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Time-resolved measurements of materials provide a wealth of information on quasiparticle
dynamics, and have been the focus of optical studies for decades. In this paper, we develop a
theory for explicitly evaluating time-resolved resonant inelastic X-ray scattering (tr-RIXS). We
apply the theory to a non-interacting electronic system and reveal the particle-hole spectrum and
its evolution during the pump pulse. With a high-frequency pump, the frequency and amplitude
dependence analysis of the spectra agrees well with the steady state assumptions and Floquet
excitations. When the pump frequency is low, the spectrum extracts real-time dynamics of the
particle-hole continuum in momentum space. These results verify the correctness of our theory and
demonstrate the breadth of physical problems that tr-RIXS could shed light on.

PACS numbers: 78.47.J-, 78.70.Ck, 78.70.Dm, 82.53.-k

I. INTRODUCTION

Ultrafast materials science, traditionally focused either
on time-resolved optical studies or time-resolved angle-
resolved photoemission spectroscopy (tr-ARPES), can
reveal crucial information about materials’ dynamics,
including excitation and relaxation of quasiparticles[1–
6] and phases induced or suppressed by disturbance[7–
13]. The combination of these two techniques provides
fine details about the single-particle properties and the
long-wavelength collective excitations. However, with an
increasing demand for resolving complex excitations, as
well as for understanding correlation effects behind them,
these two techniques become insufficient in many sce-
narios. For example, an outstanding issue in condensed
matter physics is to detect bosonic excitations across the
entire Brillouin zone, as a finite-momentum excitation
may be crucial for some ordered phases like charge
density waves, stripes, and superconductivity. Optical
techniques like reflectivity and Raman scattering can
only provide information about the resonant excitations
at zero momentum[14, 15], while tr-ARPES detects
exclusively single-particle information[16]. Even though
the collective modes can be inferred qualitatively from tr-
ARPES in some cases[16–20], generally it can only reflect
their integrated effects, making it impractical to decipher
the full momentum-resolved collective excitations[21].

On the other hand, resonant inelastic X-ray scatter-
ing (RIXS), as a photon-in photon-out spectroscopy, is
increasingly popular due to its capability for detecting a
variety of atomically-specified collective excitations in a

wide range of momentum and energy[22, 23]. Recent de-
velopment of instrumentation has brought much progress
to the energy resolution of RIXS measurements[24–26].
With full Brillouin zone access in momentum space
and light polarization selection, RIXS has been able to
separate and depict the full momentum-energy structure
of charge, orbital, spin, and lattice degrees of freedom[27–
33]. These advantages make RIXS an indispensable
technique for characterizing multiparticle excitations[34].

Recently, progress has been achieved in time-resolved
RIXS (tr-RIXS) techniques, with the help of ultrashort
and ultrabright X-ray sources[35]. Dean et al. reported
a femtosecond tr-RIXS experiment on Sr2IrO4 to study
subtle spin and charge dynamics[36, 37]. Combining
the advantages of ultrafast techniques and RIXS, this
experiment reveals that the photoinduced suppression of
the magnetic order happens mainly for (π, π) momentum
transfers, with in-plane spin correlations restoring on a
much faster timescale than the out-of-plane correlations.
Mitrano et al. reported tr-RIXS on La2−xBaxCuO4

to study evolution of collective modes associated with
charge order[38]. It was found that low energy collective
excitations are overdamped and propagate via Brownian-
like diffusion, displaying universal scaling behavior aris-
ing from the propagation of topological defects. These
results have demonstrated a first view of the power of
tr-RIXS. With the ability to characterize various multi-
particle excitations with time, momentum and energy
resolution, tr-RIXS has paved the way for understanding
and manipulating nonequilibrium properties.

However, in contrast to the well-established theory in
time-resolved single-particle and two-particle studies[4,
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FIG. 1: An illustration of the RIXS process. It has two steps: in the excitation step, the incoming photon with energy ωi

and momentum ki promotes an inner shell electron to the outer shell at site m in the initial state and creates the intermediate
state. Later, in the de-excitation step, the intermediate state emits the outgoing photon with energy ωf and momentum kf and
the core hole is filled, leaving the final state with an excitation.

