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Motivated by the recent discovery of a macroscopically degenerate exactly solvable point of the spin-1/2
XXZ model for Jz/J = −1/2 on the kagome lattice [H. J. Changlani et al. Phys. Rev. Lett 120, 117202
(2018)] – a result that holds for arbitrary magnetization – we develop an exact mapping between its exact
"quantum three-coloring" wavefunctions and the characteristic localized and topological magnons. This map,
involving "resonating two-color loops", is developed to represent exact many-body ground state wavefunctions
for special high magnetizations. Using this map we show that these exact ground state solutions are valid for any
Jz/J ≥ −1/2. This demonstrates the equivalence of the ground-state wavefunction of the Ising, Heisenberg
and XY regimes all the way to the Jz/J = −1/2 point for these high magnetization sectors. In the hardcore
bosonic language, this means that a certain class of exact many-body solutions, previously argued to hold for
purely repulsive interactions (Jz ≥ 0), actually hold for attractive interactions as well, up to a critical interaction
strength.

For the case of zero magnetization, where the ground state is not exactly known, we perform density matrix
renormalization group calculations. Based on the calculation of the ground state energy and measurement of
order parameters, we provide evidence for a lack of any qualitative change in the ground state on finite clusters
in the Ising (Jz � J), Heisenberg (Jz = J) and XY (Jz = 0) regimes, continuing adiabatically to the vicinity
of the macroscopically degenerate Jz/J = −1/2 point. These findings offer a framework for recent results in
the literature, and also suggest that the Jz/J = −1/2 point is an unconventional quantum critical point whose
vicinity may contain the key to resolving the spin-1/2 kagome problem.

I. INTRODUCTION

Quantum frustrated magnetism presents one of the most in-
triguing and intricate examples of the interplay between spa-
tial geometry and quantum mechanics. This results in a rich
multitude of competing exotic phases such as valence bond
solids, topological phases including several spin liquids, and
magnetically ordered phases. Slight changes in the material
composition or geometry can lead to a dramatic change in its
phase, making frustrated magnets ideal playgrounds to study
quantum phase transitions.

The building blocks of many of these systems are lattices
of magnetic ions made from motifs of connected triangles.
Prominent amongst these is the kagome lattice, a lattice of cor-
ner sharing triangles which has been intensely studied owing
to its relevance to materials such as Herbertsmithite (a kagome
lattice of Cu2+ ions)1. Experiments on Herbertsmithite2,3–
of which the idealized kagome Heisenberg antiferromagnet is
known to be a good model4 – find that spins do not order even
at the lowest investigated temperatures (50 mK, a small frac-
tion of the exchange energy of ∼ 200 K), tantalizingly sug-
gesting the picture of a two-dimensional spin-liquid ground
state. However, in spite of several theoretical efforts devoted
to the idealized model, there is no universal consensus on the
precise nature of the spin liquid ground state5–15 and recent
work even suggests that larger lattices should stabilize an or-
dered state16. To reconcile some of these observations, it has
been suggested that the kagome Heisenberg model lies at or
close to a critical point in the phase diagram in a suitably cho-

sen parameter space of model Hamiltonians17,18.
Previous work (by two of us, HJC and BKC in collaboration

with others) contributed to the understanding of the kagome
phase diagram through the discovery of an extensively quan-
tum degenerate exactly solvable point17. While the classical
extensive degeneracy for the kagome and hyper-kagome lat-
tice has a long history, the connection to the quantum case in
the spin-1/2 XXZ Hamiltonian,

HXXZ [Jz] = J
∑
〈i,j〉

Sxi S
x
j + Syi S

y
j + Jz

∑
〈i,j〉

Szi S
z
j (1)

at HXXZ[Jz = −1/2, J = 1] (notated as HXXZ0
19), has not

been entirely explored. Si are spin-1/2 operators on site i,
〈i, j〉 refer to nearest neighbor pairs and J (set to 1 through-
out the paper) and Jz are the XY and Ising couplings respec-
tively. Ref.17 showed that the quantum degeneracy exists in
all Sz sectors and all finite (or infinite) system sizes. Nu-
merical investigations on the highly symmetric 36d cluster20

showed how theXXZ0 point on the kagome lattice is embed-
ded in the wider phase diagram. We note that Ref.21 studied
the phase diagram of the triangular lattice in the vicinity of
Jz = −1/2.

At Jz = −1/2, the exact solutions apply to any lattice of
triangular motifs with the Hamiltonian of the form,

H =
∑
4

HXXZ0(4) (2)

where HXXZ0(4) is the XXZ0 Hamiltonian on a single tri-
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Figure 1. (Color online) Two representative three-colorings on the
kagome lattice corresponding to the q = 0 and

√
3 ×
√

3 solutions.
The colors red, blue and green represent the classical 120◦ states or
their quantum equivalents.

angle 4 as long as the vertices are consistently colorable by
three colors such that no two vertices connected by a bond
have the same color. For the kagome lattice, we show repre-
sentative three-colorings in Fig. 1 which depict the so-called
q = 0 and

√
3×
√

3 patterns22. (Other three-colorable lattices
include the triangular lattice, the Shastry-Sutherland lattice,
the hyperkagome lattice, the squagome lattice and the icosi-
dodecahedron.)

In this work, we employ the quantum three-colorings as a
means of gaining analytic intuition for the physics near the
highly degenerate Jz = −1/2 point. Our work will highlight
the relevance of this point in controlling the physics seen in
the Heisenberg regime i.e. Jz = 1. For this purpose, we
decompose the XXZ Hamiltonian (1) as,

HXXZ [Jz] = HXXZ0 +
(
Jz +

1

2

)∑
〈i,j〉

Szi S
z
j (3)

= HXXZ0 +
(
Jz +

1

2

)
Hzz (4)

and ask if it is possible to simultaneously minimize both parts
of the Hamiltonian. While this is not possible in the most gen-
eral circumstances, we find that at high magnetization (equiv-
alently, low fillings in the hardcore bosonic language) the

Hamiltonian is "frustration free" i.e. it is indeed possible to
achieve this minimization.

