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First-principles calculations, in combination with the four-state energy mapping method, are per-
formed to extract the magnetic interaction parameters of multiferroic BiFeO3. Such parameters
include the symmetric exchange (SE) couplings and the Dzyaloshinskii-Moriya (DM) interactions
up to second nearest neighbors, as well as the single ion anisotropy (SIA). All magnetic parameters
are obtained not only for the R3c structural ground state, but also for the R3m and R3̄c phases
in order to determine the effects of ferroelectricity and antiferrodistortion distortions, respectively,
on these magnetic parameters. In particular, two different second-nearest neighbor couplings are
identified and their origins are discussed in details. Moreover, Monte-Carlo (MC) simulations us-
ing a magnetic Hamiltonian incorporating these first-principles-derived interaction parameters are
further performed. They result (i) not only in the accurate prediction of the spin-canted G-type
antiferromagnetic structure and of the known magnetic cycloid propagating along a <11̄0> direc-
tion, as well as their unusual characteristics (such as a weak magnetization and spin-density-waves,
respectively); (ii) but also in the finding of another cycloidal state of low-energy and that awaits to
be experimentally confirmed. Turning on and off the different magnetic interaction parameters in
the MC simulations also reveal the precise role of each of them on magnetism.

I. INTRODUCTION

Bismuth ferrite BiFeO3 (BFO) is one of the most
robust room-temperature multiferroic compounds. Be-
sides its large electric polarization, BFO exhibits different
magnetic phases. For instance, it can possess a long pe-
riod cycloid or a canted configuration in which a predom-
inant G-type antiferromagnetism (AFM) coexists with
a weak ferromagnetic vector1,2. Upon external stimuli,
such as temperature, fields, strain and pressure, such two
magnetic states can transform from one to another1,3–10,
which reflects spin-lattice couplings in BFO. More pre-
cisely, spins have been predicted to couple with both fer-
roelectric (FE) displacements and FeO6 octahedral tilt-
ings (also known as antiferrodistortive (AFD) motions)
in BFO, see, e.g., Ref.11 and references therein.

Such spin-lattice couplings form a fundamental and im-
portant research direction, as evidenced by the fact that
different models have been proposed to describe them
and the resulting magnetism in BFO. Examples of such
models include the spin current model,11–14 theory for
electrical-field control of magnetism from R. de Sousa
and collaborators15–17 and various models from R. S.
Fishman et. al.18–20. However, to the best of our knowl-
edge, the magnetic coupling coefficients, especially the
anisotropic ones (that are important to generate complex
magnetic configurations), have never been systematically
and thoroughly studied, especially from direct first prin-
ciples.

Here, we consider an ab-initio effective Hamiltonian
with all its coupling coefficients being determined from
first-principle techniques and adopting the most gen-
eral matrix form. Such matrices enable us not only to
have a general idea of the magnetic anisotropy, but also
to obtain the individual isotropic/anisotropic symmetric

exchange (SE) couplings, Dzyaloshinskii-Moriya (DM)
interactions21,22 and the single anion anisotropy (SIA) by
decompositions of such matrices. The effect of FE and
AFD distortions on such couplings are also determined
and discussed. The paper is organized as follows. Section
II introduces the magnetic matrices and their decompo-
sition, as well as provides details about our density func-
tional theory (DFT) calculations and the Monte-Carlo
(MC) simulations. Moreover, subsections III.A, III.B
and III.C of Section III focus on first, second nearest
neighbor couplings and SIA, respectively, while Subsec-
tion III.D provides results from MC simulations using the
aforementioned ab-initio-based effective Hamiltonian. A
brief conclusion is given in Section IV.

II. METHOD

A. Magnetic effective Hamiltonian

Let us first define our convention for the coordinates
as (i) the x-, y-, and z-axes being along the pseudocubic
[100], [010] and [001] directions, respectively; and (ii) the
FE displacements and the AFD axis about which the
FeO6 octahedra rotate being both along the pseudo-cubic
[111] direction – as consistent with the R3c rhombohedral
ground state of BiFeO3

23,24.

The following magnetic effective Hamiltonian, H, is
adopted here:

H = Hex1 +Hex2 +Hsi (1)

with
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Hex1 =
1

2

∑
<i,j>1

Si·J1,ij ·Sj , (2)

Hex2 =
1

2

∑
<i,j>2

Si·J2,ij ·Sj

=
1

2

∑
<i,j>1

2

Si·J 1
2,ij ·Sj +

1

2

∑
<i,j>2

2

Si·J 2
2,ij ·Sj ,

(3)

and

Hsi =
∑
i

Si·Aii·Si (4)

where Hex1 and Hex2 denote the exchange coupling be-
tween first and second nearest neighbors, respectively,
and Hsi represents SIA. Note that the sum over first
nearest neighbors <i, j>1 are 6-fold degenerate along
<100> directions. On the other hand, the 12 second
nearest neighbors <i, j>2 can be categorized into two
types, <i, j>1

2 being 6-fold degenerate along the <11̄0>
directions that are perpendicular to the [111] polarization
direction versus <i, j>2

2 that is also 6-fold degenerate but
along the <110> directions that are not perpendicular
to the polarization direction. Moreover, S = 5/2 is used
here to be consistent with the valence state of Fe3+ ions
in BFO.