39–42] and equilibrium RIXS[22, 23], the theory of
tr-RIXS has not yet been developed[34]. Here, we
report a theory for the nonequilibrium tr-RIXS cross-
section. While the generic formalism can be applied to
arbitrary electronic systems, we explore the theory for
non-interacting electrons as a benchmark. By tuning the
pump-probe parameters (i.e. pulse width, frequencies,
etc.) and tracking the time-dependent spectrum during
the pump pulse, we analyze the change of the particle-
hole continuum. Floquet replicas and energy renormal-
izations by photo-induced transient states are clearly
detected for high pump frequencies, while breathing and
flattening of particle-hole excitations near the momentum
nesting point are observed for low pump frequencies. In
both cases, tr-RIXS precisely detects the relevant dynam-
ics of particle-hole pairs with full momentum and energy
resolution. These results help to set the stage for an
understanding of the dynamics for collective excitations
in more realistic and strongly correlated systems.

The remaining part of this paper is arranged as follows.
In Sec.II we propose a theory for calculating tr-RIXS
as well as its background, derivation, and comparison
with the equilibrium formula. In Sec.III we present and
analyze numerical results of our theory benchmarked on
non-interacting electrons under high- and low-frequency
pump pulses respectively. Sec.IV closes with a discussion
of the relevance of our results for more realistic simula-
tions for correlated systems.

II. THEORY FOR TIME-RESOLVED X-RAY
SPECTROSCOPY

RIXS is a second order X-ray scattering process in-
volving resonant intermediate states. In contrast to
non-resonant scattering, it has the advantage of strong
intensity and large momentum accessibility at the de-

sired electron energy range to which the probe X-ray
is tuned[23]. RIXS describes the following photon-in-
photon-out process: first, an incoming photon with
energy ωi excites a ground-state core-shell electron to
the local valence shell (described by Dmei); then, as the
second step, an electron from the valence shell annihilates
the core hole emitting a photon with energy ωf (described
by D†mef

), leaving the system in an excited final state.
This is illustrated in Fig.1. To be self-contained, we first
briefly review equilibrium RIXS theory[22, 23]. Then we
derive the cross-section for tr-RIXS from perturbation
theory in the probe pulse.

A. RIXS Calculation in Equilibrium

The (equilibrium) RIXS process is a second-order
process that consists of two dipole transitions. Its cross
section is usually evaluated by the Kramers-Heisenberg
formula[22, 23]

I(ωi, ωf , q) =
1

π
Im 〈Ψ| 1

H− E0 −∆ω − i0+
|Ψ〉 , (1)

with

|Ψ〉 =
∑
m,µ,e

eiq·rmD†mef

1

H− E0 − ωi − iΓ
Dmei

∣∣Ψ0
i

〉
.

(2)
Here H is the Hamiltonian (including a core-hole inter-
action), ωi, ωf are incident and outgoing photon energies
respectively, ∆ω = ωi − ωf is the energy loss, q is
the momentum transfer, i.e., the difference between the
incoming photon momentum qi and the outgoing photon
momentum qf , rm is the position of the mth lattice site,
and E0 is the energy of the ground state

∣∣Ψ0
i

〉
. For direct

RIXS, i.e., where the core electron is excited directly
into the valence band, Dme =

∑
σ,α,βM

e
αβp
†
mασdmβσ is
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FIG. 2: The Keldysh contour of tr-RIXS. The red curve and
cyan shade represent the pump and probe pulse respectively.
t1, t2, t′2, and t′1 are as defined in Eq.(9). The probe centered
at t has a width 2σpr, containing all four time points. The
separations between t1(t′1) and t2(t′2) correspond to the time
when the core hole is present and are further constrained by
l(t1, t2) or l(t′1, t

′
2), as defined in the main text.

the local dipole transition operator, where pmασ (dmβσ)
annihilates an electron at site m with spin σ in the
valence α (core β) orbital. We use Me

αβ to denote
the associated matrix element with photon polarization
e. In the nonequilibrium case, Me

αβ will become time-
dependent, thus we represent the matrix element and
dipole transition operator at time t asMe

αβ(t) andDme(t)
respectively.

