic
SPTs. It also holds for the Freed-Hopkins classification
of invertible topological quantum field theories66. There-
fore, our results will hold with respect to all such classi-
fications.

IV. THE MATHEMATICAL PICTURE

In this section, we will show how the phenomena dis-
cussed from a physical point of view in Section I can
be recovered through rigorous mathematical arguments,
given the assumptions of Section III. Note that the sub-
sections of this section will exactly parallel those of Sec-
tion I.

A. Defect networks (mathematical)

Let us show how the defect network picture can be
obtained from the general considerations of Section III.
The argument will be expressed in terms of the map
f : X//G → Θd posited in Conjecture 2. The reader
will note that the arguments here, though couched in
mathematical language, look structurally very similar to
the more physical arguments we used to justify the defect
network picture in Section I A. Indeed, this is a reflection
of the fact that the map f can be interpreted as specify-
ing a kind of ground state, namely a smooth state.

Our arguments will be expressed in terms of the dual
cell decomposition of the one on which the defect net-
works live, e.g. as shown in Figure 8. There is a one-to-
one correspondence between k-cells Σ and dual d−k-cells
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FIG. 8. The dual (shown in green) of the honeycomb cell
decomposition previously shown in Figure 2. In general, there
is a one-to-one correspondence between k-cells in the original
cell decomposition and d− k-cells in the dual cell decomposi-
tion.

Σ̃. Moreover, Σ and Σ̃ intersect at a single point, the
barycenter xΣ. The subgroup GΣ ≤ G that maps a cell
Σ to itself is the same subroup that maps the dual cell

Σ̃ to itself. Note, however, that whereas we chose the
original cell Σ to have the property that Gx = GΣ for all
x in the interior of Σ, the barycenter xΣ is the only point

in Σ̃ that necessarily has Gx = GΣ.
Finally, let us note that for the purpose of these ar-

guments we will assume that X is a d-dimensional Rie-
mannian manifold and the action of G on X is metric-
preserving. (Obviously, this is true if X = Rd and G acts
on X by Euclidean isometries, as is the case for the space
groups one normally considers in physics.) This implies

that the action of G on Σ̃ is linear and orthogonal; that

is, a dual k-cell Σ̃ can be identified with a subset of Rk
such that the action on Σ̃ is induced by a representation
of G in the orthogonal group O(k).

Now recall that, according to Conjecture 2, a crys-
talline topological phase corresponds to a map f :
X//G → Θd, for some space Θd. In this section, when-
ever we form the homotopy quotient Y//H with respect
to any space Y and any subgroup H ≤ G, we will mean
Y//H = (Y × EG)/H (we are allowed to use EG here,
because it is a contractible space on which H acts freely).

On the dual cellulation, we can represent f by the fol-
lowing data

• To each dual k-cell Σ̃, we associate a map fΣ̃ :

Σ̃//GΣ → Θd.

This data must satisfy certain consistency relations if
it is indeed to describe a map f : X//G→ Θd:

(i) Consider a dual k-cell Σ̃ and a dual k − 1-cell σ̃

which is a face of Σ̃. Then there is an obvious map

ϕ : σ̃//Gσ → Σ̃//GΣ̃. We require that fΣ̃ ◦ ϕ = fσ̃.

(ii) For any dual k-cell Σ̃ and any g ∈ G, there is an ob-

vious homeomorphism ϕ : Σ̃//GΣ → (gΣ̃)//(Ggσ),
and we require that fgΣ̃ ◦ ϕ = fΣ̃.

Lemma 1. The space of collections of maps fΣ satisfying
the above conditions is equivalent (i.e. homeomorphic) to
the space of maps f : X//G→ Θd.

Proof. A function f : X//G → Θd is equivalent to a G-

invariant function f̂ : X×EG→ Θd, and a function fΣ̃ :

Σ̃//GΣ → Θd is equivalent to a GΣ invariant function

f̂Σ̃ : Σ̃×EG→ Θd. In terms of these maps, condition (i)

amounts to saying that the restriction of f̂Σ̃ to σ̃ × EG
is equal to f̂σ̃, and condition (ii) amounts to saying that

fgΣ̃(gx, ge) = fΣ̃(x, e) for all x ∈ Σ̃, g ∈ G, e ∈ EG. The

functions f̂ and f̂Σ are then related according to

f̂(x, e) = f̂Σ̃(x, e), (7)

where Σ is any cell containing x.

The goal now is to assign a physical interpretation to
the maps fΣ̃. As a warm up, let us start with dual 0-

cells, i.e. Σ̃ is a point (corresponding to a top-dimension,
i.e. d-cell, Σ in the original cell complex). Then if p is a
dual 0-cell, then we have a function fp : p//Gp → Θd. In
fact, p//Gp is homotopy equivalent to BGp. But recall
that a map BGp → Θd classifies topological phases in d
dimensions with internal symmetry Gp. The interpreta-
tion should be clear: inside of a d-cell in the original cell
structure, the “effective” internal symmetry (subgroup of
G that leaves points fixed inside the d-cell in the original
cell decomposition) is Gp, so we can have a Gp-symmetric
topological phase.

Next, we want to claim that the homotopy classes of

maps fΣ̃ on dual k-cells Σ̃ describe d−k-dimensional de-
fect junctions on the original (d− k)-cells. The idea is to
proceed inductively. After we have characterized the ho-
motopy classes of dual k− 1-cells as defect junctions, we
will deform the associated maps to fixed reference config-
urations for said defect junctions. Then, for any dual k-

cell Σ̃, the restriction of the map fΣ̃ : Σ̃//GΣ to ∂Σ̃//GΣ

(where ∂Σ̃ denotes the k−1-dimensional boundary of the

dual k-cell Σ̃) is already completely determined (to see

this, invoke Lemma 1 with the replacement X → ∂Σ̃).
Therefore, we must consider homotopy classes of maps

f : Σ̃//GΣ̃ → GΣ̃ whose restriction to ∂Σ̃//GΣ̃ is held
fixed.

