
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Cooling arbitrary near-critical systems using hyperbolic
quenches

Prahar Mitra, Matteo Ippoliti, R. N. Bhatt, S. L. Sondhi, and Kartiek Agarwal
Phys. Rev. B 99, 104308 — Published 29 March 2019

DOI: 10.1103/PhysRevB.99.104308

http://dx.doi.org/10.1103/PhysRevB.99.104308


Cooling arbitrary near-critical systems using hyperbolic quenches

Prahar Mitra,1 Matteo Ippoliti,2 R. N. Bhatt,3 S. L. Sondhi,2 and Kartiek Agarwal4, 3, ∗

1School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA
2Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

3Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540, USA
4Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada

We describe a quench protocol that allows the rapid preparation of ground states of arbitrary
interacting conformal field theories in 1 + 1 dimensions. We start from the ground state of a
related gapped relativistic quantum field theory and consider sudden quenches along the space-like
trajectories t2 − x2 = T 2

0 (parameterized by T0) to a conformal field theory. Using only arguments
of symmetry and conformal invariance, we show that the post-quench stress-energy tensor of the
conformal field theory is uniquely constrained up to an overall scaling factor. Crucially, the geometry
of the quench necessitates that the system approach the vacuum energy density over all space except
the singular lines x = ±t. The above arguments are verified using an exact treatment of the quench
for the Gaussian scalar field theory (equivalently the Luttinger liquid), and numerically for the
quantum O(N) model in the large-N limit. Additionally, for the Gaussian theory, we find in fact
that even when starting from certain excited states, the quench conserves entropy, and is thus also
suitable for rapidly preparing excited states. Our methods serve as a fast, alternative route to
reservoir-based cooling to prepare quantum states of interest.

I. INTRODUCTION.

Experimentally engineering and harnessing the
power of artificial quantum systems for the pur-
pose of quantum simulation and quantum computa-
tion is an important present challenge. While much
progress has been made on the front of develop-
ing extremely isolated quantum systems—ultracold
atoms in optical lattices1–4 or traps5,6, nitrogen va-
cancy centers7–12, ion traps13–15, superconducting
qubit structures16–19 etc.—as these systems grow
more complex, it becomes harder to devise equally
elaborate tools to manipulate them while maintain-
ing isolation from sources of decoherence. It is there-
fore important to theoretically determine the mini-
mum set of control knobs needed to prepare certain
quantum states of interest, and the most efficient
way to do so. This is the challenge of quantum state
preparation.

In this regard, the adiabatic principle has served
as a basis for many investigations (cf. Ref.20). In
its simplest form, the idea is to prepare the sys-
tem in an eigenstate of a Hamiltonian that is eas-
ily accessible—usually gapped, such that the ground
state lacks long-range entanglement—and subse-
quently tune the Hamiltonian slowly to evolve this
eigenstate into the target state. When this action
is performed sufficiently slowly, the system contin-
ues to evolve in an eigenstate of the instantaneous
Hamiltonian. The limitation of this approach is its
speed—to avoid exciting the system in the process,
the time taken must be of the order of the inverse-
square of the smallest instantaneous spectral gap
between the target and excited states21, a quantity
which diverges in the thermodynamic limit for many

systems/problems of interest22–24.

To achieve faster preparation, recent work has
proposed engineering counter-diabatic drives25–29

that counter the production of excitations dur-
ing adiabatic evolution, or introducing ‘optimal-
control’ protocols30–35 (including ‘bang-bang’ proto-
cols36–39) that entirely dispense with the adiabatic
ansatz. While these methods indeed outpace adi-
abatic protocols, they often rely on extensive nu-
merical simulations to explore the parameter space
of preparation protocols to find the optimal one; im-
portantly insights from protocols found for finite size
systems do not appear to carry over in an obvious
way to the thermodynamic limit. For present exper-
imentally achievable system sizes1, it is still most ef-
ficient to create a thermodynamically large reservoir
of low-energy excitations40,41 that can remove en-
tropy from the subsystem of interest; this may how-
ever prove challenging to extend to larger systems,
systems that exhibit integrability, and systems that
themselves have low-energy excitations.

In this work, we build upon previous work24,42

(and also related work in the Kibble-Zurek commu-
nity, see Refs.43,44) by some of the present authors
and discuss a general paradigm for preparing the
ground state of arbitrary interacting conformal field
theories (CFTs) in spatial dimension d = 1. Such
systems are particularly challenging to cool because
they harbor gapless excitations, and are often inte-
grable (e.g., Luttinger liquids). As in previous work,
we assume that initially the system resides in the
ground state of a related gapped relativistic quan-
tum field theory (QFT) which is easier to prepare
due to the presence of a gap. We next consider a
quench to the CFT of interest by eliminating the
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relevant perturbation that gaps out the low-energy
modes in the QFT along a special space-time trajec-
tory. While the previous work considered a quench
wherein the local mass was set to zero along a su-
perluminally moving front, here we consider a hy-
perbolic quench trajectory, (ct)2 − x2 = T 2

0 ; the two
protocols are illustrated in Figure 1. As we show,
this class of quench trajectories represents an entire
family of ground-state preparation protocols (delin-
eated by T0) that prepare the ground state in time
t ∼ O [L] where L is the system size; the optimal lu-
minal quench considered previously corresponds to
the limit T0 → 0. More importantly, studying this
family of quenches allows us to uncover the purely
geometric origins of the cooling mechanism of the
luminal quenches of Ref.24, at least in d = 1, thus
proving rigorously their use for cooling arbitrary in-
teracting CFTs.