Since the map between spin 1/2 and hardcore bosons is used
often in the paper, we clarify the terminology associated with
it. Down spins in a background of up spins are equivalent
to hardcore bosons in a vacuum and thus we interchangeably
use the words "filling" and "magnetization" in the course of
our discussions. More precisely, the spin (Si) and hardcore
boson operators (bi) are related as,

b†i = S+
i bi = S−i ni = b†i bi =

1

2
− Szi (5)

and thus the XXZ Hamiltonian reads,

HXXZ(Jz) =
1

2

∑
〈i,j〉

b†i bj + h.c. + Jz
∑
〈i,j〉

ninj + d (6)

where d is a constant in a given magnetization sector that
equals Jz

(
N
2 − 2

∑
i ni
)

for a N site kagome lattice. We
also use the term "magnon" to denote the wavefunction of one
down spin in a sea of up spins, or equivalently the wavefunc-
tion of a single hardcore boson in vacuum.

The remainder of the paper is organized as follows. In
Sec. II, we recapitulate the nature of the exact (ground state)
solutions for Jz = −1/2 and why they exist in every magne-
tization sector. For this we define quantum three-colors, the
quantum version of the 120◦ classical ground states, which
provides a convenient choice of variables for explaining sev-
eral of our numerical observations. In Sec. III, we develop
the concept of resonating color loops (RCL) which is the ba-
sis of an exact mapping relating the coloring wavefunctions
to magnons. We discuss in detail the crucial effects due
to Sz (or number) projection. Using the RCL construct, in
Sec. IV, we revisit the more familiar localized and topolog-
ical magnon modes, which arise from the flatband that ex-
ists on the kagome lattice. We show that each such mode has
a direct connection to a RCL. In Sec. V these ideas are fur-
ther extended to express exact many body ground state wave-
functions for special high magnetizations as projected quan-
tum three-coloring wavefunctions. We find that for these spe-
cial magnetization sectors, the exact ground state, a quan-
tum three-coloring superposition, holds for all Jz ≥ −1/2
which shows the equivalence of the Ising, Heisenberg andXY
regimes.

For the case of zero magnetization, we have investigated
the relevance of the Jz = −1/2 point (and hence the three-
coloring manifold) by performing large scale density matrix
renormalization group (DMRG) calculations for a large range
of Jz in Sec. VI. These results extend the results of previ-
ous exact diagonalizations17 to bigger systems which support
HXXZ0 being a quantum critical point in the XXZ phase di-
agram. In Sec. VII, we conclude by summarizing our results
and suggesting future avenues for further exploration.
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II. QUANTUM THREE-COLORS AND THE EXACT
SOLUTION OF HXXZ0

We state the central result of Ref.17, where it was proved
that any Hamiltonian of the form of Eq. (2) for Jz = −1/2,
has ground states of the form,

|C〉 ≡ PSz

(∏
valid

⊗|γs〉
)

(7)

where {|γs〉 = |r〉, |b〉 or |g〉}, denoted as colors on site s are
defined as,

|r〉 ≡ 1√
2

(
| ↑〉+ | ↓〉

)
|b〉 ≡ 1√

2

(
| ↑〉+ ω| ↓〉

)
|g〉 ≡ 1√

2

(
| ↑〉+ ω2| ↓〉

)
(8)

where ω = ei2π/3. Taking the quantization axis to be the z-
axis, the colors correspond to spin directions in the xy plane
that are at 120◦ relative to one another. Valid colorings satisfy
the three-coloring condition i.e. exactly one |r〉, one |b〉 and
one |g〉 per triangular motif. These are depicted by colors red,
blue and green respectively in our figures. PSz

projects into a
particular total Sz sector.

The construction (7) is referred to as the three-coloring con-
dition and any such many body state which satisfies the con-
straint conditions is a three-coloring state. Such states have
primarily been studied in the context of the classical kagome
antiferromagnet at the Heisenberg point19,22–29.

Classically, a Luttinger-Tisza analysis30 of HXXZ shows
that Jz = −1/2 is a critical point in the kagome phase dia-
gram. To see this, we recast Eq. (1) in reciprocal space,∑

q

(
S̃XY (q)T ·

[
J̃(q)

]
· S̃XY (−q)

+Jz S̃Z(q)T ·
[
J̃(q)

]
· S̃Z(−q)

)
(9)

where,

S̃XY (q) =
1√
Nu

∑
r

e−iq·r
(
SXYr,1 SXYr,2 SXYr,3

)T
(10)

S̃Z(q) =
1√
Nu

∑
r

e−iq·r
(
Szr,1 Szr,2 Szr,3

)T
(11)

[
J̃(q)

]
=

1

2

 0 1 + eiq·a2 1 + eiq·(a2−a1)

1 + e−iq·a2 0 1 + e−iq·a1

1 + e−iq·(a2−a1) 1 + eiq·a1 0


(12)

a1, a2 are the primitive lattice vectors (considering one up-
triangle with three sites as the Kagome unit cell), and q is
restricted to the first Brillouin zone and Nu is the number of
unit cells. Sr,µ is a classical spin of unit magnitude at site r, µ,
where r labels the unit cell and µ labels the site within the unit
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Figure 2. (Color online) Representative example of a single magnon
state with amplitudes 1, ω, ω2 in the three-coloring basis, written as
a many-body coloring wavefunction with a projection operator.

cell. SXYr,µ and SZr,µ are the projections of the unit vector Sr,µ

on to the xy plane and z axis respectively.
For the classical ground state, the two terms in Eq. (9) are

competing. For Jz < −1/2, the second term in Eq. (9) wins
giving a unique ferromagnetic ground state at q = 0 with all
spins pointing in the z direction. For Jz > −1/2, the first
term in Eq. (9) wins, giving a flat-band solution with all q
being classically degenerate to each other in energy, with the
spins oriented in the xy plane. They give rise to an extensively
degenerate ground state manifold since there are infinite ways
in which these classically degenerate solutions at different
q may be linearly combined while respecting the Luttinger-
Tisza condition

∑
q S̃XY (q) · S̃XY (−q) = 1. At the Heisen-

berg point, this extensively degenerate classical ground state
manifold has also been noted in the literature before31–33.