We assert that such homotopy classes on a dual k-cells
should precisely be identified with classes of smoothable
GΣ-symmetric defects junctions on the original (d − k)-
cells, where the junctions are formed at the intersection
of the junctions on the original d−k+1-cells. One way to
see this is by applying the “spatially dependent TQFT”
idea from Ref. 55 to the classification of (smoothable)
defects. However, let us discuss two cases in which this
assertion can be seen more straightforwardly.
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Firstly, we can consider the case in which GΣ̃ leaves all

the points in a dual k-cell Σ̃ (in terms of the original d−k-
cell Σ, this is saying that GΣ is the same as G′Σ for any
d− k + 1-cell Σ′ of which Σ forms part of the boundary;
that is, Σ has the same symmetry as its surroundings).

In that case, Σ̃//GΣ̃ = Σ̃×BGΣ. So we have a map fΣ̃ :
Σ × BGΣ̃ → Θd, which we know is supposed to restrict
to a fixed map fσ̃ : σ̃ × BGΣ̃ → Θd on any face σ̃ (note
that GΣ acting trivially on Σ implies that GΣ = Gσ).
So we effectively have a map Bk × BGΣ → Θd, where
Bk is the k-ball, with the restriction to the boundary
of the k-ball held fixed. How should we interpret this
map? An answer is supplied by interpreting Θd as the
space of TQFTs55. In the context of TQFTs such maps
are well-understood to describe invertible codimension-
k defect junctions in topological phases with an internal
GΣ symmetry69–72.

The second case to consider is that of invertible crys-
talline topological phases. Recall that in this case, one
can argue physically that the classes of codimension-k
defect junctions living on a (d− k)-cell Σ should form a
torsor over the invertible topological phases with inter-
nal symmetry GΣ. We want to show that this is what
we obtain from the homotopy classes of maps fΣ̃ on dual

k-cells Σ̃. Indeed, this follows from the following Lemma
(setting H = GΣ, r = d, and noting using the fact that

the GΣ action on Σ̃ is supposed to be linear orthogonal):

Lemma 2. Let H be a group with linear orthogonal ac-
tion on the k-ball Bk. Then homotopy classes of maps
f : Bk → Θ• with fixed restriction to ∂Bk//H (where
∂Bk is the boundary of Bk) are a torsor over homotopy
classes of maps f : BH → Θ•−k, with a natural iden-
tity element in the case where the fixed restriction is the
constant map.

Proof. Note that, strictly speaking, this is not the precise
statement of the Lemma; to make it precise we have to
use the more general definition of smooth states as sec-
tions of a bundle with fiber Θd (as mentioned earlier).
The result then follows from the Thom isomorphism of
generalized cohomology. For the details, see Appendix
A.

B. Anomalies (mathematical)

Let us discuss the mathematical interpretation of the
anomalies discussed in Section I B. The basic idea is as
follows. Suppose that we have a map fk0 : Xk0//G →
Θd, where Xk0 is the k0-skeleton of dual cells (i.e. the
union of all dual r-cells for r ≤ k0). Applying the argu-
ments of the previous section shows that it can be char-
acterized up to homotopy by d − k0-dimensional defect
junctions on k0-cells. Now the question is whether such
a map fk0 can be extended to a map f : X//G → Θd

defined on the full space. In general, this will not be
possible, and this will correspond to an anomaly.

Specifically, what can happen is that there is an ob-
struction to consistently extending the maps fΣ̃ on dual

k0-cells Σ̃ to a map fσ on some dual k-cell σ̃ containing

Σ̃ (for some k > k0). In the case of invertible phases, one
can show that this obstruction is valued in hd−k+1(BGσ).
To see this, note if that σ̃ is the first cell on which the
obstruction appears, then it must have been possible to
extend consistently to its boundary ∂σ̃ at least. Then we
invoke the fact that the inclusion (∂σ̃)//Gσ → σ̃//Gσ in-
duces a long exact sequence in generalized cohomology,
of which a portion looks like:

· · · → hd(σ̃//G)→ hd(∂σ̃//G)

→ hd+1(σ̃//G; (∂σ̃)//G)→ · · · (8)

Remember that for any space S, hd(S) computes the ho-
motopy classes of maps f : S → Θd. Therefore, this
exact sequence is telling us that the obstruction to ex-
tending a map (∂σ̃)//G to σ̃//G is valued in the relative
cohomology hd+1(σ̃//G; (∂σ̃)//G). Then Lemma 2 tells
us that this object is isomorphic to hd−k+1(BGσ).

C. Deformations (mathematical)

To understand deformations mathematically, we fol-
low an argument with a similar structure to the physical
argument from Section I B, with the differences coming
from the fact that we are now working with the dual
cells. Let f, f ′ : X//G → Θd be two maps which have
been deformed to the canonical form on each cell, as dis-
cussed in Section IV A. We say say that a homotopy

f̂ : [0, 1] × X//G → Θd, such that f̂(0, ·) = f and

f̂(1, ·) = f ′, is a k-homotopy if it is the constant ho-
motopy when restricted to the the k − 1 skeleton of the
dual cells.