More concretely, it was previously argued that the
superluminal motion of the quench front resulted
in the production of a chiral population of exci-
tations24,42,45. In the case of the optimal luminal
quench, all excitations moving against the front were
found to be Doppler-shifted to zero energy, while
the excitations moving along were infinitely excited.
These hot excitations pile up (in a way similar to
a sonic boom) at the quench front. As a result, all
the dissipation in the quench protocol is swept away
in an infinitesimally sharp front, allowing the rapid
preparation of the vacuum state everywhere else in
the system. Generalizing such a protocol to an inter-
acting setting where hot excitations can be reflected
back is not obvious; however, plausible arguments
and numerical data were provided to show how the
introduction of a small amount of adiabaticity—by
way of an additional time-scale for the local quench-
ing of the gap—can make the protocol amenable to
the interacting case.

Here we show that the superluminal quench pro-
tocol considered previously is exact even for inter-
acting systems by uncovering the geometric origins
of the cooling process. In particular, the hyperbolic
quenches considered here can be interpreted as oc-
curring uniformly in space at a fixed time in con-
formal coordinates (η, ξ), defined by the relations
t = T0e

η cosh ξ and x = T0e
η sinh ξ. The quench in-

volves the removal of the mass term at η = 0 for
all ξ. Translations in ξ correspond to an isome-
try of the system (equivalent to a Lorentz boost),
the quench surface η = 0 as well as the initial pre-
quench state (i.e. the ground state of the QFT). As
a result, the conformal system heats up uniformly
in the conformal coordinates after the quench, and
exhibits equilibrium in this coordinate system. In

FIG. 1. (a) Protocol studied in Ref.24. (b) Hyperbolic
quench protocols considered in this work. (c) Schematic
representation of the spatiotemporal dependence of the
post-quench energy-density as fixed by conformal sym-
metries, in the post-quench region t2 − x2 ≥ T 2

0 . “Heat
waves” emerge42 near the boundaries of the quench tra-
jectory, but become localized near x = ±t over time.
The energy density decays as ∼ 1/t2 everywhere else,
approaching the minimum ∼ 1/L2 in time ∼ O[L].

the laboratory frame, this appears to be a highly
anisotropic non-equilibrium steady state. Crucially,
in this state, the energy density approaches the vac-
uum energy as ∼ 1/t2 everywhere except on the sin-
gular lines x = ±t. Given the purely geometric
foundations for the result, the protocol is applica-
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ble to arbitrary CFTs. (Note that our results bear
resemblance to the observation of non-equilibrium
steady states in critical systems related to station-
ary states in Lorentz-boosted frames45–49; our sys-
tem here looks static in a conformal coordinate sys-
tem instead.) We show that the space and time de-
pendence of the stress-energy tensor is completely
constrained by arguments of symmetry and confor-
mal invariance, and the only input specific to the
quench protocol is a scaling function related to the
initial energy density generated by the quench. Con-
sistent with the previous work, we find that in the
limit T0 → 0, that is, when the quench reduces to
a symmetric copy of the luminal quench considered
in Ref.24, the energy density at all spacetime points
away from the singular lines t = ±x is arbitrarily
close to that of the vacuum immediately away from
the quench front.

While more work needs to be done to appreci-
ate the effectiveness of such hyperbolic quenches
quenching from initially excited states, here we show
that for the Gaussian theory at least, a uniform
momentum-independent excited state mode popu-
lation n of massive bosons directly translates to
the same population n of massless bosonic excita-
tions after the quench. In this way, the quench ap-
pears to preserve entropy (except along singular lines
x = ±t) more generally even when starting from
these particular excited states. This result should
be particularly useful for preparing ground states of
one-dimensional systems described by a Luttinger
liquid—if the temperature of the experimental sys-
tem is initially below the mass gap, the excitations
in the post-quench massless theory mirror the expo-
nential suppression of the pre-quench massive theory
due to the gap.

This paper is organized as follows. In Sec. II, we
discuss the formal argument for cooling in our pro-
tocol using symmetry and conformal invariance. In
Sec. III, we provide a validation of our findings by
performing an exact calculation of the quench in a
Gaussian scalar field theory. To provide additional
verification in an interacting setting, in Sec. IV we
examine our quench protocol in the quantum O(N)
model in the large-N limit using numerical simula-
tions. We complete the analysis in Sec. V by showing
that symmetry arguments alone do not constrain the
stress-energy tensor in higher dimensions. We con-
clude by summarizing our results in Sec. VI.

II. ARGUMENT FOR COOLING

We denote the laboratory coordinates as xa =
(t, x) and define conformal coordinates xµ = (η, ξ)

FIG. 2. Quench trajectory in the laboratory coordinates
(above) vs. the conformal coordinates (below).

which are related to the laboratory coordinates by

t = T0e
η cosh ξ, x = T0e

η sinh ξ. (1)

Note that the conformal coordinates cover only the
region t ≥ |x| of spacetime. The metric of Minkowski
spacetime takes the form

ds2 = −dt2 + dx2 = T 2
0 e

2η(−dη2 + dξ2). (2)

We assume that at t = 0−, our system resides in
the ground state of a particular gapped (gap ∼ m)
quantum field theory. We then argue that quenching
the quantum field theory to a conformal field theory
along the specific space-time trajectory t2 − x2 =
T 2

0 allows one to approach the ground state of the
conformal field theory rapidly.

Let us now understand the role of the confor-
mal coordinates (η, ξ). First, note that constant η
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surfaces provide a hyperbolic foliation of the region
t > |x| of Minkowski spacetime into Cauchy surfaces
defined by the relation t2−x2 = T 2

0 e
2η. The quench

trajectory is a particular such Cauchy surface, de-
fined by η = 0 (see also Fig. 2). Further, we are in-
terested in the description of our system within the
post-quench region t2 − x2 ≥ T 2

0 which is confined
to the region t ≥ |x|. For these reasons, it is clear
that the conformal coordinates are more suitable for
the problem at hand. To facilitate this, we must de-
scribe the initial pre-quench state at η = 0−. This is
done by a Hamiltonian evolution of the ground state
at t = 0 to η = 0 (choosing the appropriate notion
of “time” which maps the t = 0 Cauchy surface to
the η = 0 one). Importantly, due to causality, one
need only consider the pre-quench Hamiltonian for
this evolution without any reference to the quench.