Since the classical spins lie in the xy plane for Jz > −1/2,
they are impervious to the Jz term. Any state that then lo-
cally satisfies the three-coloring (120◦) condition is a classi-
cal ground state for Jz ≥ −1/2 and Jz < 1 for the classi-
cal XXZ Hamiltonian (There is an additional classical phase
transition at the Heisenberg point Jz = 1, which we do not
explore). For the quantum case, only at the Jz = −1/2 point,
there is a direct one to one correspondence between the clas-
sical and quantum ground states, i.e. any valid three-coloring
can be interpreted as both a classical ground state spin config-
uration and a quantum ground state spin-1/2 wavefunction.
However, there remains an important difference between the
classical and quantum solutions even at this point - quantum
mechanically, the Hamiltonian is block diagonal in definite to-
tal Sz due to the U(1) symmetry, and thus the eigenfunctions
in each of those sectors must have definite total Sz . There-
fore, projecting each three-coloring solution to each total Sz
sector must also be an exact ground state of that total Sz sec-
tor, thereby justifying the projection in Eq. (7). Conversely,
this also implies that this exactly solvable point exists in all
total Sz sectors.

The three-coloring wavefunctions when projected to the
one particle sector (or one spin-down sector), can be viewed
as the wavefunction of a single particle on the kagome lat-
tice. One such example has been represented in Fig. 2. De-
pending on the color associated with the site, the amplitudes
are 1, ω or ω2. Taking linear combinations of single parti-
cle wavefunctions (i.e. adding their amplitudes site by site) is
exactly equivalent to taking linear combinations of projected
colorings, since P1|C1〉 − P1|C2〉 = P1(|C1〉 − |C2〉). This
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concept will be used in the next section when discussing res-
onating color loops.

The total number of three-coloring ground states scales ex-
ponentially with system size. However, there are two sub-
tleties to be considered when counting the exact number of
linearly independent solutions when projecting to definite Sz .
First, when one interchanges colors (consistently for all sites),
the new coloring |C ′〉 is not linearly independent of the origi-
nal one |C〉. This can be seen by redefining,

| ↓〉′ ≡ ω| ↓〉 (13)

which is equivalent to the transformation (from old to new
variables)

r → g (14)
b→ r

g → b

This is equivalent to a rotation of the spins in the xy plane by
an angle of 2π/3 around the z axis. Under this transforma-
tion each spin configuration (and hence the overall wavefunc-
tion) is only rescaled by a constant phase ωN↓ where N↓ is
the number of down spins. A similar transformation holds for
| ↓〉′ ≡ ω2| ↓〉 which leads to r → b, b → g, g → r. Thus,
these three-colorings are not linearly independent and should
not be counted more than once.

The second subtlety when counting the number of col-
orings is that not all colorings remain linearly independent
when projected to definite total Sz . This is best exempli-
fied by considering the case of the fully ferromagnetic sec-
tor. Here, even though the number of three-colorings is expo-
nential, there is only one unique solution possible. Thus, to
determine the precise number of linearly independent many
body states, we evaluate the rank (R(S)) of the overlap ma-
trix SCC′ = 〈C|C ′〉. The matrix elements are calculated
efficiently and the matrix numerically diagonalized for this
purpose. (Details of the calculation of the matrix elements
in this non-orthogonal basis have been discussed at length in
the supplemental information of Ref.17 and are hence not pre-
sented here.) This enumeration of three-coloring states and
their counting is an essential part of the diagonalizations we
perform in the restricted subspace of the full Hilbert space.

Till this stage, our discussion has focused on the Jz =
−1/2 point, which is only one point in the parameter space of
the XXZ model. However, as mentioned in the introduction,
the concept of color degrees of freedom and three-coloring
states is useful more generally; we will show this more ex-
plicitly in the subsequent sections. For example, in an attempt
to minimize both parts of Eq. (4), we have diagonalized the
XXZ Hamiltonian in the three-coloring basis numerically by
solving the generalized eigenproblem,

Hx = ESx (15)

where HCC′ = 〈C|H|C ′〉, E is the eigenenergy and x is the
eigenvector of coefficients of three-color basis states.

The results of the ground state energy in the three-color ba-
sis are compared to the exact ground state energy in the full

(Ising) basis for some representative examples in Fig. 3. The
three-coloring states do not form a complete set in a spec-
ified Sz sector and hence are incapable of describing arbi-
trary wavefunctions. However, for two of the three examples
shown, we do obtain the exact energy for Jz ≥ −1/2. For
these, the exact wavefunctions do lie completely in the three-
coloring manifold with a total ground state energy equal to
EXXZ0 + (Jz + 1/2)

(
N
2 − 2

∑
i ni
)

for a N site kagome
lattice. These numerical findings suggest the existence of an
analytic way of understanding the three-coloring superposi-
tion and we will develop the appropriate concepts for proving
that this is indeed the case.