Consider a k-homotopy f̂ . Then for any dual k-cell

Σ̃, we obtain a map f̂Σ̃ into Θd from [0, 1] × Σ̃//GΣ =

(Σ̃ × [0, 1])//GΣ (where we define G to act trivially on

[0, 1]). Observe that, on the surface of Σ̃ × [0, 1], f̂ is
completely constrained by fΣ̃ and f ′

Σ̃
. Recall that we

postulated in Section IV A (and this can be shown more
explicitly for invertible phases, given the generalized co-

homology hypothesis) that for k-cells Σ̃ with fixed re-

striction to their boundary, the maps Σ̃//GΣ → Θd cor-
respond to d − k-dimensional defect junctions. We can

treat Σ̃ × [0, 1] itself as k + 1-cell, so the map f̂ should
correspond to a d − k − 1-dimensional defect boundary.
We interpret this as saying that a d− k − 1-dimensional
defect is getting pumped to the boundary of the (original,
not dual) d− k-cell Σ, as discussed physically in Section
I C. In general, this pumping data on k-cells corresponds

to the restriction f̂k of f̂ to the k-skeleton of the dual

cells. Two homotopies f̂ , f̂ ′ with the same restriction f̂k
can be related by composition with a k + 1-homotopy,
so inductively we conclude that the pumping on cells of
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FIG. 9. The data for a defect network in two diensions with
translation symmetry. px and py are duality twist lines, and
α is an Abelian anyon type.

all dimension completely characterizes homotopies. Note
that we can in principle derive the fusion rules for de-

fects from the requirement that f̂ be non-anomalous on
([0, 1]×X)//G in the sense described in Section IV B.

V. DEFECT NETWORKS IN TWO
DIMENSIONS WITH ONLY TRANSLATION

SYMMETRY

The main purpose of this paper is to show that defect
networks in principle reproduce all the physics of crys-
talline topological phases. We will not, however, go very
much into how this works in concrete examples. “Block
states”, which are the specialization of defect networks
to invertible phases, have been studied quite systemat-
ically in Refs. 53 and 54. Here we will content our-
selves with discussing a few simple examples of defect net-
works for non-invertible phases. Specifically, we will con-
sider the case where the bulk phase (i.e. the topological
phase when the symmetries are lifted) is a 2-dimensional
bosonic topologically ordered phase supporting anyonic
excitations, and the only symmetry present is discrete
translation symmetry in the x and y directions.

Let us first consider the case where the only symme-
tries are translations, G = Z×Z. We can work out what
the classification of symmetry-enriched phases should be
by invoking the Crystalline Equivalence Principle, and
then using the classification of SET phases with inter-
nal symmetry from Refs. 25 and 73. We find that the
phases should be classified by a group homomorphism
ρ : Z × Z → Aut(C), where Aut(C) is the group of per-
mutations of the anyon labels that leave the braiding

statistics unchanged, and by a symmetry fractionaliza-
tion class [ω] ∈ H2

ρ(Z × Z, A) ∼= A/Aρ, where A is the
Abelian group of Abelian anyons, Aρ is the subgroup
generated by {(g · a− a) : a ∈ A, g ∈ G}, and G acts on
A according to the its image by ρ.

Now let us see how to understand this classification in
terms of defect networks. Firstly, observe that the ho-
momorphism ρ is uniquely determined given its images
px = ρ(Tx), py = ρ(Ty), where Tx and Ty are the trans-
lation generators. To each p ∈ Aut(C), there is the no-
tion of a “duality twist line”, such that particles passing
through the twist line are acted upon by the permuta-
tion p. So we can consider a spatial arrangement of twist
lines as shown in Figure 9, with vertical and horizontal
lines corresponding to the permutations px and py respec-
tively. Note that, if translation symmetry is preserved,
we can shift the twist lines in space, as long as they all
move together, but never remove them or change their
character. Therefore, each px,py defines a distinct defect
network.

To understand the class [ω], we note that an anyon is a
dimension-0 defect (an invertible defect only if the anyon
is Abelian), and therefore we can define an invertible de-
fect network where each unit cell contains some anyon
α ∈ A. The only way to change the anyon type carried
per unit cell is if some duality twist lines are present,
in which case we can create an anyon β , along with its
anti-particle −β, out of the vacuum in each unit cell, and
then move each β over a duality twist line. This sends
α → α + p(β) − β, where p = px or py, which explains
why we obtain an A/Aρ classification.

VI. SPECTRAL SEQUENCES

The arguments of this paper are sufficient to demon-
strate, both conceptually and rigorously, the equivalence
of the defect network picture and the general classifica-
tion of Ref. 55. In principle the arguments we have given
can be used to determine, for example, the fusion rules
for defects and the possible anomaly associated with each
defect network. On the other hand, we have not yet de-
veloped tools to allow one to compute such things in
practice. There are two different approaches one could
envision: firstly, one could attempt an analysis in par-
ticular cases on purely physical grounds, as was done by
Refs. 53 and 54, and trust that this should reproduce
the same result as the general mathematical framework.
However, it might also be desirable to do the computation
in the mathematical framework directly. Here we briefly
describe what we expect to be the key tool, at least for
invertible phases, namely a spectral sequence; we leave
the details for future work. In the special case of the
group cohomology classification of bosonic SPT phases,
more detailed computations can be found in Ref. 74.