The J matrices characterizing the magnetic exchange
couplings are calculated in the most general 3×3 matrix
form as

J =


Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

 .

They can always be decomposed into a symmetric part
JSE and an antisymmetric part JDM , i.e., J = JSE +
JDM .

The symmetric JSE is given by

JSE =


Jxx

1
2 (Jxy + Jyx) 1

2 (Jxz + Jzx)

1
2 (Jxy + Jyx) Jyy

1
2 (Jyz + Jzy)

1
2 (Jxz + Jzx) 1

2 (Jyz + Jzy) Jzz

 .

The JSE matrices prefer spins being collinearly aligned.
Unless the fully isotropic case, it prefers an easy axis or an
easy plane, whose direction or normal, respectively, can
be determined by the diagonalization of the JSE matri-
ces. We numerically found that the off-diagonal elements
of JSE are negligible and we will thus only focus on Jαα
(α = x, y and z). Note that J > 0 favors antiferromag-
netism.

The antisymmetric JDM matrices (which is related to
the DM interaction) can be obtained as

JDM =


0 1

2 (Jxy − Jyx) 1
2 (Jxz − Jzx)

1
2 (Jyx − Jxy) 0 1

2 (Jyz − Jzy)

1
2 (Jzx − Jxz) 1

2 (Jzy − Jyz) 0

 .

Note that, typically, JDM is written using the vector D
via HDM = D·(Si × Sj), with

D = (Dx, Dy, Dz)

where Dx = 1
2 (Jyz − Jzy), Dy = 1

2 (Jzx − Jxz) and Dz =
1
2 (Jxy − Jyx). JDM , or equivalently D, favors the spins
being perpendicular to each other within the plane for
which the normal vector is parallel to D.

It is necessary to further clarify the term of “exchange
coupling”. The exchange coupling in common sense is of
the form JSi·Sj , which leads to isotropic collinear spin
configurations. It is usually considered as an alternative
concept to DM interaction, as in D·(Si × Sj). However,
in this manuscript, we use a stricter terminology that
exchange coupling refers to the form of Si·J ·Sj , with J
including a symmetric part JSE and an antisymmetric
part JDM (equivalent to D), both of which can lead to
magnetic anisotropy.

Moreover and according to point group symmetry (3m
for R3c, R3m and 3̄m for R3̄c), the Amatrices associated
with SIA for R3c, R3m and R3̄c phases all have the form
of

A =


0 ∆ ∆

∆ 0 ∆

∆ ∆ 0


in the (x, y, z) basis. This A matrix can be rewritten in
its diagonalizing basis as:

A =


−∆ 0 0

0 −∆ 0

0 0 2∆

 .

where the third index corresponds to the pseudo-cubic
[111] direction, while indices 1 and 2 are associated with
perpendicular directions, such as [11̄0] and [112̄]. As a
result, SIA favors [111] (or [1̄1̄1̄]) for the spin directions if
∆ < 0, while it prefers spins lying inside the (111) plane
if ∆ > 0.

B. DFT parameters and MC simulations

DFT calculations are performed using the Vienna ab-
initio simulation package (VASP)25. The projector aug-
mented wave (PAW) method26 is employed with the
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following electrons being treated as valence states: Bi
6s and 6p, Fe 3d and 4s, and O 2s and 2p. The re-
vised Perdew, Burke, and Ernzerhof functional for solids
(PBE sol)27 is used, with a typical effective Hubbard
U parameter of 4 eV for the localized 3d electrons of
Fe ions24,28. The dependence of the J1 parameter from
collinear calculations on U values were also tested, yield-
ing J1 = 7.16, 6.06 and 5.09 meV from U = 3, 4 and 5 eV,
respectively. The parameters based on U = 4 eV yield a
Néel temperature TN that is very close to the experimen-
tal one (see Section III.D), therefore indicating that our
choice of U = 4 eV appears to be valid and reasonable.
Moreover, Ref.29 predicts a self-consistent value of U of
3.8 eV in BiFeO3, that is very close to 4 eV, as well as that
Ref.30 reports that U = 4 eV leads to reasonable band
gap and magnetic moment on Fe ion. k-point meshes are
chosen such as they are commensurate with the choice of
6×6×6 for the 5-atom cubic Pm3̄m phase. For instance,
(i) the 10-atom R3c phase is optimized using 4×4×4 k-
mesh, until the Hellmann-Feynman forces are converged
to be smaller than 0.001 eV/Å on each ion (the R3m
and R3̄c phases are obtained from the decomposition of
the optimized R3c phase, that is the AFD (respectively,
FE) displacements of the R3c ground state are left out
when constructing the R3m (respectively, R3̄c) state);
(ii) the exchange coupling coefficients are calculated us-
ing a 4×4×2 supercell with an 1×1×3 k-mesh; and (iii)
the SIA parameters are calculated using a 2×2×2 super-
cell with a 3×3×3 k-mesh. Note that the G-type antifer-
romagnetism with the canted ferromagnetism is adopted
when optimizing R3c structures. Spin-orbital coupling
and noncolinear magnetic configurations are employed
throughout all calculations (except for the results in Ta-
ble III, see details there). The magnetic coefficients are
extracted using the four-state energy mapping method,
as detailed in Refs.31,32. This method has been proven
to be accurate in different works33–36, especially when
dealing with DM interactions and SIA. We calculate all
matrices for different Fe-Fe pairs or Fe sites, and the el-
ements are displayed to the digit of 0.001 meV through
the manuscript.