Another useful property of the conformal coordi-
nates is that translation in ξ, that is ξ 7→ ξ + a,
is an isometry of the system, as is clear from the
form of the Minkowski metric in conformal coor-
dinates (2). One can also see this by noting that
a translation in ξ corresponds to a Lorentz boost
transformation in the laboratory frame coordinates:
(t, x) 7→ (t cosh a+ x sinh a, t sinh a+ x cosh a). This
is therefore a symmetry of the pre-quench rela-
tivistic quantum field theory, the quench surface
t2−x2 = T 2

0 ≡ η = 0 as well as the post-quench con-
formal field theory. Further, the pre-quench state,
which is assumed to be the vacuum state of the rela-
tivistic quantum field theory, is also preserved by
Lorentz boosts. These properties imply that the
post-quench state must also be invariant under ξ
translations. More precisely, multi-point correla-
tion functions 〈O1(η1, ξ1) · · · 〉CFT in the post-quench
state can depend only on the differences ξi − ξj .

We now consider the one-point function of the
stress tensor 〈Tµν(η, ξ)〉CFT of the conformal field
theory in the space-time region above the quench.
(The energy density in particular is given by the
component Ttt(x, t) of the stress-energy tensor.)
Note that describing the stress-energy tensor of the
Lorentz-invariant massive theory for η < 0 is not
generally feasible (the mass is dynamical and scales
as e2η; an exact description for the Gaussian can be
derived as in Sec. III), and is also not necessary to
establish how cooling occurs in the post-quench re-
gion of space-time where the CFT applies. Now, due
to Lorentz-invariance of the pre-quench and post-
quench theory, we note that the one-point correla-
tor 〈Tµν(η, ξ)〉CFT is independent of ξ. Tracelessness
and conservation further imply the general form

〈Tµν(η, ξ)〉CFT =

(
A B
B A

)
. (3)

where we additionally note that the components do

not depend on the conformal time η; this follows
from the conservation of energy and momentum, en-
shrined in the operator identity ∇µTµν = 0. This is
a feature of 1+1 dimensions and does not hold gen-
erally in higher dimensions. Finally, we note that A
and B are unknown parameters that depend on the
details of the pre-quench state and the quench itself.

The above form may be further simplified in the-
ories that are parity invariant, i.e. invariance under
x→ −x or equivalently ξ → −ξ. This holds in many
condensed matter systems and we assume it holds
in the rest of the paper. As before, this symmetry
is preserved by the quench and is therefore a sym-
metry of the post-quench state. Parity invariance
together with translational invariance then implies
that 〈Tηξ(η, ξ)〉CFT = B = 0. With the form of the
stress-energy tensor of the theory completely fixed
up to a constant, we can revert back to the labora-
tory coordinates and read off the following result for
the stress-energy tensor:

〈Tab(t, x)〉CFT =
f(mT0)

(t2 − x2)2

(
t2 + x2 −2xt
−2xt t2 + x2

)
(4)

where by dimensional analysis we have incorpo-
rated the constant as an appropriate scaling func-
tion above (recall that m is the gap of QFT). This
scaling function depends on the precise details of
the QFT and CFT we are working with but there
are some general claims that can be made regarding
the limiting behavior of this function. First, in the
limit of the mass m → 0, the energy generated in
the quench must go to zero since there is no per-
turbation in this limit. Thus, f(mT0) → 0 in the
limit m→ 0 and keeping T0 fixed. By corollary, this
implies that for fixed m and T0 → 0, that is as the
quench approaches the luminal limit, the lab frame
energy density 〈Ttt〉CFT vanishes everywhere away
from the light cone t = ±x.

Let us further note that the procedure works just
as well for T0 6= 0. As is clear from Eq. (4), the en-
ergy density at finite x tends to zero as ∼ 1/t2 every-
where. This behavior can be attributed to conformal
dilation of the energy density as follows. Excitations
are created at all wave-vectors in ξ-coordinates, and
these wave-vectors are preserved for subsequent time
evolution in η. For x � t, we have dx ∼ tdξ—thus
modes varying over a length scale dx ∼ T0dξ at the
initial time vary at a length scale tdξ at long times.
This dilation of wave vectors causes the energy of
massless modes to decrease as ∼ 1/t. Moreover, the
modes now occupy a larger volume, ∼ t. These ef-
fects together result in a decrease in energy density
as ∼ 1/t2. Finally, as a consequence, the energy den-
sity is ∼ O

[
1/L2

]
in time t ∼ O [L], putting these

quenches (with T0 6= 0) in the same class parametri-
cally as the quench for T0 → 0 (although the latter is
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clearly faster), and faster than the uniform adiabatic
algorithm which takes time t ∼ O

[
L2
]

to generate a
state with exponentially-small energy density above
the vacuum state.

This completes our discussion of the general proof
of the effectiveness of the cooling procedure for ar-
bitrary CFTs. We next verify the arguments ex-
plicitly by showing that the quench in the Gaussian
theory conform exactly to Eq. (4), and then dis-
cussing the protocol in the context of a model with
non-linearities and infrared/ultraviolet cut-offs, the
O(N) model in the large-N limit.

III. QUENCH IN THE GAUSSIAN THEORY

We now solve the quench in the case of a Gaus-
sian scalar field and show that the energy density is
explicitly of the form predicted by Eq. (4).

A. Preliminaries

The free massive scalar field is described by the
action

S[φ] = −1

2

∫
d2x
√
−g
[
gµν∂µφ∂νφ+m2φ2

]
=

1

2

∫
dηdξ

[
(∂ηφ)2 − (∂ξφ)2 −m2T 2

0 e
2ηφ2

]
.