In mathematics, a spectral sequence takes the form of
a sequence of pages Er. Each such page can be written
as a two-dimensional array of Abelian groups, which we
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write as Erp,q (where Erp,q = 0 unless p, q ≥ 0). There are
homomorphisms dr (the “differentials”) that act on each
page according to

dr : Erp,q → Erp+r,q−r+1 (9)

Moreover, the differentials satisfy dr+1 · dr = 0, and the
r + 1-th page can be computed from the r-th page ac-
cording to

Er+1 = ker dr/ im dr−1. (10)

In general, such a spectral sequence always converges:
that is, for each p, q, for large enough k the differentials
will have source and target spaces that are outside the
first quadrant (i.e. not p, q ≥ 0), in which case

Ek+1
p,q
∼= Ekp,q := E∞p,q. (11)

Let Cd := hdG(X) be the full classification group for in-
vertible crystalline phases on a d-dimensional manifold X
with G-action, taking into account the twists (required
for bosonic systems with orientation-reversing symme-
tries or fermionic systems, as described in Appendix A).
Define Ck to be the subgroup of Cd describing phases
which can realized as a defect network containing defects
of dimension ≤ k. What we will do is to construct a
spectral sequence such that

E∞k+1,d−k = Ck/Ck−1. (12)

Therefore, from the spectral sequence one can recover Cd,
up to an extension problem of Abelian groups.

In fact, the individual pages and differentials of the
spectral sequence have a very physical interpretation.
The Erk+1,d−k entry describes an “approximation” to

Ck/Ck−1 taking into account only deformations of defects
of dimension at most k + r, and only anomalies of di-
mension at least k − r. Thus, one can compute Er+1

from Er by taking into account an extra dimension of
deformations (described by the incoming differential dr
at Erk+1,d−k) and an extra dimension of anomalies (de-

scribed by the outgoing differential).
The construction of the spectral sequence in our case

proceeds by considering the series of inclusions (a “filtra-
tion”)

X0 ⊆ X1 ⊆ · · · ⊆ Xd−1 ⊆ X, (13)

where Xk is the k-skeleton of the dual cell structure on
X. One can show that when the classification is gov-
erned by a generalized cohomology theory h•(−) (that
is, the spaces Θ• form an Ω-spectrum), as we assumed
to be the case for invertible phases, then this filtration
induces a spectral sequence (for example, see Ref. 75 for
the untwisted case) Erp,q such that

E∞p,q = F php+qG (X)/F p+1hp+1
G (X), (14)

where

F ph•(X//G) = ker (ip : h•G(Xp)→ h•G(Xp−1)) , (15)

This indeed implies Eq. (12). Moreover, the first page of
the spectral sequence is given by the (twisted) relative
cohomology

E1
p,q = hp+qG (Xp, Xp−1) (16)

In terms of the maps f : X//G → Θ• introduced in
Section IV A, the “relative cohomology” Eq. (16) means
the homotopy classes of maps Xp//G→ Θp+q which re-
strict to the constant map on Xp−1//G (or the analogous
statement in the twisted case).

Using the methods of Section IV A, we see that
E1
k+1,d−k contains precisely the data associated with the

(original, not dual) k-cells in a defect network. To see
this, note if we start following the general approach of
Section IV A, but replacing X with Xd−k, then we find

that the only data we need are the maps fΣ̃ : Σ̃//GΣ as-

sociated to dual d−k-cells Σ̃, and these are all constrained
to be constant on their boundaries by assumption. Then
Lemma 2 shows that the homotopy classes of such maps
are simply classified by hd−k(BGΣ).

The E1 page does not “know” about the anomalies
and deformations described in Sections IV B and IV C.
However, these get taken into account in higher pages of
the spectral sequence. When the generalized cohomol-
ogy theory h•(−) is just ordinary cohomology, then this
spectral sequence reduces to the one considered in more
detail in Ref. 74.

VII. DISCUSSION

In this work, we have demonstrated a general picture
for understanding topological phases with spatial sym-
metries and show how it agrees with previously proposed
frameworks. We hope that it will allow for a better
physical understanding of such phases, especially once
one moves beyond the formal and general aspects the
theory, as developed here, to consider more concrete ex-
amples. Indeed, the “block state” picture for invertible
phases, which is a special case of our picture, has been
applied in a variety of cases to give physical pictures
of crystalline topological phases53,54,76. (As one exam-
ple, it allows for a very transparent understanding of so-
called “higher-order” phases which carry gapless modes
on lower-dimensional submanifolds of the boundary77).
It would no doubt be fruitful to perform similar analyses
for the more general “defect network” picture described
here for non-invertible phases.

Another avenue of inquiry would be to consider po-
tential generalizations of defect networks. In particu-
lar, in this work we considered only “smoothable” de-
fects (which we conjectured to be equivalent to invert-
ible defects). It would be interesting to determine what
kind of phases can be described using networks of non-
smoothable defects. For non-smoothable defects, the
topological phase carried on top-dimensional cells does
not need to be equal on different cells, so in general
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these defects will be boundaries between different top-
dimensional topological phases, and then junctions be-
tween such boundaries, and so forth. Moreover in the
non-smoothable case, the defect networks might not
even need any spatial symmetries for protection. We
speculate78 that the phases of matter describable in this
way will be precisely the so-called fracton phases79–89.
This would be an intriguing connection between fracton
phases and crystalline topological phases.

A. Related works

In the course of preparing this manuscript, we became
aware of several related preprints74,76,90. Unlike any of
these works, we also discussed non-invertible phases. Let
us make some comments on each preprint, and its relation
to our work, in turn.

• In Ref. 76, the authors use a block states (there
named “topological crystals”) approach to classify
non-interacting phases of fermions. (Recall that for
interacting phases, block states are the specializa-
tion of defect networks to invertible phases.) The
arguments used have overlap with the physical ar-
guments we presented in Section I. Whether the
mathematical derivation of Section IV will apply
depends on whether our assumptions from Section
III, namely Conjectures 1, 2 and 3 hold for the non-
interacting classification, which is not immediately
clear.

• In Ref. 74, the authors discuss very systematically
a picture for invertible phases which is equivalent
to the specialization of our defect network picture
to invertible phases. Moreover, for the special case
where the internal SPT classification is assumed
to be group cohomology, they derive their picture
from our general framework of Ref. 55 through a
spectral sequence. This spectral sequence is a spe-
cial case of the one we discuss in Section VI.