Monte Carlo simulations are performed using the heat
bath algorithm37. A 12×12×12 supercell are adopted to
predict the Néel temperature (TN ). The 10-atom primi-
tive cell and 2×2×2 supercells are used to determine the
effects of each single magnetic parameter, while super-
cells with the form of

√
2n ×

√
2 × 2 (n = 2, 3,..., 240),

in which the first axis is along the [11̄0] direction, and√
2 ×
√

2 × 2n (n = 2,3,...,240), in which the last axis
lies along [001], are adopted to determine properties of
cycloidal phases that propagate along [11̄0] and [001] di-
rections, respectively (note that we decided to look at cy-
cloids propagating along the unusual [001] direction be-
cause recent effective Hamiltonian computations12 pre-
dicted that such cycloids can be very close in energy
from that of the well-known cycloid of BFO propagat-
ing along [11̄0]). The equilibrium period of cycloid is
then determined by comparing the energy of cycloids of

TABLE I: Calculated symmetric exchange parameters and
DM interactions for the nearest neighbor Fe-Fe pair along the
[100] direction. The isotropic coupling coefficient J1 is the
average of the diagonal xx, yy and zz components. Note that
Da

1 and Db
1 has the form of (0,α,-α) and (β,β,β), respectively.

D1 is the norm of D1 (unit: meV).

[100] J1,xx J1,yy J1,zz J1

R3c 6.076 6.090 6.091 6.086

R3m 7.414 7.435 7.436 7.428

R3̄c 5.847 5.858 5.860 5.855

[100] D1,x D1,y D1,z D1

R3c

D1 -0.042 0.028 -0.116 0.126

Da
1 0.000 0.072 -0.072 0.102

Db
1 -0.043 -0.043 -0.043 0.074

R3m 0.003 0.135 -0.136 0.192

R3̄c -0.077 -0.027 -0.027 0.086

different periods (by technically using different supercell
lengths). In each MC simulation, 2,000 exchange steps37

are performed, with each exchange step containing 200
MC sweeps.

Note that our previous methods12 employed an effec-
tive Hamiltonian1,2,11 that incorporates spins, electric
moments and oxygen octahedral tiltings as degrees of
freedom, in general, and assumes a more simple spin cur-
rent model for which some parameters are empirically
derived11–14, in particular. In contrast, in the present
study, we (i) take into account the most general matrix
form of magnetic interactions and (ii) ab-initio calcula-
tions are conducted to obtain all coupling coefficients.

III. RESULTS

The application of the aforementioned DFT param-
eters results in the R3c structure with lattice param-
eters of a = b = c = 5.584 Å and α = β = γ =
59.529◦, as well as the internal positions of atoms be-
ing Bi 2a (0.276, 0.276, 0.276), Fe 2a (0, 0, 0) and O
6c (0.672, 0.813, 0.217). Such lattice parameters are
within 0.8% difference as compared to previous calcula-
tions and measurements24,38, which testify the accuracy
of our DFT calculations.

A. First nearest neighbor coupling J1

Let us first focus on the nearest neighbor exchange
coupling and choose the Fe-Fe pair along the [100] direc-
tion as an example. As shown in Table I, the isotropic
J1 (which is the average of J1,xx, J1,yy and J1,zz) yields
6.086 meV, whose positive sign indicates that the cou-
pling is of AFM nature. Such parameter is rather close
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to the values of 6.4839, 4.3840 and 4.3441 meV that are es-
timated from inelastic neutron scattering, which further
attests the accuracy of our calculations. Values of J1
are also calculated for the R3m phase, that only adopts
FE displacements, and the R3̄c phase, that only pos-
sesses AFD distortions. The J1 value for R3m phase
yields a larger 7.428 meV, while that of R3̄c phase gives
a smaller 5.855 meV. Such comparison indicates that the
FE displacements contribute more to the AFM than the
oxygen octahedral tilting does. Taking advantage of the
general J matrix, SE coupling is found to yield an easy
plane that is perpendicular to the pair direction in the
R3c structure, as J1,yy ≈ J1,zz = 6.091 meV, while J1,xx
= 6.076 meV. Such energy differences result in an easy
plane that is perpendicular to the [111] direction, when
all six nearest neighbors are considered, which is con-
sistent with proposed directions of the AFM vector in
the spin-canted structure1. Note that such anisotropic
SE coupling has been recently reported to be signifi-
cant in LaMn3Cr4O12 and is responsible for inducing its
multiferroicity42. Similar anisotropic SE coupling is also
found in the R3m and R3̄c phases.