A third example (36d cluster at 2/3 magnetization or 1/6
filling), where the existence of a chiral spin liquid was ar-
gued previously34, is also shown in the central panel of Fig. 3.
While we do not obtain the exact energy for Jz ≥ −1/2 for
this case, the general trends appear consistent with exact di-
agonalization, suggesting that the three-coloring basis may be
capable of representing certain chiral spin liquids. In this pa-
per we will focus on the cases where the three-coloring basis
is an exact representation of the kagome ground state in high
magnetization (low filling) sectors.

III. RESONATING COLOR LOOPS

In this section we will develop the machinery to gener-
ate, on some lattices and at low density, simultaneous ground
states of HXXZ0 and Hzz making them frustration free
ground states of HXXZ0 + (Jz + 1

2 )Hzz . Unfortunately, no
single three-coloring is such a ground state, except in the ex-
treme case of a fully polarized state. Instead, we need to
construct linear combinations of three-colorings; such states
are already ground states of HXXZ0 and so our focus will be
developing linear combinations which minimize Hzz at low
density.

The key tool in accomplishing this task will be resonating
color loops (RCL). A RCL is generated by taking a single
closed “two-color" loop (comprising, say of green and blue
colors) and replacing it with a linear combination of the two
different green-blue colorings over that loop with a relative
minus sign between them. For example, consider the closed
loop corresponding to the hexagonal plaquette on the kagome
lattice. Then, the quantum state

|RCL〉 = |gbgbgb〉 − |bgbgbg〉 (16)

is what we define as a green-blue RCL (see Fig. 4). For the
purpose of this work, the definition of the RCL adopted is al-
ways of the form Eq. (16). However, in principle, it is possible
to generalize the concept of RCL to other linear superposi-
tions, with certain desirable properties. The local resonating
structure of RCLs is thus reminiscent of resonating valence
bond (RVB) states.

Consider a fixed three-coloring with some number of two-
color loops which are adjacent only to a third color, i.e. an iso-
lated two-color loop (ICL). Any k ICL can be replaced with k
RCL and the resulting state will be a linear superposition of 2k

three-colorings. This follows because if an entire two-colored
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Figure 3. Comparison of ground state energies from exact diagonalization and diagonalization in the three-color basis as a function of Jz (in
units of J = 1) for the (left panel) 36d cluster for Sz = 14 (m = 7/9 or 1/9 filling of bosons) and (central panel) for Sz = 12 (m = 2/3 or
1/6 filling of bosons) in the range −1 ≤ Jz ≤ 0. For a thin torus such as the 4 × 2 × 3 torus for Sz = 8 (m = 2/3 or 1/6 filling of bosons)
shown in the rightmost panel, the exact solution holds. In cases where the Hamiltonian is frustration free for Jz ≥ −1/2, (here, leftmost and
rightmost panels) the exact ground state solution holds for arbitrary Jz ≥ −1/2.
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Figure 4. (Color online) Definition of resonating color loops on a kagome lattice. Each RCL is obtained by taking a difference of two three-
colorings, which differ only on a single two-color loop. In the top panel, the RCL is located on a hexagon and in the bottom panel it is located
on a topological (non-contractible) loop, here winding along the x direction. The RCLs when projected to a single spin-down (magnon) sector
are exactly equal to localized or topological magnons on the kagome lattice up to a (projective) phase, and an innocuous normalization.

loop (say of green and blue) is surrounded by red, then swap-
ping green and blue within that loop still leaves no edge with
the same color on both vertices. As an example, consider the√

3 ×
√

3 coloring of the kagome lattice (Fig. 1). This color-
ing has isolated two-color hexagonal loops. We can take any
number of these hexagons and turn them into RCLs. Alterna-
tively, on the q = 0 coloring on the kagome lattice (Fig. 1)
there are isolated non-contractible loops which can be turned
into a RCL. It is interesting to note that on a coordination-4
lattice of triangles every site is part of an isolated two-color
loop.

Now that we have a linear combination of three-colorings
generated by replacing ICL with RCL, we can consider the
role of projection on these states. In particular, we will see
that if we globally project a state with k RCL into the sector
of k spin-down (i.e. Pk), then there will be exactly one spin-
down constrained to each RCL and no spin-down outside the
RCL. A k = 2 representative example is shown in Fig. 5.

To see this why this particle localization happens, we first
note that the difference of two colorings is destroyed by pro-
jecting into the fully spin-up (no boson) sectors on a given

RCL, i.e.

PRCL
0

(
|C1
m〉 − |C2

m〉
)

= 0 (17)

where C1
m and C2

m are arbitrary colorings on the motif de-
noted by m. It then follows that P0|RCL〉 = 0 (here it is
important the RCL is the difference of two loops). Now, let us
consider, as an example, P2 applied to a quantum state with
2 RCL and decompose P2 into the sum of tensor products of
projectors over the two RCLs and the rest of the system re-
spectively, written explicitly as

P2 =PRCL1
2 ⊗ PRCL2

0 ⊗ P rest
0 +

PRCL1
0 ⊗ PRCL2

2 ⊗ P rest
0 +

PRCL1
0 ⊗ PRCL2

0 ⊗ P rest
2 +

PRCL1
1 ⊗ PRCL2

1 ⊗ P rest
0 +

PRCL1
1 ⊗ PRCL2

0 ⊗ P rest
1 +

PRCL1
0 ⊗ PRCL2

1 ⊗ P rest
1

=⇒ P2 =PRCL1
1 ⊗ PRCL2

1 ⊗ P rest
0 (18)
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Figure 5. (Color online) A representative example of projection on
to the k = 2 spin-down sector on a configuration with two RCLs.
The projection properties of RCLs ensure localization of bosons/spin
downs to localized hexagons.