(5)

which leads to the equations of motion[
−∂2

t +∂2
x−m2

]
φ =

[
−∂2

η+∂2
ξ−m2T 2

0 e
2η
]
φ = 0. (6)

We begin by working in the conformal coordinates.
The general solution to the equations of motion Eq. 6
is

φ =

∫
dq

2π

[
aquq + a†qu

∗
q

]
,

uq(η, ξ) = eiqξfq(η),

fq(η) =

√
π

2
e
π
2 qH

(2)
iq (mT0e

η) .

(7)

where H(2) are Hankel functions of the second
kind. The mode coefficients aq, and a†q are elevated
to operators in the quantum-mechanical setting, but
we do not specify the commutation relations between
these for the moment—these will be set by demand-
ing that the field operators satisfy equal-time (real
time t) commutation relations. The normalization
of the modes satisfies

(uq, uq′)η = 2πδ(q − q′),
(
uq, u

∗
q′
)
η

= 0. (8)

where the operation (·, ·) corresponds to the Klein-
Gordon inner product defined by

(φ1, φ2)η = i

∫
dξ (φ∗1∂ηφ2 − φ2∂ηφ

∗
1) . (9)

As a consequence of the above, the mode expansion
coefficients can be extracted from a particular solu-
tion φ via the relations

aq = (uq, φ)η , a†q = (φ, uq)η . (10)

We could have also analyzed the problem in the
laboratory frame where in the most general solution
takes the form

φ =

∫
dk

2π

[
AkUk +A†kU

∗
k

]
,

Uk(t, x) = eikxFk(t),

Fk(t) =
1√
2ωk

e−iωkt, ωk ≡
√
k2 +m2.

(11)

As before the normalization is chosen so that

(Uk, Uk′)t = 2πδ(k − k′),
(Uk, U

∗
k′)t = 0,

(φ1, φ2)t = i

∫
dx (φ∗1∂tφ2 − φ2∂tφ

∗
1) ,

(12)

and where the KG inner-product acts on a fixed time
t-slice. Again, we may find the mode coefficients in
this expansion via the relation

Ak = (Uk, φ)t, A†k = (φ,Uk)t. (13)

The two solutions for the field operator in Eqs. (7)
and (11) must obviously agree with each other and
additionally satisfy the correct equal-t commutation
relations.

In order that the solution of Eq. (11) satisfy the
equal t commutation relations [φ(t, x), ∂tφ(t, x′)] =

iδ(x − x′), we require [Ak, A
†
k′ ] = 2πδ(k − k′). (In

fact, the simplicity of the final commutation rela-
tions to ensure the correct equal-time commutation
relations is a byproduct of the form of choosing the
Klein-Gordon inner product for normalizing modes.)
The usual Fock vacuum |Ω〉 is represented by the
vacuum of the bosons Ak ∀ k.

We now show that both the above conditions are
satisfied for the solution in Eqs. (11) for the choice

[aq, a
†
q′ ] = 2πδ(q − q′), aq |Ω〉 = 0 ∀ k (14)

This result is a happy accident, as was pointed out
Fulling et al.50 which occurs because translations in
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ξ are an isometry of the space time. In fact, one can
show that the solution even satisfies an equal-η com-
mutation relation [φ(η, ξ), ∂ηφ(η, ξ′)] = iδ(ξ − ξ′).
The fact that the vacuum of bosons Ak agrees with
the vacuum of bosons, aq follows from the fact that
the ‘positive-frequency’ modes of the two sets of
solutions can be expressed in terms of each other
without the aid of using the ‘negative-frequency’ or
complex-conjugate solution. In particular, the fol-
lowing results hold

uq = i
√

2π

∫
dk

2π

1
√
ωk
eiq arcsinh k

mUk,

Uk = −i
√

2π

∫
dq

2π

1
√
ωk
e−iq arcsinh k

muq.

(15)

Using the identities∫
dk

2π

1

ωk
ei(q−q

′) arcsinh k
m = δ(q − q′),∫

dq

2π
e
iq
[

arcsinh k
m− arcsinh k

′
m

]
= ωkδ (k − k′) ,

(16)

we can show

Ak = i
√

2π

∫
dq

2π

1
√
ωk
eiq arcsinh k

m aq,

aq = −i
√

2π

∫
dk

2π

1
√
ωk
e−iq arcsinh k

mAk.

(17)

Thus, a state annihilated by all Ak is concomitantly
also annihilated by all aq.

B. The Quench

We now calculate the properties of the system af-
ter the quench. Recall that the initial mass of the
system is m and at η = 0, it is quenched to m̃ → 0
(all post-quench quantities are capped by a tilde).
We then have the equations

(�−m2)φ = 0 (η < 0),

(�− m̃2)φ̃ = 0 (η > 0),

{φ− φ̃, ∂ηφ− ∂ηφ̃}|η=0 = {0, 0}.
(18)

[Here � ≡ e−2η(∂2
ξ − ∂2

η).] The last equation of
the above corresponds to the two continuity of the
amplitude and time-derivative of the field operators.
The first two equations are solved by

φ =

∫
dq

2π

[
aquq + a†qu

∗
q

]
,

φ̃ =

∫
dq

2π

[
ãqũq + ã†qũ

∗
q

]
,

(19)

where the modes ãq are defined as aq but with the
mass set to m̃. The last two equations can be used
to relate the pre- and post-quench mode coefficients.
To do this, we evaluate Eq. (10) at η = 0 where using

the last equation of Eq. (18), we can replace φ↔ φ̃.
Thus,

aq = (uq, φ̃)η=0 = αqãq + βqã
†
−q,

ãq = (ũq, φ)η0 = α∗qaq − βqa
†
−q.

(20)

with Bogoliubov coefficients

αq = i[f∗q f̃
′
q − f̃qf ′∗q ]η=0,

βq = i[f∗q f̃
′∗
q − f̃∗q f ′∗q ]η=0.