Moreover, the DM vector for first nearest neighbors
and in the (x, y, z) basis is calculated to be D1 = (-
0.042, 0.028, -0.116) meV for the R3c state, resulting in
a magnitude D1 of 0.126 meV – that is about 50 times
smaller than J1 (note that Ref.43 provided a much larger
magnitude of D1 that is equal to 0.193, 0.327 and 0.321
meV for the three different < 001 > pairs, which is sur-
prising since all these first nearest-neighbor pairs should
have the same magnitude of D1 in the R3c state. The
overestimation of the magnitude of D1 in Ref.43 with re-
spect to our present results likely lies in the choice of
too small supercells used within the four-state method
in Ref.43). According to the formula of Keffer44,45, the
DM vector should be perpendicular to the plane deter-
mined by the magnetic sites and the bridging ligand, e.g.,
oxygen. However, in the present highly distorted crystal
structure, D1 is away from the perpendicular direction
of the Fe-O-Fe plane by about 30◦, which is due to sym-
metry breaking caused by the neighboring atoms, e.g.,
distortion of FeO6 octahedra and extra hooping path me-
diated by Bi atoms.

As commonly done for magnetic Hamiltonians18–20,
D1 can be decomposed into two parts, Da

1 (0, α, -α)
that determines the cycloidal plane and period λ20 and
Db

1 (β, β, β) that can either create components of spins
forming a spin-density wave and being away from the
cycloidal plane11,46 for the cycloidal configuration or to
the creation of a weak magnetization in the spin-canted
structure2,47,48. Here, we found that α = 0.072 meV and
β = -0.043 meV. As a result, Da

1 possesses a magnitude of
0.102 meV and Db

1 has a strength of 0.074 meV. Such pa-
rameters are well consistent with the values of 0.18 meV
and 0.06 meV, respectively, which are estimated from
previous experiments and models5,19,20,49–52. Moreover,
the D1 vector of R3m is numerically determined to be
(0.003, 0.135, -0.136) meV, that is close to adopt the form

of (0, A, -A). It therefore has mostly a Da
1 component,

and, consequently, its Db
1 component is nearly vanish-

ing. Such fact implies that the Db
1 component in the

R3c phase mostly originates from AFD tiltings. Such
finding is consistent with the expression of the DM ef-
fect proposed in Refs.2,47, which involves the tiltings of
first-nearest-neighbors oxygen octahedra and which was
suggested to be responsible for the weak ferromagnetism
in the spin canted structure of BFO. Such fact is fur-
ther confirmed by the fact that the D1 vector of R3̄c is
found to be equal to (-0.077, -0.027, -0.027) meV and has
therefore a (B, C, C) form, which results in a Db

1 com-
ponent that can be be estimated to be (-0.043, -0.043,
-0.043) meV when taking an average β to be equal to
(B+2C)/3. Interestingly, this resulting Db

1 vector of R3̄c
is precisely the one of the R3c structure, which further
confirms that this latter originates from oxygen octahe-
dral tilting rather than polarization. On the other hand,
polarization does contribute to the Da

1 of the R3c phase
since the Da

1 of theR3m phase is significant. Such feature
is in-line with spin-current models involving the polariza-
tion, P, and first-nearest neighbors for the DM effect that
has an energy of the form C1(P×eij)·(mi×mj), where C1

is a material-dependent coefficient, eij is the unit vector
joining site i to site j and where mi and mj are the mag-
netic moments at these sites i and j, respectively11,13.
Note that spin-current models have been proposed to be
the origin of magnetic cycloids in BFO11,20. Note also
that the D1 vectors of R3m and R3̄c phases do not add
up to that of R3c phase, which implies nonlinear inter-
actions between polarization and AFD motions in the
determination of DM vectors in the R3c state of BFO.

B. Second nearest neighbor coupling J2

We now look at the second-nearest neighbor couplings.
It is found that SE couplings are nearly isotropic for both
pairs along [11̄0] and [110], since the differences between
the J2,αα’s (with α = x, y and z) are no more than 0.002
meV for both the [11̄0] and [110] directions, as shown
in Table II. The averaged SE coupling for pairs along
[11̄0] yields J1

2 = 0.193 meV. Such value is very close
to the 0.2 meV that is estimated from inelastic neutron
scattering20,39–41. On the other hand, the counterpart
interactions for pairs along [110] yield minute value of J2

2

' 0.003 meV. Such contrasts between J1
2 and J2

2 , as well
as the nearly vanishing value of J2

2 , are reported here for
the first time, to the best of our knowledge.