The last equality follows from Eq. (17), as any term in the
sum with PRCL

0 on an RCL is destroyed. This is schematically
shown in Fig. 5. The above generalizes straightforwardly to k
RCLs projected to k spin-down sector. Using this machinery,
we thus have an ability to localize down-spins onto any ICL.
This ability will allow us to minimize Hzz by ensuring that
two spin-downs are never nearest neighbors.

In the next two sections we will see (1) that this argument
(RCL when projected into a single spin-down) is essentially
a quantum coloring language to describe kagome flatband
magnons and (2) that on a variety of coordination-4 lattice
of triangles such as the kagome lattice, the kagome ladder and
the squagome lattice, at high magnetizations (i.e. at low fill-
ings), the many body ground state is a tensor product of RCLs
projected to that Sz sector.

IV. KAGOME FLAT BAND MODES FROM RESONATING
COLOR LOOPS

In the previous section we considered how an RCL can be
used to localize down spins on certain motifs. In this section
we are going to consider systems with a single RCL being
projected into the single spin-down sector (i.e. P1) finding
an exact correspondence between these projected RCLs and
the localized and topological magnons35 associated with the
flatband of the kagome lattice. To understand this result, we
first review the results of Ref.36 which explained the existence
of kagome lattice flat band modes using a localized basis of
single-particle orbitals.

First we note that the XXZ Hamiltonian with a single
down spin corresponds to the non-interacting tight binding
model on the kagome lattice giving three bands with disper-
sions,

ε0(q) = −t (19a)

ε±(q) =
t

2

(
1±

√
3 + 2Λ(q)

)
(19b)

where Λ(q) = cos(q · a1) + cos(q · a2) + cos(q · a3). For
t > 0, the flat band becomes the lowest energy band and at
q = 0, ε− touches the flat band. Thus, on a kagome lattice on
a finite torus (periodic boundary conditions), withN unit cells
with a finite momentum grid with N points, there are N + 1
single particle states at ε = −t.

Figure 6. (Color online) Representative locations of localized and
topological single particle modes as resonating color loops are
shown, including a 10 site loop that may be thought of as a compo-
sition of two hexagonal localized modes. Fig. 4 shows how to tran-
scribe the above RCL representation into the magnon modes. Apart
from the single RCL at a chosen representative location, the rest of
lattice is the same valid three-coloring, which makes the cancelation
at all other sites exact.

The flatness of the band allows us to take linear combina-
tions of single particle states freely while remaining eigen-
states. This leads to a useful and insightful representation that
results in localized eigenstates36, given by,

AR
† =

1√
L

L∑
j=1

(−1)jb†j (20)

whereL is the length of any contractible loop of length 4m+2
or non contractible loop of length 2m where m is an integer
and j refers to the index of lattice sites numbered in a contigu-
ous order. When L = 6, this mode is localized on a hexagonal
motif, and is represented in the right most side of the top panel
of Fig. 4 ignoring the normalization of

√
6. Intuitively, this

mode can be understood using a simple quantum interference
argument. The topology of the kagome is such that the "+"
and "−" contributions from hopping on to the vertices point-
ing away from the hexagon cancel out destructively and thus
such a localized state becomes an exact ground state of the
tight binding Hamiltonian.

We now identify the relation between the quantum coloring
language and these localized single particle orbitals. By tak-
ing a single projected RCL on a hexagon shown in Fig. 4 a
pattern of alternating (ω − ω2) and (ω2 − ω) is obtained on
the hexagon with 0 everywhere else. Up to an overall phase
factor, the mode is identical to the alternating pattern of +
and − described above. In fact, this argument holds for ar-
bitrary L = 4m + 2, such as the 10 site loop (which can be
alternately viewed as a superposition of two localized single-
particle hexagon wavefunctions) which corresponds to a pro-
jected 10 site RCL (see Fig. 6). Thus projected RCLs have the
form as in Eq. (20).

The set of N hexagon single particle modes is not com-
pletely linearly independent; the wavefunction of the N th

hexagonal mode can be rewritten as a linear combination of
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the remaining N − 1 modes36. Since the expected count of
the lowest degenerate states is N + 1, this leaves us with two
modes to be determined. Ref.36 showed that these correspond
to two topological modes, coming from any choice of two
non-contractible loops along the two periodic directions on
the torus. An example of such a loop in the horizontal direc-
tion is shown in Fig. 6 (bottom). Once again, this topological
magnon has a natural meaning in the basis of three colors,
and as is shown in Fig. 4, it is identical to an RCL defined on
a two-color loop along the horizontal direction.

We have thus shown that every single particle magnon cor-
responding to the kagome flat band is exactly an RCL of a
certain type. This is particularly useful, because it allows us
to freely swap concepts between two distinct languages. In
particular, in the next section we will provide a new interpreta-
tion of many-body wavefunctions constructed at low magnon
fillings, in terms of RCLs.

V. LOW DENSITY EXACT SOLUTIONS FROM
RESONATING COLOR LOOPS

Now that we have developed the connection between RCLs
and localized and topological magnons, we will explicitly
construct many-body solutions which minimize both HXXZ0

and Hzz , for certain cases of net magnetization. We be-
gin with the case of a narrow kagome torus with dimensions
Lx×(Ly = 2)×3. For Lx = 4, we show in Fig. 7 (top panel)
that the RCLs are "stripes" (blue-green local motifs) on which
the closely-packed localized magnons reside. Since each RCL
is associated with a winding loop of 4 sites (along with 2 other
padded sites) and each such motif contributes a single magnon
or hard-core boson, the filling is exactly 1/6. At this filling,
denoted by f , the exact many body wavefunction is therefore
a product state on these local motifs,

|ψ〉 = PNf

( ∏
m=motif

|RCLm〉 ⊗
∏

o=other

|ro〉
)