(21)

where the functions fq were defined in Eq. (7).
Note that the commutation relations of the bosons
aq and ãq require |αq|2 − |βq|2 = 1. As a further
check, one can show easily that for m̃ = m, αq = 1,
and βq = 0. We may thus represent the post-quench
field operator result

φ̃ =

∫
dq

2π

[
aqγ̃q + a†qγ̃

∗
q

]
,

γ̃q = eiqξ
[
α∗q f̃q − β∗qf∗q

]
.

(22)

The coordinate-invariant representation of the
stress-energy tensor of the Gaussian scalar field the-
ory in d = 2 is

Tµν = ∇µφ̃∇ν φ̃+
1

2
gµν [−∇γ φ̃∇γ φ̃+ m̃2φ̃2]. (23)

The expectation value of this tensor above the vac-
uum is defined by 〈Tµν〉 = 〈Ω|: Tµν :|Ω〉, where we
have introduced normal ordering such that the ex-
pectation value of the stress-energy tensor in vacuum
is identically zero. Using the explicit formulae of the
previous section, we find

〈Tηη〉 = 〈Tξξ〉 =

∫
dq

4π

[
(|∂ηγ̃q|2 − |∂ηũq|2)

+ (|∂ξγ̃q|2 − |∂ξγ̃|2)

+ m̃2(|γ̃q|2 − |ũq|2)

]
,

〈Tηξ〉 =

∫
dq

2π

[
∂µγ̃q∂ν γ̃

∗
q − ∂µũq∂ν ũ∗q

]
(24)

Using the explicit formulae derived in this section,
we find 〈Tηξ〉 = 0 since the corresponding integrand
is odd in q. With the value of 〈Tµν〉 determined, we
may perform a coordinate transformation to easily
show that 〈Tab〉 that satisfies Eq. (4), proving the
assertion for the Gaussian theory. While analytic
formulas are available, they are unwieldy for direct
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evaluation. In Fig. 3, we numerically evaluate the
scaling function f(mT0) of Eq. (4). In Fig. 4, we
show the cooling effect graphically with a heat map
in space-time.

FIG. 3. The energy density at x = 0 is plotted as a
function of time, t. For T0 � m−1 = 1, the energy den-
sity at the origin at the precise instant of the quench
is independent of T0, and subsequently decays as t−2.
This agrees with expectations from Eq. (4). In the inset,
we examine the scaling function of Eq. (4) by plotting
EΩ(x = 0, t = T0). We see that f(mT0) ∼ (mT0)2 for
T0 � m−1, and f(mT0) ∼ mT0 for T0 � m−1. Note
that the former implies that ε = 2 for the Gaussian the-
ory.

C. Quench from excited states

We now show that at least for the Gaussian theory,
the quench protocol works even when starting with
excited states, in the sense that it maps an excited
state of the massive theory to one with the same
population in the massless theory, with no entropy
production in the bulk.

In particular, let us assume that we start in a state
described by a large gap m such that the disper-
sion of relevant modes may be neglected. (For in-
stance, if we smooth the protocol everywhere on a
time-scale τ ∼ m−1, the quench is a non-adiabatic
process only for modes with energy ωk . τ−1, or
momenta k . m for which we may ignore the
dispersion.) In this case, the mode occupation
of the laboratory-coordinate plane-wave modes is

〈AkA†k′〉 = 2πδk,k′nk ≈ 2πnB(m/kBT ) ∀ k � m.
Here nB is the usual thermal boson population func-
tion. Now, using the results of Eqs. (16) and (17),
this initial state can be equivalently represented
in terms of a uniform population of the conformal
modes aq, satisfying 〈a†qaq′〉 = 2πδq,q′nB(m/kBT ).

We would now like to find the mode population
of the post-quench massless modes ãq, and more im-
portantly, the population of the massless plane-wave

modes Ãq. (The modes Ãq are defined as the modes
Aq but with a mass m̃ → 0). The result is surpris-

ingly simple: the population of modes Ãq, is pre-
cisely given by the population of the initial massive
plane-wave modes Aq, that is, 〈Ã†qÃq′〉 = 〈A†qAq′〉 =
2πδq,q′nB(m/kBT ). To see this, first note that, as
a corollary, the post-quench conformal mode popu-

lation is also 〈ã†kãk′〉 = 2πδk,k′nB(m/kBT ). Next, if
we denote the pre-quench state by |E〉 and the post-

quench state with the population 〈ã†kãk′〉 as noted

above by |Ẽ〉, it follows that

〈E|Tµν |E〉 = 〈Ẽ|Tµν |Ẽ〉

+

[
2nB

(
m

kBT

)
+ 1

]
〈Ω|:Tµν :|Ω〉 .

(25)

The coordinate transformation of this result then re-
veals, as per previous analysis, that the energy den-
sity of the post-quench system now relaxes to the en-
ergy density of the state Ẽ, which is categorized by
the exact same population of modes ∼ nB(m/kBT )
as the massive modes before the quench. (See Fig. 5
for a numerical verification of this result in the Gaus-
sian case.)

This result is particularly significant from an ex-
perimental point of view as it is relatively simpler
to prepare a state with a temperature T � m/kB
such that the initial mode population is exponen-
tially suppressed. Further, note that the same pop-
ulation of modes before and after the quench naively
implies that there is precisely no entropy creation
in this rather violent quench process—however, we
must recall that there are singular features along the
lines x = ±t prevalent in the second term of Eq. (25).
Nonetheless, given the spatial locality of these singu-
lar features, we expect all the entropy production to
be channeled along these singular lines, much like all
the energy production was seen to be concentrated
on these lines for the vacuum quench. We leave a
more detailed exploration of the entropy production
in the Gaussian theory, as well as a more general
treatment in the interacting setting, for future work.

IV. NUMERICAL SIMULATIONS

In the following we present numerical simulations
of the quench in an interacting quantum theory, and
also probe the effect of various non-idealities that
result in the loss of conformal invariance in realistic
systems. We study these questions in the context
of the quantum O(N) model in the large-N limit
which admits a simple mean-field description and al-
lows for extensive numerical simulation. While this



8

FIG. 4. The energy density EΩ(x, t) of the Luttinger liquid (or Gaussian scalar field) with initial mass m = 1,
Luttinger parameter K = 1, is plotted after a quench from a state with a finite mass for different quench trajectories
parameterized by T0. The quench is most effective in the limit T0 → 0, but results in cooling at long times for all T0.