Further calculations are performed to determine
whether such differences result from the different Fe-Fe
distances, FE displacements and/or AFD motions. For
simplicity, calculations without SOC (that is, we assume
spins being colinearly aligned) are performed, with the
outputs being shown in Table III, for that determination.
(Note that the calculations without SOC are purely for
determining the effects of FE displacements and AFD
motions and the resulted J2 values may differ from those
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TABLE II: Calculated symmetric exchange parameters and
DM interactions for the second nearest neighbor Fe-Fe pairs.
J2 and D2 for pairs along [11̄0] ([110], respectively) direc-
tions are marked with superscript 1 (2, respectively). These
parameters take into account spin-orbit interactions. (unit:
meV)

[11̄0] J1
2,xx J1

2,yy J1
2,zz J1

2

R3c 0.192 0.193 0.194 0.193

R3m 0.338 0.338 0.338 0.338

R3̄c 0.049 0.048 0.049 0.049

[11̄0] D1
2,x D1

2,y D1
2,z D1

2

R3c 0.001 0.002 0.021 0.021

R3m 0.007 0.007 0.039 0.040

R3̄c 0 0 0 0

[110] J2
2,xx J2

2,yy J2
2,zz J2

2

R3c 0.003 0.002 0.004 0.003

R3m -0.105 -0.105 -0.102 -0.104

R3̄c 0.150 0.150 0.150 0.150

[110] D2
2,x D2

2,y D2
2,z D2

2

R3c 0.000 -0.002 0.004 0.005

R3m 0.000 0.000 0.000 0.001

R3̄c 0 0 0 0

with SOC.) We first check the J1
2 and J2

2 coefficients for
the following two phases: (i) the cubic Pm3̄m phase, for
which Fe-Fe pairs along [11̄0] and [110] have the same
distance and that yields the same coupling strength as
J1
2 = J2

2 = 0.48 meV; and (ii) the rhombohedral R3c
phase, for which Fe-Fe pairs along [11̄0] have shorter dis-
tance than those along [110], which results in different
coupling strength as J1

2 = 0.35 meV while J2
2 = 0.25

meV. Moreover, if the internal atomic positions retain
their R3c values while the lattice vectors are changed to
those of the cubic structure, the distances of Fe-Fe pairs
along [11̄0] and [110] become identical, but the coupling
strengths remain different as J1

2 = 0.35 meV while J2
2 =

0.25 meV. Furthermore, if we force the internal atomic
pattern to be that of the Pm3̄m state while the lattice
vectors are changed to those of the rhombohedral R3c
ground state, the distances of Fe-Fe pairs along [11̄0] and
[110] become different again, but the coupling strengths
J1
2 and J2

2 turn out to be the same with the precision
up to 0.01 meV. The comparison among such cases with
modified and unmodified lattice shapes clearly demon-
strates that the difference in J1

2 and J2
2 is not related to

the different distances (0.02 Å) of Fe-Fe pairs, but rather
if there is a polarization and/or oxygen octahedral tilting
axis in the considered state and if the considered second-
nearest neighbor direction is perpendicular or not to such
polarization and/or oxygen octahedral tilting axis.

To investigate the separate effects of FE displacements
and AFD on second-nearest-neighbor couplings, we fur-
ther checked two other cases that retain the R3m and

TABLE III: Calculated isotropic exchange parameters for the
second nearest neighbor Fe-Fe pairs with different structures
(lattices and atomic patterns). J1

2 is for Fe-Fe pairs that are
along [11̄0] directions that are perpendicular to the polariza-
tion direction, while J2

2 is for Fe-Fe pairs that are along [110]
directions. These parameters are calculated at a collinear
level.

Struct.
Distor. J2 Distance

involved (meV) (Å)

Cubic(Pm3̄m) -
J1
2 ,[11̄0] 0.48 5.56

J2
2 ,[110] 0.48 5.56

Rhom.(R3c) FE,AFD
J1
2 ,[11̄0] 0.35 5.55

J2
2 ,[110] 0.25 5.58

Cubic(R3c) FE,AFD
J1
2 ,[11̄0] 0.35 5.56

J2
2 ,[110] 0.25 5.56

Rhom.(Pm3̄m) -
J1
2 ,[11̄0] 0.48 5.55

J2
2 ,[110] 0.48 5.58

Cubic(R3m) FE
J1
2 ,[11̄0] 0.55 5.56

J2
2 ,[110] 0.28 5.56

Cubic(R3̄c) AFD
J1
2 ,[11̄0] 0.31 5.56

J2
2 ,[110] 0.39 5.56

R3̄c atomic patterns, respectively, but with lattice vec-
tors being those of a cubic phase. As also shown in Table
III and with respect to the situation for which both lat-
tice and atomic displacements are those of a cubic state
(and for which J1