• In Ref. 90, the authors show based on certain as-
sumptions that the “block state” picture (that is,
the special case of “defect networks” for invert-
ible phases) can be derived through a spectral se-
quence. The assumption of Ref. 90 is that the
classification of crystalline phases is a “general-
ized Bredon equivariant homology theory”, a ter-
minology which we adopt, though it is not used in
Ref. 90, to distinguish it from the notions of gener-
alized equivariant (co)homology used by us in this
work and in Ref. 55, which we can call “generalized
Borel equivariant (co)homology”. Note that there
are many different generalized Bredon equivariant
homology theories (corresponding to many differ-
ent choices of “equivariant spectra”), and Ref. 90
does not attempt to say which one actually clas-
sifies crystalline SPT phases, except in the case of

free fermions (which prevents them from perform-
ing any explicit computations). By contrast, our
approach is in a sense uniquely determined by the
internal SPT classification; specifically, once the
classification of SPT phases with internal symme-
try group G has been identified as a generalized
cohomology theory h•(BG), then all the structure
of crystalline SPTs can be obtained from h•.

There remains, however, the question of whether
our classification is a special case of a generalized
Bredon homology theory, in which case the argu-
ments of Ref. 90 could be applied to our approach
as a special case. Indeed, it is easy to show that
our classification is an example of a “generalized
Bredon cohomology theory”, defined by replacing
the axioms discussed in Ref. 90 by the appropriate
cohomology versions. It seems plausible that when
the space X which the system physically inhabits
is a finite-dimensional manifold, there should be
some kind of Poincaré duality theorem that relates
our classification to a generalized Bredon homology
theory. In fact, for the case where the generalized
cohomology theory is ordinary cohomology (that
is, we are discussing the group cohomology classi-
fication of bosonic SPTs), this can be straightfor-
wardly demonstrated91. In general we do not have
a proof, but we note that our approach to derive the
defect network picture, involving as it does passing
to the dual cellulation and invoking the Thom iso-
morphism, is already highly reminiscent of Poincaré
duality.
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Appendix A: General treatments of twists and the
Thom isomorphism

a. The twisted state bundle

The bundle of local states over an n-dimensional man-
ifold X forms a fiber bundle SX → X with fiber Θn.
Let us be more precise about how this bundle is con-
structed. The idea is that there should be a continuous
action of O(n) on Θn. Indeed, Θn is supposed to repre-
sent some approximation to the space of ground states on
Rn, so we should be able to act on this space by rotations
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or reflections. More formally, if Θ• is chosen to be an
Ω-spectrum (as we assumed in Section III for invertible
phases) or more generally, if Θn is chosen to be the space
of n-dimensional TQFTs, then the existence of such an
O(n) action follows from the cobordism hypothesis93 as
proven by Lurie94. (In general, the cobordism hypoth-
esis only guarantees an up-to-homotopy action of O(n);
to simplify the discussion we will ignore this subtlety in
what follows, but the results should still hold).

In the Ω-spectrum case, one can furthermore show that
the O(n) action is compatible with the spectrum struc-
ture in the sense that, for • ≥ n, the equivalence

Hom∗(S
n,Θ•)→ Θ•−n (A1)

[which is guaranteed to exist by the definition of Ω-
spectrum, where Hom∗(S

n,Θ•) is space of based maps
from Sk to Θ•; that is, the maps which send the base-
point of Sk to the vacuum state in Θn] is invariant with
respect to the diagonal action of O(n) on the source and
target of Hom∗(S

n,Θ•), where O(n) acts on Θ• through
the inclusion O(n)→ O(•).

Then, for any n-dimensional vector bundle E → B (of
which the tangent bundle of a manifold is a special case),
whose orthonormal frame bundle we write O(E) → B,
we can define the associated state bundle which is the
bundle over B whose fibers are

Sn(E)b = HomO(n)(O(E)b,Θn), (A2)

that is, the space of O(n)-equivariant maps from O(E)b,
the space of frames at b, into Θn. The fiber Sn(E)b is
equivalent to Θn (but not canonically).

If we consider the case where B is an n-dimensional
manifold X, and TX is its tangent bundle, then we define
a smooth state on X to be a section X → Sn(TX). Then
the interpretation of Eq. (A2) is that we need to specify
a set of coordinate axes (i.e. a frame) near any given
point in order to be able to identify the local state in the
vicinity of a given point with the “canonical” space of
states Θn.

Next, if we consider the case of an n-dimensional man-
ifold X with smooth action of a symmetry group G.
Then the action of G on the tangent bundle T (X) in-
duces an n-dimensional vector bundle TGX → X//G,
where TGX = X//G. Defining the associated state bun-
dle Sn(TGX) to E as before, we can then define an equiv-
ariant smoooth state to be a section X//G→ Sn(TGX).