0

5

10

15

(x
=

0)

V

2nV

(a)

0 1 2 3 4 5
t

10
3

10
2

10
1

10
0

10
1

E
(x

=
0)

(b)

n = 0
n = 0.2

FIG. 5. Illustration of the protocol starting from the
vacuum (n̄ = 0) and from a uniformly populated excited
state (n̄ = 0.2) in the Gaussian theory. (a) Energy den-
sity at x = 0 as a function of t, showing saturation to
V and (1 + 2n̄)V in the two cases. (b) Energy density
above the final vacuum, EΩ, in logarithmic scale.

is not a conformal field theory, the gap can in prin-
ciple be made arbitrarily small—when this gap is
made smaller than other cutoffs, the system is ap-
proximately critical, and can be used to test our the-
oretical analysis in an interacting context.

A. The O(N) model in the large-N limit

In d = 1, the Hamiltonian of the O(N) model
reads

H =
1

2

∫
dx

(
|Π|2 + |∂xΦ|2 + r |Φ|2 +

λ

2N
|Φ|4

)
(26)

where Φ and Π are canonically conjugate N -
component fields, satisfying

[Φi(t, x),Πj(t, x
′)] = iδ(x− x′)δij ,

|Φ|2 =
∑
i Φ2

i , and |Φ|4 = (|Φ|2)
2
. In the limit

N → ∞, the Hamiltonian is amenable to a mean-
field treatment which reduces the problem to that of
a self-consistent Gaussian scalar field theory. Within
the mean-field ansatz which is exact in the limit
N →∞ (and following Ref.51,52), we note

Heff(t) =
1

2

∫
dx

[
|Π|2 + |∂xΦ|2 +m2

eff |Φ|
2
]
,

m2
eff(t, x) ≡ r + λ

〈
|Φ(t, x)|2

N

〉
. (27)

which is a Gaussian theory with a self-consistently
renormalized mass term. Since all components of
Φ are equivalent and independent in this limit, we
need only work with a single one of them, φ(t, x),

replacing 〈|Φ(t, x)|2〉/N by the expectation value
〈φ2(t, x)〉. The resulting equations of motion are
non-linear but efficiently solvable on a classical com-
puter.

In what follows, we work solely in laboratory
frame coordinates (t, x). We regularize the equa-
tions of motion by imposing infrared and ultravio-
let cutoffs. The former is achieved by putting the
system on a finite segment of length L with pe-
riodic boundary conditions, φ(t, x + L) ≡ φ(t, x).
The latter comes in the form of a momentum cut-
off, |k| < Λ/2, with φk+Λ(t) ≡ φk(t). In practice
this reduces the continuum field theory to a 1D lat-
tice of M ≡ LΛ/2π sites with periodic boundary
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conditions. Lattice sites correspond to momenta
kn = 2π

L n, with n ∈ {−M/2 + 1, . . . ,M/2}.
We perform a mode expansion of the field φ:

φ(t, x) =
∑
p

fp(t, x)ap + f∗p (t, x)a†p , (28)

where the {ap} are a set of annihilation operators
for the initial vacuum labelled by momentum p, and
the coefficients fp are called mode functions. In the
presence of spatial translation invariance, these de-
pend on position x as fp(x) ∼ e−ipx. This does
not hold when translation invariance is broken, as
in our spatiotemporal quench protocol. The Fourier-
transformed field φk(t) ≡ M−1/2

∑
x φ(t, x)eikx can

be written as

φk(t) =
∑
p

fp,k(t)ap + f∗p,−k(t)a†p . (29)

where fp,k(t) ≡M−1/2
∑
x fp(t, x)eikx. We call fp,k

the mode function matrix. It is an M × M ma-
trix; both its indices are momenta. In the presence
of translation invariance (see e.g. the treatment in
Ref.51) the matrix is diagonal, and the dynamics is
fully described by the mode vector fk. In the present
case, fp,k(0) is initially diagonal, but off-diagonal en-
tries are populated dynamically over the course of
the quench.

Upon decomposing φ(t, x) as in Eq. (29), the equa-
tion of motion

(∂2
t − ∂2

x + r(t, x) + λ〈φ2(t, x)〉)φ(t, x) = 0 (30)

maps to a system of M2 non-linear, time-
dependent, second-order ODEs in the mode func-
tions fp,k(t). Canonical commutation relations
[φp, φq] = [πp, πq] = 0, [φp, πq] = iδp,q are mapped
to the matrix equations

Im(f†f) = Im(g†g) = 0, Im(f†g) = −1

2
I , (31)

where I is the M ×M identity matrix and g = ḟ .
The initial conditions are given by

fp,k(0) =

√
1

2Ωk
δp,k, gp,k(0) = −i

√
Ωk
2
δp,k ,

with Ωk =
√
k2 +m2

eff . The effective mass meff

is determined self-consistently by demanding that
m2

eff = r + λ〈φ2〉:

m2
eff = r +

λ

2M

M/2−1∑
n=−M/2

1√
k2
n +m2

eff

, (32)

with kn = 2πn/L. The effective mass is always pos-
itive, but approaches 0 as r → −∞.
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FIG. 6. Simulated quench in the large-N O(N) model.
(a) Color plot of the energy density in spacetime for T0 =
2. (b) Energy density above the final vacuum EΩ at x =
0 exhibits 1/t2 relaxation across a range of values of the
quench parameter T0. The squared-mass parameter r is
quenched from r0 = 1 to r1 = −10. The interaction, with
strength λ = 10, renormalizes the initial mass squared to
m2

eff ' 1.6 and the final one to m2
eff ' 1.6× 10−6, giving

a nearly massless theory. The IR cutoff (system size)
is L = 40, the UV cutoff is Λ = 20π. The simulation
includes M = LΛ/2π = 400 modes.