(21)

Since the magnons are never located on neighboring sites, due
to the zero amplitude red sites (as indicated in the Fig. 7)
they completely avoid nearest neighbor density-density inter-
actions (See Eq. (6)) thereby minimizing Hzz . Thus, this
wavefunction is the exact ground state for arbitrary repulsive
interactions (Jz ≥ 0). This closely-packed construction has
been noted earlier in the literature in the “ + / − ” magnon
language35,37–41. However, since the wavefunction is also a
product of RCLs, the wavefunction has an exact representa-
tion in a basis of valid three-colorings, it also becomes the
ground state for any Jz ≥ −1/2, starting now from Eq. (4) via
its hard-core boson counterpart. The RCL is thus able to lo-
calize down spins (or particles) on motifs (eg. local hexagons
or topological loops) and keeps them apart.

This idea of constructing single magnon wavefunctions and
the extension to many body wavefunction generally applies to
many other lattices, fillings and tilings (choices of motifs).
For example, for 1/9 filling, the idea generalizes to the in-
finite kagome and on any finite cluster that accommodates
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1
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Figure 7. (Color online) Many-body ground state wavefunction for
magnons represented in a three-coloring basis. The top panel shows
the case of 4 magnons (bosons) on the 4 × 2 × 3 torus. The con-
struction generalizes to L magnons on the L × 2 × 3 lattice i.e. 1/6
filling. Each magnon is confined to a strip and the many-body wave-
function is simply a product state of corresponding RCLs. Similar
constructions apply at 1/9 filling to the infinite kagome and any finite
cluster that accommodates the

√
3×
√

3 pattern (middle panel). For
1/6 filling the construction also generalizes to two dimensions on the
“squagome" lattice built up of triangular motifs (lowest panel).

the
√

3 ×
√

3 pattern. This includes the 36d cluster and cer-
tain quasi one-dimensional cylinders42. Each magnon is now
confined to a local hexagon and using the formalism of pro-
jected RCLs, the many body wavefunction is simply a product
state of RCLs and color red (a) on sites that do not belong to
the hexagonal RCLs. Since the tiling of RCLs can be done
in three distinct ways (due to the three-fold symmetry of the√

3×
√

3 pattern), our construction yields a three-fold degen-
erate ground state solution.

For 1/6 filling, we may extend the above exact solutions to
the two-dimensional "squagome" lattice, now using the mo-
tifs shown in Fig. 7 (bottom panel). Each motif is once again
associated with an RCL, and because of the Sz or number pro-
jection operation, the intermediate sites between the magnons
have zero amplitudes, with the magnon or boson residing on
the square plaquettes.

This analysis also immediately gives the ground state in the
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coloring basis for any lower density. If a wavefunction with
k RCLs is the ground state of Eq. (4), then the wavefunction
obtained by replacing any subset of the k RCLs by ICLs is
still a ground state. In the thermodynamic limit, these fill in
all lower densities. In particular, this means that these phases
extend to the quantum critical point at Jz = −1/2 on the
kagome for all filling ≤ 1/9.

Thus, we have shown that several low magnon (parti-
cle) density/high magnetization solutions can be exactly con-
structed from three-coloring states. In each individual exam-
ple presented, the wavefunction constructed minimizes both
HXXZ0 and Hzz , and hence is the exact ground state wave-
function for any Jz ≥ −1/2. Said differently, the magnons
confined to their individual motifs (strip, hexagon etc.) com-
pletely avoid repulsion (Jz > 0) at low density and minimize
their kinetic energy by staying localized. However the color-
magnon transformation shows that even under attractive inter-
actions, the localized magnons do not immediately condense
- rather there is a critical attraction strength (Jz = −1/2)
which is needed for this to happen. While this result is true
and mathematically rigorous only at low density, where the
magnons form a crystal40, a natural question that arises is
whether the coloring manifold is responsible for the origin of
the spin liquid ground state, expected at one-sixth (2/3 mag-
netization)34,43 and half filling (zero magnetization).

VI. DMRG FOR HXXZ FOR THE ZERO
MAGNETIZATION SECTOR

In lieu of such an understanding, we now turn our attention
to a numerical study in the case of half filling (Sz = 0) where
the ground state does not have an exact three-coloring repre-
sentation. A previous DMRG study44 argued that the spin liq-
uid at the Heisenberg point (Jz = 1) adiabatically continues
both to the XY (Jz = 0) and Ising (Jz � 1) limits. Also,
previous ED studies on 36 and 48 site clusters showed re-
markable similarities in the low energy spectrum from Jz = 0
to Jz = 145 and the Ising limit46. In addition, another ED
study on 36 sites strongly suggested adiabatic continuity for
all Jz >∼ −0.4 (and possibly up to XXZ0)17. Here, we ex-
tend these results by performing large-scale DMRG calcula-
tions (using ITensor47); these results support the finding that
the spin liquid phase extends to the Jz = −1/2 point1748.

We study the zero-magnetization ground states in a wide
range of Jz , from Jz = 5 to Jz = −1. To better focus on the
Jz = −1/2 point, we have shown the results only up to Jz =
1; the ground state changes smoothly with no signs of a phase
transition between Jz = 1 and Jz = 5. We focus on the XC8
cylindrical geometry (which is depicted in Fig. 10) and keep
the bond dimension (number of states in DMRG) up to 7000.
The total energy has been extrapolated to infinite-length; our
extrapolated results are shown in Fig. 8 as a function of Jz .
Details of the extrapolation are given in Appendix A.