B. Time-Resolved RIXS

To calculate the nonequilibrium time-resolved RIXS
cross-section, we assume that the system starts out in
equilibrium (i.e. when t → −∞) with Hamiltonian H0.
It can then be represented by an ensemble of electron
and photon eigenstates

∣∣Ψ0
n

〉
⊗ |Φph〉. The electronic

eigenstates
∣∣Ψ0

n

〉
satisfy H0

∣∣Ψ0
n

〉
= En

∣∣Ψ0
n

〉
and are

present with probability ρn = Z−1 exp[−En/kBT ], where
Z =

∑
n exp[−En/kBT ] is the partition function, and

T is the initial temperature. As the linearization of a
coherent state at the weak-probe limit, the photon part
|Φph〉 is a one photon state a†qiei

|0〉 of the incoming probe

light, where |0〉 is the photon vacuum and a†qiei
is the

photon creation operator at incoming probe momentum
qi with polarization ei. As the pump is turned on,
the Hamiltonian H(t) becomes time-dependent, and the

states evolve according to U(t,−∞)
∣∣Ψ0

n

〉
⊗a†qiei

|0〉. Here

U(t, t′) = T exp
[
−
∫ t
t′
H(τ)dτ

]
is the time evolution

operator and T is the time-ordering operator. The probe
pulse is generally weak compared to pump and here we
treat it as a perturbation Hprobe(t), while the pump
is exactly included in H(t), as in the theory for tr-
ARPES[39]. Thus the time evolution can be expanded
to second order as

Û(t′′,t′) = T e−i
∫ t′′
t′ [H(t)+Hprobe(t)]dt

≈ U(t′′,t)− i
∫ t′′

t′
dt U(t′′,t)Hprobe(t)U(t,t′)

+

∫ t′′

t′
dt2

∫ t2

t′
dt1U(t′′,t2)Hprobe(t2)U(t2,t1)

×Hprobe(t1)U(t1,t
′)

(3)

The photon flux of a certain momentum and polar-
ization, which is directly linked to spectroscopic experi-
ments, may be measured by

Jqfef
= lim
t′′→∞

〈Û(−∞, t′′)a†qfef
aqfef

Û(t′′,−∞)〉 (4)

where t′′ →∞ is taken to include all scattering photons,
and 〈O〉 is the ensemble average of the operator O. Here

apparently the zeroth order value is J
(0)
qfef = δqiqf

(ef ·ei)
2,

corresponding to elastic reflection in experiments.
In order to calculate higher-order results, first we can

perform the decomposition Hprobe(t) = Hin(t) +Hout(t).
Hin(t) = s(t)

∑
mkeDme(t)eik·rmake represents the pho-

ton absorption part with ake annihilating a photon with

momentum k and polarization e, and Hout(t) = H†in(t).
s(t) is the probe envelope function, which semi-classically
describes the portion of the probe field that interacts with
the system. An alternative representation is keeping the
interaction fixed but allowing the photon field to vary in
time. These two representations lead to the same cross
section obtained by the linear response theory.

1. 1st order contribution: time-resolved XAS

The first-order contribution of Hprobe(t) is

J (1)
qfef

=

∫ ∞
−∞

dt2

∫ ∞
−∞

dt1s(t1)s(t2)〈U(−∞, t2)Hprobe(t2)U(t2,∞)(a†qfef
aqfef

− J (0)
qfef

)U(∞, t1)Hprobe(t1)U(t1,−∞)〉 (5)

Here, since Hin corresponds to photon absorption and Hout corresponds to photon emission, J
(1)
qfef can further be

decompose to two parts, i.e. J
(1)
qfef = Jab

qfef
+ Jem

qfef
.
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The absorption part Jab
qfef

is

Jab
qfef

=

∫ ∞
−∞

dt2

∫ ∞
−∞

dt1s(t1)s(t2)〈U(−∞, t2)Hout(t2)U(t2,∞)(a†qfef
aqfef

− J (0)
qfef

)U(∞, t1)Hin(t1)U(t1,−∞)〉

=
∑
m,n

k,k′,e,e′

∫ ∞
−∞

dt2

∫ ∞
−∞

dt1s(t1)s(t2)〈U(−∞, t2)D†ne′(t2)e−ik
′·rnU(t2, t1)Dme(t1)eik·rmU(t1,−∞)〉

×
(
〈a†k′e′(t2)a†qfef

aqfef
ake(t1)〉ph − 〈a†k′e′(t2)ake(t1)〉phJ

(0)
qfef

)
,

(6)

where ake(t1) = U(−∞, t1)akeU(t1,−∞), and 〈O〉ph calculates the mean value of the operator O in the one-photon
eigenstate a†qiei

|0〉, which is the initial photon state in the discussed X-ray scattering process. If we have an X-ray
pump, the electrons and X-ray photons will be entangled in the time evolution. The inner shell electrons will be
excited to upper levels by the pump and the separation of the two parts in Eq.(6) will need to be carefully modified.
Here we have assumed that the pump does not affect inner shells, because a typical tr-RIXS measurement takes an

off-resonant pump with respect to the X-ray edges. Thus 〈a†k′e′(t2)a†qfef
aqfef

ake(t1)〉ph = 0 and 〈a†k′e′(t2)ake(t1)〉ph =

eiωi(t2−t1)δk′qiδe′eiδkqiδeei . This means we obtain no first-order contribution unless we are probing at the incident
photon momentum. Then Eq.(6) can be simplified as