We implement the quench protocol by varying the
parameter r in a space-time dependent with the form

r(t, x) = r0 + (r1 − r0)σ

(
t−
√
x2 + T 2

0

)
, (33)

where σ(t) = 1
2 (1 + tanh(t/τ)) is a step function

smoothed over a time scale τ . The limit τ → 0 yields
the instantaneous quench discussed analytically in
Sec. II and III.

We numerically integrate the equations of motion
[Eq. (30), with the form of r(x, t) as in Eq. (33)]
using a fourth-order Runge-Kutta method. The
evolved mode function matrix fp,k(t) is used to cal-
culate the energy density above the vacuum of the
final theory, EΩ(x, t) at various time steps and com-
pared to the analytical predictions. An example is
shown in Fig. 6(a), in the form of a heat map in
space-time. We clearly see the hot region near the
quench front t2 − x2 = T 2

0 , as well as the cool-
ing effect away from the front. To better under-
stand the nature of this cooling, in Fig. 6(b) we
show the energy density at the center of the system,
EΩ(x = 0, t), as a function of time. Eq. (4) pre-
dicts this should fall off as t−2 for an instantaneous
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quench to a CFT. Despite the presence of a variety
of finite cutoffs that break conformal invariance (the
small but finite mass, the IR and UV cutoffs L, Λ,
and the smoothing time τ), we see good agreement
with the predicted scaling. This confirms the valid-
ity of the argument presented in Sec. II away from
the non-interacting limit considered in Sec. III, and
also indicates its robustness to small violations of
the assumptions. The latter aspect is important for
the experimental applicability of the protocol, and
we investigate it more thoroughly in the following.

B. Effect of finite cutoffs

In a realistic implementation of the protocol, the
massless modes in the final theory would likely have
a phonon-like dispersion: linear near k = 0, but
highly non-linear, or even flat, sufficiently far from
k = 0. As a simple model for this, we consider the
dispersion

Ω2
k = m2

eff +

(
Λ

π

)2

sin2
(π

Λ
k
)
. (34)

Here Λ is the UV cutoff, defined by |k| < Λ/2. It
can be though of as arising from a microscopic lat-
tice spacing a via Λ = 2π/a, giving |k| < π/a. If
meff is quenched from a positive value to zero, after
the quench one gets modes that propagate at the
speed of light only for |k| � Λ. For these modes,
the cooling argument is expected to hold, with the
energy production being confined in spacetime near
the quench front. But for modes with |k| ∼ Λ, that
have group velocities much smaller than 1, the ar-
gument is expected to fail. This seemingly implies
that the cooling protocol is inapplicable in systems
with phonon-like dispersions of the type in Eq. (34).

The key to overcoming this issue lies in the pos-
sibility of tuning the smoothing time, τ , of the
quench. Indeed, a mode with frequency Ωk � τ−1

will see the quench as an adiabatic process, and thus
will remain in its vacuum state. Only modes with
low enough frequency will be affected by a sudden
quench, and by tuning τ one can ensure those modes
are within the linear dispersion regime, Ωk ' |k|.
This is illustrated in Fig. 7, where we present results
of numerical simulations in the free theory (λ = 0)
with the dispersion (34) with varying values of the
UV cutoff Λ and smoothing time τ .

In particular, Fig. 7(a) shows a sweep over Λ at
fixed τ . The energy density at x = 0 relaxes down
to a finite asymptotic value above the vacuum, due
to the excitations carried by large-k, sub-luminal
modes; this value approaches 0 as Λ is increased and
sub-luminal modes are pushed past the τ−1 cutoff,
crossing over into an adiabatic regime. Fig. 7(b)

10
3

10
2

10
1

10
0

10
1

E

(a) /2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10
t

10
3

10
2

10
1

10
0

10
1

E

(b)
0.04
0.06
0.08
0.10
0.12
0.14

k

k

k

k

FIG. 7. Effect of cutoffs on quench in the free theory
with phonon-like dispersion, Eq. (34). r is quenched
from r0 = 102 to r1 = 10−2. The IR cutoff is L = 40.
Interactions are absent (λ = 0) and T0 = 2. (a) Effect
of increasing UV cutoff Λ at fixed τ = 0.1. The state
relaxes down to a finite asymptotic energy density that
decreases with Λ. Inset: the dispersion Ωk vs k for the
values of Λ considered (solid lines), along with the value
of τ−1 (dashed line). (b) Effect of increasing the smooth-
ing time τ at fixed Λ = 12π. Inset: the dispersion Ωk

vs k (solid line), along with the values of τ−1 considered
(dashed lines).

shows instead a sweep over τ at fixed Λ, confirm-
ing the same picture. This latter scenario is also the
one most relevant to experiment. The UV cutoff Λ is
unlikely to be controllable in many implementations
of 1D quantum systems. On the contrary, we can
expect any experimental platform capable of imple-
menting the quench protocol here described to have
a reasonable degree of control over the smoothing
time τ .

V. HIGHER DIMENSIONS

In this section, we consider a generalization of the
above argument to d > 1. In particular, we con-
sider a hyperbolic quench protocol in the directions
(t, x), independent of the remaining spatial direc-
tions (x2, · · · , xd)—such a protocol is chosen over
a more symmetric radial quench because it is ad-
vantageous to work with the same special conformal
coordinates as in the d = 1 case. We show that the
stress-energy tensor is not completely constrained by
the argument of symmetry and conformal invariance
as in the d = 1 case. This does not of course rule out
the possibility that the quench is effective in prepar-
ing low-energy states even in higher-dimensions. For
instance, the quench protocol works in the Gaussian
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case in higher dimensions; we discuss this later.
We denote the laboratory coordinates by xa =

(t, x, x2, · · · , xd) and the conformal coordinates de-
noted by xµ = (η, ξ, x2, . . . , xd). Then, assuming
parity invariance, isotropy along the transverse di-
rections, invariance under ξ-translations, conserva-
tion and tracelessness, the stress tensor takes the
form

〈Tµν〉 = diag

(
A(η), A(η)−A′(η),

e−2ηA′(η)

d− 1
, . . . ,

e−2ηA′(η)

d− 1

)
.