For the connection between equivariant smooth states
so defined, and the classification of crystalline phases
in terms of “crystalline gauge fields” proposed by us in
Ref. 55, see Appendix B. In this section, for simplicity
we considered only the case that there are no ”inter-
nal” twists; that is, there are no anti-unitary symmetries,
and (for fermionic phases) the internal symmetries have
no non-trivial extension by fermion parity, and spatial
symmetries have the extension induced by their spatial
action [for example, a C2 rotation generator R satisfies
R2 = (−1)F ]. However, in Appendix B we consider also
the more general case.

b. The Thom isomorphism

Now we are ready to give the proof of the Thom iso-
morphism, i.e. Lemma 2. We specialize to the case where
Θ• is an Ω-spectrum. Let E → B be an n-dimensional
vector bundle. We can define the corresponding sphere
bundle Sph(E) by one-point-compactifying each fiber of
E by adding a point at infinity. Meanwhile, we define
the state bundle S•(E)→ B according to Eq. (A2). De-
fine P •(E) := Hom∗(Sph(E),S•E), where we introduced
the notation that for two bundles E → B and E ′ → B,
Hom∗(E , E ′) is the bundle over B whose fiber at b are
given by Hom∗(Eb, E ′b), the space of continuous basepoint-
preserving maps from Eb to E ′b (we take the basepoint of a
fiber of Sph(E) to be the point added at infinity, and the
basepoint of a fiber of S•(E) to be the vacuum state).

Lemma 3. P •(E) is isomorphic to the trivial bundle
Θ•−n = Θ•−n ×B.

Proof. Let us construct a homeomorphism between the
fibers at a point b ∈ B. Then we will first construct
a map fb : Hom∗(Sph(E)b,S•(E)b) → Hom∗(S

n,Θ•).
Then we can compose with Eq. (A1) to get a map f ′b :
Hom∗(Sph(E)b,S(E)b))→ Θ•−n.

Recall that that S•(E)b = HomO(n)(O(E)b,Θn). We
can canonically write O(E)b as the space of orthog-
onal maps u : Eb → Rn, or equivalently the space
of induced homeomorphisms Sph(E)b → Sn. Hence,
we can construct a canonical homeomorphism fb :
Hom(Sph(E)b,S•(E)b)→ Hom(Sn,Θ•) according to

fb(α)(s) = α(u−1
∗ (s))(u∗), (A3)

for some fixed choice of map u∗ : Sph(E)b → Sn; when
we compose with Eq. (A1), the map f ′b turns out not to
depend on the choice of u∗, as a consequence of the O(n)
equivariance of Eq. (A1). One can show that this map
on fibers induces a bundle isomorphism between P •(E)
and Θ•−n.

Now let us consider the space X = Rn with an or-
thogonal linear action of G, that is, a homomorphism
ϕ : G → O(n). We can consider the equivariant tangent
bundle TGX = TX//G→ X//G, and we form the asso-
ciated state bundle S•(TGX) → X//G. Recall that an
equivariant smooth state on X is defined to be a section
of this bundle. Let h•G(X,∞) be the homotopy classes of
sections of the bundle S•(TGX) which can be extended
to the one-point compactification of X such that the map
BG→ Θ•−n obtained at the point at infinity is the triv-
ial map. Let h•−nG (pt) := h•−n(BG) be the homotopy
classes of maps BG→ Θ•−n. Then we have

Lemma 4 (Equivariant Thom isomorphism).

h•G(X,∞) ∼= h•−nG (pt). (A4)

Proof. In this case, we can check that the bundle
S•(TGX) → X//G is isomorphic to the bundle (X ×
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Θ•)//G → X//G. Hence, a section of this bundle is a
map X//G → (X × Θ•)//G which must compose with
the projection (X × Θ•)//G → X//G to give the iden-
tity map. These are equivalent to maps X//G→ Θ•//G
by composing with the other projection. On the other
hand, we can also treat X//G as a vector bundle over
BG. Then one can show that the associated state bun-
dle S•(X//G) is isomorphic to the bundle Θ•//G→ BG.
It follows that h•G(X,∞) exactly corresponds to homo-
topy classes of sections of the bundle P •(X//G) defined
above, with E = X//G and B = BG. Then we invoke
Lemma 3.

This immediately gives Lemma 2 (reformulated in
terms of sections of the state bundle) because the ad-
ditive structure of Θ• (coming from the fact that each
Θ• is a loop space, which has a notion of loop composi-
tion) ensures that is sufficient to prove Lemma 2 for the
case where the restriction to the boundary of the k-ball
is trivial, and in that case we can collapse the boundary
to a point.

Finally, let us briefly note the form which these re-
sults take in the case where the generalized cohomology
theory under consideration is cobordism14 (for bosons)
or spin cobordism67,68 (for fermions), which are the
best current candidates for the “correct” classification
of SPT phases. In that case, we have55 that hnG(X,Y ) =
Ωnstr(X//G, Y//G, TX ⊕ ξ), where str refers to oriented
cobordism for bosons and spin cobordism for fermions,
and TX ⊕ ξ is the twisting bundle, with TX encoding
the spatial twist and ξ the internal twist95. In this case,
for Y ⊂ X a G-equivariant codimension k submanifold,
S(Y ) the fiber-wise one-point compactification of the nor-
mal bundle of Y (a k-sphere bundle over Y ), we have by
the usual equivariant Thom isomorphism,

Ωn−kstr (Y//G, TY ⊕ ξ) = Ωnstr(S(Y )//G, Y, TS(Y )⊕ ξ),

since TS(Y )|Y = NY ⊕ TY . Taking Y to be a point
yields the above lemma.

Appendix B: Crystalline Topological Liquids and the
Baez-Dolan-Lurie Cobordism Hypothesis

In an earlier paper of ours55, given a target manifold X
with a smooth action of a group G and a representation ξ
of G (equivalently a vector bundle over BG) we defined a
bosonic (fermionic) ξ-twisted crystalline gauge field on a
spacetime M as a map f : M → X//G together with an
orientation (spin structure) on TM ⊕ f∗TX//G ⊕ α∗ξ,
where α : M → BG is obtained by composition of f with
the projection X//G→ BG.