For the region of Jz < −1/2 the ground state is ferro-
magnetic (albeit phase-separated due to the total Sz = 0 con-
straint), and thus the ground state energy for this region equals
Jz/2, as indicated by the good agreement between our DMRG

−1.0 −0.5 0.0 0.5 1.0
Jz

−0.50

−0.45

−0.40

−0.35

−0.30

−0.25

E

−0.56−0.54−0.52−0.50−0.48−0.46−0.44−0.42

−0.270

−0.265

−0.260

−0.255

−0.250

Figure 8. (Color online) Ground state energy per site from DMRG
for the XC-8 cylinder in the limit of infinite length for the range
−1 ≤ Jz ≤ 1. The red dashed line indicates the energy (= Jz/2)
of pure ferromagnetic states. The inset zooms into a narrow range
around Jz = −1/2. The errorbars are presented but smaller than the
symbol sizes. The dotted lines in the inset indicate the exact energy
−1/4 at Jz = −1/2.

0.00

0.25

0.50

d
E
/d
J
z

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Jz

−50

0

50

d
2
E
/d
J

2 z

Figure 9. First and second derivative of the energy per site as a func-
tion of Jz . The errorbars are presented but smaller than the symbol
sizes. The discontinuity in the first derivative and the peak in the
second derivative at Jz = −1/2 signal the occurrence of a quantum
phase transition.

data points and the red dashed line. On going from Jz = 1
to Jz = 0 the energy increases monotonically and smoothly,
indicating an absence of a phase transition in this region, con-
sistent with Ref.44. Importantly, this smooth monotonic be-
havior continues across Jz = 0 and a kink is seen only at
(or close to) Jz = −1/2, strongly suggesting that the exactly
solvable point is a transition point between spin liquid and
ferromagnetic states. Evidence for such a transition is further
clarified by monitoring the first and second derivatives of en-
ergy, shown in Fig. 9; the first derivative has a discontinuity
and the second derivative has a peak at Jz = −1/2.

In practice, the DMRG simulations were found to get stuck
in valence bond solid states or metastable states with edge



9

Jz = −0.495

0.49−0.4 −0.001

Jz = −0.505

Figure 10. (Color online) Spatial profile of spin moments 〈Sz
i 〉 and

valence bond energies 〈Si ·Sj〉 on a representative XC-8 cylinder for
Jz = −0.495 and Jz = −0.505. The maximum spin moment for
Jz = −0.495 is ∼ 5 × 10−4. The solid (dashed) bonds represent
the negative (positive) valence bond energies.

spins. We thus had to run different random initial states to
converge to the lowest energy spin liquid state. This is, in
principle, consistent with a scenario that the XXZ model is
associated with a line of critical points17 and that the choice
of geometry typically picks one state over the other. One con-
crete example of this observation is discussed in Appendix B
at Jz = −0.35 where the energy per site of the compet-
ing VBS and spin liquid differ only by ≈ 10−4. In general,
we found that the convergence is particularly difficult around
Jz = −0.4, which may suggest the need for further detailed
future studies in this region with larger systems and different
geometries.

For Jz < −1/2 we started our DMRG calculations with
two ferromagnetic domains. Not doing so led to more fer-
romagnetic domains with slightly higher energy than the two
domain solution. Magnetic pinning field is also applied to
further stabilize the states in the region −0.52 ≤ Jz < −0.5
close to the transition point. Further details are discussed in
Appendix A.

Fig. 10 shows local spin and valence bond order parameters
at two representative points Jz = −0.495 and Jz = −0.505
very close to the transition point. Clearly, for Jz = −0.495
there is no local order (for the order parameters measured) and
for Jz = −0.505 a ferromagnetic state is stabilized; domains
are observed as the system prefers to phase-separate to main-
tain the total Sz = 0 constraint.

VII. CONCLUSION

In summary, we have explored properties of quantum three-
coloring states and developed an exact one-to-one correspon-
dence between quantum three-colors and the localized and
topological magnons that make up the flat band modes on
the kagome lattice. While both perspectives and concepts
have existed in the literature in various forms (classical three-
colorings, quantum magnons), our work makes their connec-
tion concrete for the quantum case and generalizes it to both
the single and multi magnon case. It is no coincidence that
the two color loops in a three-coloring state, and the magnon
modes in the kagome flat band have geometrical similarities;
our work shows why this is the case.

Extending this connection, we have expressed exact many-
body ground state wavefunctions for special high magnetiza-
tions (or low fillings in the bosonic language) in a three color-
ing basis; this proves their validity for all Jz ≥ −1/2 show-
ing the equivalence of the XY and Ising regimes, for these
magnetization sectors. Using the color-magnon transforma-
tion, our results extend the range of validity of exact solu-
tions which have been argued to hold for Jz ≥ 0 (repulsive
case in the boson language), to −1/2 ≤ Jz ≤ 0 (attractive
case). We have also highlighted the important role and sub-
tleties of number projection at low fillings. For the case of half
filling/zero magnetization, our numerical DMRG calculations
suggest that the physics of the Heisenberg point is crucially
connected to the Jz = −1/2 point.

Finally, we note that in the present work, we have only con-
sidered the cases where a macroscopic superposition of three
colorings describes product states in the magnon basis (these
are incidentally also a subset of correlator product states49).
However, it is natural to ask whether and/or how can one map
a highly entangled state from the Ising or magnon basis to
the three-color basis. In addition, the three-colorings present
an attractive possibility of explaining the large number (expo-
nentially scaling with system size) of singlets seen in the low
energy spectrum in exact diagonalizations50,51. We hope to
address these and related questions in the future.
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Appendix A: Energy extrapolation

In the main text, we showed results for the energy and cer-
tain observables from our DMRG calculations carried out in
the zero magnetization (Sz = 0) sector. Here we describe
further details of how the energy extrapolations to the infinite
length limit were done using the finite size DMRG data. In
Fig. 11 we show the energy extrapolations with the inverse
length (1/Lx) on XC-8 cylinders for Jz = −0.51, −0.505,
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and−0.495 close to the exactly solvable point Jz = −1/2. In
our notation, the length is defined by the number of triangles
along the longitudinal direction. We perform quadratic extrap-
olations for all Jz except Jz = −0.505, which does not show
quadratic behavior but does show sufficiently small depen-
dence on Lx. (We can thus estimate its Lx → ∞ value accu-
rately even without the extrapolation, as is shown in Fig. 11.)