(35)

Thus, we are left with some particular function A(η)
whose η-dependence cannot be constrained by sym-
metry and conservation laws. For the energy density
in the laboratory coordinates, we find the form

〈Ttt〉 =
md−1

(t2 − x2)2

[
f(η,mT0)(t2 + x2)

− ∂ηf(η,mT0)x2

]
,

η =
1

2
log

[
T 2

0

t2 − x2

]
.

(36)

where we have added factors of m by dimensional
analysis expressing A(η) in terms of a dimensionless
scaling function f(η,mT0).

First note that due to the undetermined η-
dependence, we cannot make any general claims
about cooling for arbitrary T0. We can examine the
limit T0 → 0 by considering the limit m→ 0 instead.
In this limit, we must obtain 〈Ttt〉 → 0. For d > 1,
this is achieved as long as f(η,mT0) stays finite for
m → 0, or diverges too slowly to compensate the
md−1 mass dependence. Thus, we cannot guarantee
that the energy density relaxes to zero even in the
limit T0 → 0.

As mentioned above, this does not rule out the
possibility that the quench does in fact work in
higher dimensions. Here we show that the quench
is in fact effective in cooling for the Gaussian the-
ory. The (d + 1)-dimensional free theory in this
protocol is equivalent to a set of decoupled wires
parametrized by k⊥ undergoing the original (1 + 1)-
dimensional protocol with all but a set of zero mea-
sure having k2

⊥ > 0, thus giving rise to a massive-
to-massive quench. Note again that the quench gen-
erates excitations with all wave-vectors in the con-
formal spatial coordinate ξ. In the free field theory,
the wave-vectors of these modes are preserved over
subsequent time-evolution. Following the same ar-
gument described in the second last paragraph of
section II, we find that the dilation of wave vectors
at large t causes the energy of massive modes to ap-
proach the finite value of the final (k⊥-dependent)

mass (This is contrast to massless modes whose en-
ergy approaches zero as ∼ 1/t). Together with an
increase in the occupation volume of these modes
as ∆x ∼ t, we find a decrease in energy density as
∼ 1/t. Thus, the quench results in cooling to a vac-
uum state in higher dimensions, as well.

VI. SUMMARY AND DISCUSSION

In this work, we studied a new kind of spatio-
temporal quench protocol that can be utilized for the
purpose of rapidly preparing ground states of critical
models in one dimension. In particular, we studied
the quench from the ground state of a gapped rela-
tivistic quantum system, closing the gap along the
space-like trajectory t2 − x2 = T 2

0 . We showed that
such a quench causes the system to relax to the fi-
nal vacuum everywhere except on the singular lines
x = ±t. This work extends our vocabulary of solv-
able spatio-temporal quenches in one-dimensional
systems going beyond the previously studied case
of single-velocity superluminal quenches. More im-
portantly, it provides a robust geometric argument
for the validity of the findings in Ref.24 to the case
of general interacting critical systems. These ob-
servations make the protocol we present particu-
larly useful for preparing low-energy states in one-
dimensional systems that may be described by a low-
energy Luttinger liquid theory, or more generally by
strongly-coupled conformal field theories. We con-
firmed these predictions by concretely studying the
quench for the Gaussian scalar field theory, and nu-
merically in an interacting setting by simulating the
quench in the quantum O(N) model in the large-N
limit.

In this work we also considered quenches in the
scalar free field theory starting from an excited state,
finding that the mode populations of massive bosons
(which in an experimental setting would be sup-
pressed exponentially for a temperature smaller than
the mass) directly translates to the mode popu-
lation of the post-quench massless bosons. Thus,
the quench process also appears to conserve entropy
(again barring the singular lines x = ±t). We leave
a more careful treatment of this result for future
work, where we also aim to explore such quenches
from excited initial states in an interacting setting.

Finally, we showed that the above arguments do
not straightforwardly extend to the higher dimen-
sional case where we find the stress-energy ten-
sor cannot by constrained by symmetry arguments
alone. This is perhaps natural given the uniqueness
of one-dimensional systems where scattering is heav-
ily constrained by the limited phase space available,
and thus operates in a very different way to higher
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dimensional systems. However, we know that the
quench protocol can be used in higher dimensions
for the purposes of cooling (based on previous work
in Ref.24) by introducing limited adiabaticity in the
way of a finite time-scale τ over which the superlumi-
nal quench is smoothed. A numerical investigation
of the efficacy of this method in creating the ground
state of the Hubbard model at half-filling, which is of
immense experimental importance especially for re-
lated studies in ultracold atoms, is also left for future
work. We also mention in passing that progress may
be made in understanding such quenches in higher
dimensions by exploring whether insights from the
Unruh result53,54 (for correlations of the system on
hyperbolic time-like hypersurfaces) can be used in
our computations which involve propagation of the
system in time following a quench on related space-
like hypersurfaces.

Finally, from an experimental point of view, our
findings may be investigated in systems of ultra-
cold atoms trapped in flat-band potentials55,56, be-
sides arrays of Josephson Junctions57,58, and ion
traps59–61. Experiments on atom chips5,62 study-
ing in particular the dephasing between halves of
a split quasi-one-dimensional condensate have been
used to investigate spatially uniform, instantaneous

quenches of the mass in a Luttinger liquid setting.
A spatio-temporal quench of the sort investigated
here may be created in these systems by splitting
the quasi-condensate along the space-time trajecto-
ries discussed, and appear to be a promising experi-
mental candidate for realizing the physics discussed
here.
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