The collection of such n-manifolds (M,f) can be de-
scribed in terms of a cobordism n-category of the usual
type described eg. by Lurie94. These cobordism cate-
gories are for manifolds with (P, ρ) structure, where P
is a space with an Rn bundle ρ, and a (P, ρ) structure
on an n − k manifold M with an Rk bundle NM is a

map g : M → P along with an isomorphism of bundles
TM ⊕NM ' g∗ρ. For example, the cobordism category
appropriate for oriented n-dimensional TQFTs is given
by taking P = BSO(n) and ρ to be the universal Rn
bundle over BSO(n).

Our goal is to construct (P, ρ) out ofX,G, ξ such that a
crystalline gauge field on M is the same as a (P, ρ) struc-
ture on M . Then we will invoke the Baez-Dolan-Lurie
cobordism hypothesis (a theorem) to classify TQFTs for
such decorated manifolds and compare it to what we have
described above.

To do so, consider that, associated to the tangent bun-
dle TX, there is a principal Z2 (Z2 × BZ2) bundle of
orientations (spin structures), of which a section is equiv-
alent to an orientation (spin structure) of TX. Let us de-
note this bundle Str(TX), the structure bundle of TX,
with the appropriate structure understood for whether
we are dealing with bosonic or fermionic systems.

Since G acts smoothly on X, the action extends to
an action on TX, and we can define the Rn bundle
TX//G → X//G, which extends the tangent bundle
of X (a fiber of X//G → BG). Likewise we define
Str(TX//G) as the bundle of orientations (spin struc-
tures).

Now, given a representation ξ of G, which repre-
sents the action of G on the internal degrees of free-
dom, we obtain a principal bundle Str(ξ) over BG. We
can pull this bundle back to X//G using the projection
π : X//G→ BG to form π∗Str(ξ).

Because the structure groups of the two principal bun-
dles Str(TX//G) and π∗Str(ξ) are the same and abelian
(stable), we can tensor them, to form the Z2 (Z2×BZ2)
bundle Str(TX//G)⊗ π∗Str(ξ).

Associated to any such bundle is a bundle whose fiber
is BSO(n) (BSpin(n)). This can be constructed univer-
sally, over the classifying space of such bundles, namely
BZ2 (BZ2 × B2Z2). Indeed, these classifying spaces
are Postnikov truncations of BO(n), and O(n) acts on
both SO(n) and Spin(n). Note however in the case of
fermions there are two natural choices of BSpin(n) bun-
dle over BZ2 × B2Z2, depending on whether we take
as classifying map w2 or w2 + w2

1, ie. whether we use
Pin±(n). We can decide once and for all to take Pin+ if
we agree that the components of the classifying map for
Str(V ) : Y → BZ2 × B2Z2 are w1(V ), w2(V ), where V
is a vector bundle over a space Y .

Thus we let P be the BSO(n) (BSpin(n)) bundle as-
sociated to Str(TX//G) ⊗ π∗Str(ξ) and we take ρ to
be the Rn bundle which is the universal bundle over all
the fiber BSO(n)’s (BSpin(n)’s). Again this bundle is
constructed once and for all over the universal BSO(n)
(BSpin(n)) bundle over BZ2×B2Z2, such that the first
factor acts by orientation-reversal and the second factor
acts trivially. This concludes the construction of the bor-
dism category.

Intuitively, by our construction a (P, ρ) structure on
an n-manifold M is a map f : M → X//G as well as
a “discontinuous map” to the fiber g : M → BSO(n)
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(g : M → BSpin(n)), whose locus of discontinuity is
characterized by the fibration P over X//G with fiber
BSO(n) (BSpin(n)), which is in turn controlled by the
twisting bundle Str(TX//G)⊗ π∗Str(ξ). This map is of
course fixed by the isomorphism (f, g)∗ρ ' TM to be the
classifying map of the tangent bundle of M , endowing M
with the proper twisted tangent structure.

Now we invoke the cobordism hypothesis, which says
that, considering the frame bundle O(ρ), which is an
O(n)-bundle over P , an n-dimensional TQFT for (P, ρ)
manifolds is the same as an O(n)-equivariant map from
O(ρ) to the∞-groupoid of fully dualizable objects inside
some target n-category C.

Although we can only be agnostic about the proper
choice of target n-category C, note that the ∞-groupoid
of fully dualizable objects inside C constitutes the space
of framed n-dimensional TQFTs, also by the cobordism
hypothesis. Let us denote this Θfr.

Note that O(n) acts only on the fibers of O(ρ). Thus,
O(n)-equivariant maps from O(ρ) to Θfr are the same
as sections of the hom bundle HomO(n)(O(ρ),Θfr) →
X//G, with fiber HomO(n)(F,Θfr) where F is the
frame bundle of the universal Rn bundle over BSO(n)
(BSpin(n)). Again by the cobordism hypothesis, this
fiber is isomorphic to the space of bosonic (fermionic)
n-dimensional TQFTs ΘSO (ΘSpin). In conclusion we
obtain a bundle with fiber Θ over X//G whose sections
are n-dimensional TQFTs for manifolds equipped with
a crystalline gauge field, with appropriate twists. This
should be compared with our construction of the twisted
state bundle above, and amounts to a proof of our char-
acterization of crystalline topological liquids via twisted
smooth states in conjecture 2 and its proper generaliza-
tion in Appendix A.

Appendix C: Enlarging the Unit Cell

In this section we show that for any space group G with
a translation symmetry, there are subgroups H < G with
isomorphic point groups but arbitrarily large unit cell (in
each dimension), such that if

f : BG→ Θd

is not homotopic to a constant map, and i : BH → BG
is the map induced by the inclusion H ↪→ G, then

f ◦ i : BH → Θd

is also not homotopic to a constant map. As we discussed
in Section I C, this makes our cellular assumption on our
local unitary circuits innocuous, since it means that non-
trivial G phases remain non-trivial after enlarging the
unit cell to H.