2 = J2
2 = 0.48 meV), (i) the first other

case (i.e., cubic for lattice and R3m for atomic positions)
enhances the couplings among the pairs that are per-
pendicular to the [111] direction of polarization with J1

2

= 0.55 meV, while suppressing the couplings among the
pairs that are not perpendicular to the [111] direction
of polarization with J2

2 = 0.28 meV; and (ii) the second
other case (namely, cubic for lattice and R3̄c phase for
atomic displacements) suppresses both types of couplings
as J1

2 = 0.31 meV and J2
2 = 0.39 meV. These results for

these last two cases also imply that the difference in J1
2

and J2
2 in the R3c ground state arises from both FE and

AFD displacements (and their interactions). In terms of
atomic displacements, a 0.35 Å shift of Bi ions along the
[111] direction splits J2 by a difference of 0.27 meV, while
a 0.46 Å displacement of O ions (which corresponds to
a 7.86◦ anti-phase octahedral rotation along each pseu-
docubic axis) narrows the difference to 0.08 meV (see also
influences of atomic displacements on exchange couplings
in Refs.53,54).

Moreover, the SE couplings of second nearest neigh-
bors in R3m and R3̄c phases are also found to be rather
isotropic, as the corresponding J2,αα (α = x, y and z) has
the same components along different directions, as well
as that the off-diagonal components of J2 are all smaller
than 0.001 meV (not shown here). As shown in Table
II, it yields an averaged J1

2 = 0.338 meV in the R3m
phase and an averaged J1

2 = 0.049 meV in the R3̄c phase
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for Fe-Fe pairs along [11̄0]. Such two quantities work
together and lead to the medium J1

2 = 0.193 meV in
the R3c phase. Furthermore, for Fe-Fe pairs along [110],
R3̄c phase has J2

2 = 0.150 meV, while R3m surprisingly
has J2

2 = -0.104 meV, which is ferromagnetic in nature.
Such results therefore indicate that the nearly vanishing
J2
2 in R3c phase results from the cancellation between

FE displacements and AFD. Additionally, the facts that
the diagonal elements of J1, J1

2 and J2
2 are all different

when going from R3c to R3m or R3̄c is consistent with
the total energy of the effective Hamiltonian of Refs.11,29

indicating that both FE and AFD distortions affect the
magnetic exchange interactions (note that a recent study
on an hexagonal phase of BFO indicates that complex
isotropic interactions can also lead to long period mag-
netic structure through frustration55.)

Furthermore, the DM vector between second nearest
neighbors is found to nearly vanish for <110> pairs,
while being non-negligible and lying nearly along the
<001> direction for Fe-Fe pairs being oriented along the
<11̄0> directions. In fact and as shown in Table II, such
latter DM is “only” about 6 times smaller than the DM
interaction of first nearest neighbors, and mostly origi-
nates solely from FE displacements, since the inversion
centers between second nearest neighbor Fe-Fe pairs in
R3̄c prevent the presence of DM interaction22. Such facts
are consistent with a spin-current model involving polar-
ization and magnetic moments of second-nearest neigh-
bors (in addition to those of first-nearest neighbors), as
done in Refs.11,12,19. However, it is also worthwhile to re-
alize that a spin-current model for the [11̄0] pair provides
an energy of the form C2(P× eij) · (mi ×mj), where C2

is a material-dependent parameter and where eij is the
unit vector along the [11̄0] direction, which consequently
should give a D1

2 DM vector along the [1̄1̄2] direction
and thus contrasts with the nearly [001] direction found
by the DFT calculations and reported in Table III. As a
result, the DFT D1

2 vector contains effects going beyond
the sole spin-current model for second-nearest neighbor
interactions (note, however, that the projection of D1

2 of
the R3c phase into the [1̄1̄2] direction gives a scalar that
has a strength of about 76% of the magnitude of D1

2,
implying that these additional effects are relatively small
in comparison with those due the spin-current model).

C. Single ion anisotropy A

As we have analyzed in the method part, the point
group symmetry of R3c, R3m and R3̄c requires that the
SIA either prefers the [111] direction or the (111) plane.
The sign and magnitude of 3∆ thus defines the total ef-
fect of SIA, which is the energy difference between local
moment of one Fe ion being along the [111] direction and
within the (111) plane. As shown in Table IV, 3∆ = -6
µeV for R3c phase, which indicates a weak preference for
the [111] direction. Such small value (which is, e.g., about
21 times smaller than the magnitude of the DM vector

TABLE IV: Calculated SIA, as well as the easy axis or easy
plane. Note that 3∆ is the total effect of SIA, which indicates
the energy difference between spins being along the [111] di-
rection and within the (111) plane. (unit: µeV)