For Jz < −1/2, where the ground states are ferromag-
netic17, we use ferromagnetic states with one domain wall as
the starting states in our DMRG runs (the left half of the cylin-
der is initially fixed to a certain spin and the right half with the
opposite spin type) as a way of avoiding getting stuck in the
multiple domain wall states. We note that a state with any
finite number of ferromagnetic domain walls in the thermody-
namic limit will have zero energetic costs (per site) compared
to the purely ferromagnetic or one-domain wall state.

We observe that in practice, for Jz < −1/2 and very close
to −1/2, only long enough cylinders (≥ 8 in our cases) make
the one-domain wall ferromagnetic states stable. The reason
is as follows. Exactly at the transition (Jz = −1/2), the clean
ferromagnetic state without a domain wall has the same en-
ergy as other (three coloring) ground states in the zero mag-
netization sector. The ferromagnetic state with a domain wall
– whose existence is required to remain in the zero magne-
tization sector– raises the total energy at any finite size, and
it is only for larger lattices that it is energetically favored. In
a finite-size system, the domain-wall energy is not negligible,
and DMRG ends up with non-ferromagnetic states for Jz very
close to −0.5 (0.51 and 0.505 in this work).

Appendix B: Competitive energy candidates

In the main text we mentioned that we found a state with
some strong discernible local bond energies, which we refer to
as "VBS". (It must be noted that the pattern of bond energies
is different from what is conventionally referred to as a VBS
which has neighboring strong and weak bonds.) This VBS is

strongly competitive with the spin liquid state in our DMRG
calculations. Here we elaborate more on this finding.

Fig. 12 shows the bond expectation values of 〈S̄i · S̄j〉
and on-site values of 〈Siz〉 for two different states obtained
from two independent DMRG simulations for Jz = −0.35.
The independent runs were started from two different ran-
dom product states and the bond dimension was gradually
increased during each sweep of the DMRG algorithm. The
energy per site of the two states (when extrapolated to infi-
nite bond dimension) differs only by 10−4 (the spin liquid
has energy −0.26329(2) per site while the VBS has energy
−0.263065(3) per site, see the top panel of Fig. 13), yet the
states are visibly very different. This suggests (but does not
rigorously prove) the possibility that the Hamiltonian is at a
critical point in parameter space. Note that in Ref.17, a critical
line emanating from Jz = −1/2 at second nearest neighbor
coupling J2 ≈ 0 has been reported based on diagonalization
of the symmetric 36 site cluster.

To further analyze the proposal that the two states are sepa-
rated by the J2 = 0 line, we measure the "J2 energy" defined
as Ĥ(J2) ≡ J

∑
〈〈i,j〉〉 S

x
i S

x
j + Syi S

y
j + Jz

∑
〈〈i,j〉〉 S

z
i S

z
j ,

where 〈〈i, j〉〉 denotes the next nearest neighbor sites. In
Fig. 13 (left and center panels) we show the energies extrap-
olated with the truncation error in DMRG for both the energy
and the "J2 energy" per site. The J2 energies for spin liquid
and VBS are 0.0630(5) and 0.1061(15) respectively, which
suggests that a small negative J2 can drive the spin liquid to
the VBS. The right panel in Fig. 13 shows explicitly this idea.
We show the estimation energies with finite J2, defined by
E(J1, J2) = E(J1) + J2〈H(J2)〉, for both the SL and the
VBS. The crossing indicates the suggested transition between
the SL and the VBS at small J2.

We also mention that the errorbars in DMRG energies are
defined by 1/5(Evariat − Eextrap), where Evariat is the low-
est variational energy and Eextrap is the extrapolated energy.
Here the factor 1/5 is chosen on the basis of experience and
is typically used in the DMRG simulations52. The most con-
servative errorbars would be with the factor of 1, which then
will cover the variational energy as an upper bound.
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Figure 11. The extrapolations of the energies with 1/Lx for Jz = −0.51, −0.505, and −0.495 from the DMRG data. The lengths used for
Jz = −0.51 are 10, 12, 14, 16, 18, 20, 22, 24, 26, 30, for Jz = −0.505 are 8, 10, 12, 14, and for Jz = −0.495 are 4, 8, 10, 12. The quadratic
extrapolations are performed for Jz = −0.51 and −0.495, and the linear extrapolation is performed for Jz = −0.505. Notice the resolution
of the y-axis tic marks for Jz = −0.505.
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Figure 12. The spin liquid (upper panel) and the VBS (lower panel)
states found in the DMRG simulations for Jz = −0.35. The widths
of the bonds are proportional to the valence bond energies 〈S̄i · S̄j〉,
and the lengths of the arrows proportional to the spin moments 〈Si

z〉.
The maximum magnitude of the spin moment for spin liquid is ≈
9× 10−6.
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Figure 13. The extrapolation of the total energy (Left panel) and the “J2 energy" (Center panel) per site with the truncation error in DMRG for
the spin liquid (SL) and the VBS states as shown in Fig. 12. Right panel is the estimated energy with finite J2, more explicitly E(J1, J2) ≡
E(J1) + J2〈H(J2)〉. The crossing shows the suggested transition between SL and VBS with finite J2. The light colors show the errorbars of
E(J1, J2).