First of all, let Gpt denote the point group of G, T
the translation subgroup, and Λ ∈ Rd a lattice for which
G is the spacegroup. Gpt is finite of order |Gpt|. Let
m = 1 mod |Gpt| and Λm be the sublattice of Λ where

the unit cell is enlarged by m in every dimension. It is
straightforward to show that the subgroup Gm of G of
symmetries of Λm is isomorphic to G with the same point
group. Let Tm denote the translation symmetry in Gm.

Furthermore, since H>0(BGpt, A) is |Gpt|-torsion for
any coefficient group A96 and H0(BGpt, A) = A, the
inclusion Gm ↪→ G induces an isomorphism

Hn(BG,A)→ Hn(BGm, A),

for all n if all torsion in A is coprime to m. This is
because we have a map of Serre spectral sequences with
E2 page

Hj(BGpt, H
k(BT,A))→ Hj(BGpt, H

k(BTm, A)),

where j + k = n and the map is multiplication of the
coefficients by mk. Because mk = 1 mod |Gpt|, this is the
identity map on the E2 page except for possibly the (0, n)
part, where we get an isomorphism by our assumption on
the torsion. Thus the map converges to an isomorphism.

Taking A = Z and n = d + 2 thus proves the result
for the group cohomology phases without orientation-
reversing symmetries. If we have orientation-reversing
elements of Gpt, then we should include a twist, which
is an action of Gpt on Z. This yields an action of Gpt
on the Hk(BT,Z) and Hk(BTm,Z) for odd k. How-
ever, even in this twisted setting, H>0(BGpt, A

tw) is
still |Gpt|-torsion, and H0(BGpt,Ztw) is 2-torsion, hence
also |Gpt|-torsion if Gpt has an orientation-reversing sym-
metry. Thus the argument extends to the twisted case
with no issue, proving the result for all group cohomology
phases.

This argument more generally produces an injection

Ωn(BG)→ Ωn(BGm)

for any generalized cohomology Ω, so long as m is also
1 modulo the product of all torsion in Ω≤n(pt), using
the induced map of Atiyah-Hirzebruch-Serre spectral se-
quences which on the E2 page is

Hj(BGpt,Ω
k(BT ))→ Hj(BGpt,Ω

k(BTm)),

For spin cobordism this means it is good enough to take
m = 1 mod |Gpt|2d+1. It is also enough to produce an
isomorphism for twisted cohomology groups.

We can even extend the argument to the most general
case of just some target space Θd as above with bounded
homotopy groups, π≥lΘd = 0 for some l (this can be
slightly weakened to π≥lΘd is torsion-free). In particular,
this is the case if we take Θd to be the space of (d+ 1)-
dimensional TQFTs. Let us restrict our attention to a
single component of Θd,C ⊂ Θd since BG and BGm are
connected. Let us assume f ◦i is homotopic to a constant
map and argue that it follows that f is also homotopic
to a constant map, given the further restriction that m
is coprime to all the torsion in π≤lΘd,C .

We use obstruction theory to capture the (based) ho-
motopy class of f and f ◦ i. The first piece of data is a
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map

f1 : π1BG = G→ π1Θd,C

(the unbased homotopy class begins with a conjugacy
class of such maps and all further invariants should be
taking up to conjugation to capture the unbased homo-
topy class). So long as m is coprime to the torsion in
π1Θd,C , then if f1 is nontrivial, so is the induced map

f1 ◦ i1 : π1BGm = Gm → π1Θd,C .

Thus, by assumption, f1 must be trivial.

The next piece of data is a class

f2 ∈ H2(BG, π2Θd,C).

As before, if this is nontrivial, then so is the class of the
induced map:

(f ◦ i)2 = i∗f2 ∈ H2(BGm, π2Θd,C).

Thus, by assumption, and our lemma above, f2 must also
be trivial.

We continue this way up to l, showing that all obstruc-
tion theoretic invariants of f vanish. It follows that f is
homotopic to a constant map. This completes the proof
of the claimed result, since m may be taken arbitrarily
large given the residue constraints.

We note that it is straightforward to extend our re-
sults to the case where there is also an internal symmetry
Gint, so long as m is also coprime to all of the torsion in
H<d+1(BGint,Z). Furthermore, if there is a nontrivial
extension

Gint → Gtotal → Gspace,

for instance in the case of magnetic translations, as long
as m is 1 modulo the order of the extension class, we will
still obtain an injective restriction map. For instance if
we have a 1/2 magnetic flux per unit cell, then enlarging
the unit cell by an odd factor will not change the mag-
netic translation group. We can then obtain a map of
spectral sequences as above to prove the injection.

Furthermore, as it is just a matter of relativizing all
the above arguments, the result also straightforwardly
extends to the twisted case, where we are studying sec-
tions of a Θd-fiber bundle over BG. All of the coho-
mology groups in the obstruction theory argument be-
come twisted cohomology groups, but the argument is
the same.

1 X.-G. Wen, Int. J. Mod. Phys. B 04, 239 (1990).
2 Z.-C. Gu and X.-G. Wen, Phys. Rev. B 80, 155131 (2009),

arXiv:0903.1069.
3 F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa,

Phys. Rev. B 81, 064439 (2010), arXiv:0910.1811.
4 F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa,

Phys. Rev. B 85, 075125 (2012), arXiv:0909.4059.
5 L. Fidkowski and A. Kitaev, Phys. Rev. B 81, 134509

(2010), arXiv:0904.2197.
6 X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 82,

155138 (2010), arXiv:1004.3835.
7 X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 83,

035107 (2011), arXiv:1008.3745.
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