R3c R3m R3̄c

∆ -2 -25 19

3∆ -6 -75 57

Easy axis/plane [111] [111] (111)

for first nearest neighbors) is in good agreement with
the experimental value of -6.8 µeV39 and also agrees well
with the estimated value of -4 µeV from combining dif-
ferent experiments and simulations16,19,20,39,52,56–58, as
well as being consistent with the neglect of SIA in effec-
tive Hamiltonians of BFO11,29. Such good agreements
further attests the accuracy of our presently used four-
state method, as other numerical methods either underes-
timate SIA to -1.3 µeV59 or overestimate it to -11 µeV43.
Moreover, 3∆ is found to be -75 µeV for the R3m phase,
therefore demonstrating that FE displacements generate
an easy axis along the [111] direction. In contrast, 3∆
= 57 µeV for the R3̄c phase, implying that AFD mo-
tions favor an easy (111) plane. The FE displacements
and AFD motions both have rather strong effects in de-
termining the SIA, as evidenced by the fact that 3∆ in
R3m and R3̄c phases are an order of magnitude larger
than that in the R3c phase. Interestingly, it is the com-
petition between those two opposite effects that results
in the small SIA of the R3c phase.

D. Monte-Carlo simulations

MC simulations, using the aforementioned DFT-
determined parameters and Hamiltonian of Eq. (1), are
first performed on a 12×12×12 supercell, therefore con-
taining 1728 Fe atoms. As shown in Fig. 1(a), the specific
heat-versus-temperature curve shows a clear peak at 603
K, which is indicative of a magnetic transition. We fur-
ther define the AFM Néel vector L = 1

2 |S1-S2| as the
difference between spins of the two sublattices that are
represented by the two Fe sites in the primitive cell. As
shown in the inset of Fig. 1(a), the AFM Néel vector L
reaches the saturated value of about 2.5, showing that
such transition is from paramagnetic to the dominant G-
type AFM phase. Further analysis indicates that such
G-type AFM phase in the 12×12×12 supercell is associ-
ated with a canted weak ferromagnetism of 0.025 µB/Fe.
The presently predicted Néel temperature TN = 603 K
agrees rather well with the measured value of about 643
K60,61, which attests the accuracy of our magnetic pa-
rameters, as well as the MC simulations.

The simulations on small cells (primitive cell or 2×2×2
supercell) are also performed, which predict not only the
dominant collinear G-type AFM configuration, but also
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FIG. 1: Magnetic properties predicted from MC simulations. Panel (a) shows the specific heat as a function of temperature. The
inset of Panel (a) shows the dependence of the AFM Néel vector L on temperature, which further emphasizes a paramagnetic-
to-AFM transition taking place at 603 K; Panel (b) displays the energy per Fe ion with respect to the period of [11̄0] and [001]
cycloids; Panel (c) is the energy per Fe ion with respect to the period of the [11̄0] cycloid, using selected magnetic parameters;
and Panel (d) demonstrates the tilting angles at different phases/positions along the propagation direction of the [11̄0] cycloid.
The direction notations above the horizontal axis in Panel (d) mark the approximate directions that the magnetic moments
are parallel to. Note that the energy of the collinear G-type AFM state is set to be energy reference (zero) in both Panels (b)
and (c).

a canting moment that further lowers the energy by 0.09
meV/Fe, as shown in Fig. 1(b). Such canting moment
results from the Db

1 parameter, which originates from
the oxygen octahedral tiltings among first-nearest neigh-
bors. The resulting magnetization in the 2×2×2 super-
cell is determined to be 0.031 µB/Fe (corresponding to
an canting angle of 0.36◦), which agrees very well with
the value of 0.027 µB/Fe reported in previous MC effec-
tive Hamiltonian-based simulations2 and the value ≈0.02
µB/Fe of the measured weak ferromagnetism62. Note
that although the measured values of such weak magne-
tization can range from 0.012 to 0.09 µB/Fe, depending
on (i) whether the sample is single crystal, ceramic or
compressively/tensily strained films or (ii) whether mag-
netic field is applied46,62–64, our result is of the same order
with those experimental values.

We have also explored the possibility of stabilizing a
spin spiral in the [−110] direction. For that we have used

√
2n ×

√
2 × 2 (n = 2, 3,..., 240) supercells, containing

4n Fe ions and with its first axis being along the [11̄0]
direction, to determine the period of the cycloid state
along that direction. It is found that the [11̄0] cycloid
phase becomes lower in energy than the canted G-type
AFM state, when the cycloid period is longer than 47 nm.
The minimum in the energy-versus-period curve further
indicates that the cycloid period is predicted to be λ =
83 nm, which is slightly larger but of the same order of
magnitude than the measured 62 nm cycloidal period65.
Note that, in order to obtain the measured period (62
± 3 nm), one can, for instance, increase the magnitude
of Da

1 from 0.102 to 0.184 meV, or slightly increase the
strength of D1

2 from 0.021 to 0.032 meV and that of D2
2

from 0.005 to 0.008 meV (note also that using all parame-
ters directly obtained from DFT gives a critical magnetic
field (aligned along the [112̄] direction) of 5.4 T associ-
ated with the magnetic-field induced transition from the
[11̄0] cycloid phase to canted G-type AFM state, while
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increasing Da
1 to 0.184 meV provides a critical field of

18.4 T – which is very close to the measured value 18 T5.
Alternatively, if D1

2 is increased to 0.032 meV and D2
2

to 0.008 meV, the critical field yields 7.1 T. It therefore
appears that having the best comparisons with different
experimental data require the choice of Da

1 to be 0.184
meV.) Furthermore, the [001] cycloid is also investigated
to compare with the [11̄0] cycloid. It is found that (i) the
[001] cycloid always has slightly higher energy than the
[11̄0] cycloid in all investigated range and (ii) its energy
has a minimum at λ = 102 nm which is even lower than
the energies of the pure G-AFM state and of the spin-
canted G-AFM structure, as shown in Fig. 1(b). Our
predictions that the [11̄0] cycloid is the ground state and
that the [001] cycloid can be very close in energy is fully
consistent with a recent study using spin current model
involving first and second nearest neighbors12.

We now further look at, and report, the effects of in-
dividual magnetic parameters in determining the stabil-
ity of the magnetic configurations. (1) The dominant
isotropic first nearest neighbor magnetic exchange inter-
action J1 favors the collinear G-type AFM. The isotropic
second nearest neighbor magnetic exchange interaction
parameter J2, favors also an AFM coupling. Therefore,
J1 and J2 compete with each other and disfavor the sta-
bilization of a collinear G-type magnetic state. (2) Con-
sidering J1,αα, J1

2,αα and J2
2,αα (α = x, y and z) favors

a collinear AFM within the (111) plane. Such (111) easy
plane is determined through a weak competition among
pairs along different directions. Specifically, Fe-Fe pairs
along [100] ([010] and [001], respectively) direction prefer
(100) ((010) and (001), respectively) plane, which lead to
an overall effect in favor of the (111) plane. Such com-
petition/frustration effect is similar to the determination
of the easy axis in CrI3 and CrGeTe3 systems35. (3) The
SIA favors an easy axis along the [111] direction but the
small value of 3∆ = -6 µeV is scarcely influencing the
magnetic properties determined by other anisotropies.
Specifically, when the SIA is turned off in the MC sim-
ulations, the weakly canted G-type AFM remains the
ground state in small cells and the [11̄0] cycloid state re-
mains unchanged (aside a small increase of 1 nm of its
period). Such results further validate the neglect of SIA
in effective Hamiltonians of BFO in previous works11,29.
(4) The DM interactions, including Da

1, D1
2 and D2

2, all
contribute to generate a cycloid. Such effect is evidenced
by the facts that (i) if only isotropic J1 and Da

1 are used
(all other parameters are set to be zero), it results in a
[11̄0] cycloid with a period of λ ≈ 122 nm; while (ii) if D2

is also incorporated, it further stabilizes the [11̄0] cycloid
(by decreasing its energy) and consequently shortens the
period to λ ≈ 89 nm, as shown in Fig. 1(c). (5) The DM
interaction Db

1 creates spin canting in the (111) plane for
the nearest neighbor moments that have components in
the (111) plane. As a result, for a small 2×2×2 super-

cell, it leads to a homogenous canting angle τ with the
aforementioned value of 0.36◦ for the spin-canted G-type
AFM configuration. For the [11̄0] cycloid, there is no
canting when magnetic moments are along the [111] or
[1̄1̄1̄] directions and the canting angle reaches a maximum
magnitude of 0.36◦ when moments are near the [11̄0] or
[1̄10] directions, as shown in Fig. 1(d). Such modulated
canting corresponds to a spin-density wave that is formed
by components of magnetic moments that are away from
the plane spanned by the [111] polarization direction and
the [11̄0] propagation direction, and that has been exper-
imentally seen in Ref.46. The maximal |τ | = 0.36◦ agrees
well with the estimated 0.3◦ and 1◦values provided in
Ref.20.

IV. CONCLUSION

To conclude, the magnetic interaction parameters of
multiferroic BiFeO3 are obtained using first-principles
calculations, in combination with the four-state energy
mapping method. We explicitly considered symmetric
exchange couplings (i.e., Jxx, Jyy, Jzz), DM interactions
up to the second nearest neighbor (for the first time, to
the best of our knowledge), as well as the SIA. MC simu-
lations with those parameters successfully reproduce, and
explain, the energy hierarchy between the ground state
and excited states. The resulting [11̄0] cycloid has a pe-
riod of 83 nm, which is in reasonable agreement with the
value of 62 nm measured in experiments. We also predict
a magnetic cycloid propagating along a <100> direction
which has a low energy, and may thus appear in some fu-
ture experiments when varying external parameters. We
are thus confident that the present work is of interest
to the scientific community, in general, and can be used
as basis for future phenomenological or ab-initio-based
simulations, in particular.
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