Jab
qfef

= −
∑
n,m

∫ ∞
−∞

dt2

∫ ∞
−∞

dt1s(t1)s(t2)eiωi(t2−t1)eiqi·(rm−rn)〈U(−∞,t2)D†nei
(t2)U(t2,t1)Dmei

(t1)U(t1,−∞)〉δqiqf
(ef·ei)

2

= −
∑
n

∫ ∞
−∞

dt2

∫ ∞
−∞

dt1s(t1)s(t2)eiωi(t2−t1)〈U(−∞,t2)D†nei
(t2)U(t2,t1)Dnei(t1)U(t1,−∞)〉δqiqf

(ef·ei)
2

(7)
Eq.(7) describes time-resolved X-ray absorption spectroscopy (tr-XAS). It is the first order loss brought by the light-
matter interaction at the incident energy, which corresponds to absorption of the photon by the electrons in the
materials. The function s(t1) is given by the probe profile s(t1) = g(t1, t), where t is the center of the probe pulse,
and the same for s(t2).

The emission part Jem
qfef

is

Jem
qfef

=

∫ ∞
−∞

dt2

∫ ∞
−∞

dt1s(t1)s(t2)〈U(−∞, t2)Hin(t2)U(t2,∞)(a†qfef
aqfef

− J (0)
qfef

)U(∞, t1)Hout(t1)U(t1,−∞)〉

=
∑
m,n

k,k′,e,e′

∫ ∞
−∞

dt2

∫ ∞
−∞

dt1s(t1)s(t2)〈U(−∞, t2)Dne′(t2)eik
′·rnU(t2, t1)D†me(t1)e−ik·rmU(t1,−∞)〉

×
(
〈ak′e′(t2)a†qfef

aqfef
a†ke(t1)〉ph − 〈ak′e′(t2)a†ke(t1)〉phJ

(0)
qfef

)
,

(8)

Eq.(8) corresponds to X-ray emission, and is non-zero only when the initial state has core-holes. For an off-resonant
pump pulse that does not excite core electrons to valence levels, the contribution of Eq.(8) can be ignored.

2. 2nd order contribution: time-resolved RIXS

In contrast to XAS, RIXS is a photon scattering procedure and requires the participation of both incoming and
outgoing photons. The second-order contribution to Jqfef

can be realized by the second order scattering terms in
Hprobe(t), or a two-time sequence of the first order Hprobe(t) in Eq.(3). Resonant or non-resonant contributions can
be selected by different incident photon probe energies. Here we do not consider non-resonant processes [43, 44] but
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focus only on those responsible for RIXS. Such a scattering procedure can be measured by:

J (2)RIXS
qfef

=

∫ ∞
−∞

dt2

∫ t2

−∞
dt1

∫ ∞
−∞

dt′2

∫ t′2

−∞
dt′1〈U(−∞,t′1)Hout(t

′
1)U(t′1,t

′
2)Hin(t′2)U(t′2,∞)a†qfef

aqfef
U(∞,t2)Hout(t2)U(t2,t1)

×Hin(t1)U(t1,−∞)〉

=
∑
m,m′

n,n′

∫ ∞
−∞

dt2

∫ t2

−∞
dt1

∫ ∞
−∞

dt′2

∫ t′2

−∞
dt′1〈U(−∞,t′1)D†n′ε′(t

′
1)U(t′1,t

′
2)Dnε(t′2)U(t′2,t2)D†m′e′(t2)U(t2,t1)Dme(t1)U(t1,−∞)〉

×s(t′1)s(t′2)s(t2)s(t1)
∑

k1,k2,k
′
2,k

′
1

e,e′,ε,ε′

ei(k1·rm−k2·rm′+k′
2·rn−k

′
1·rn′ )〈a†k′

1ε
′(t
′
1)ak′

2ε
(t′2)a†qfef

aqfef
a†k2e′(t2)ak1e(t1)〉ph

=
∑
m,n

∫ ∞
−∞

dt2

∫ t2

−∞
dt1

∫ ∞
−∞

dt′2

∫ t′2

−∞
dt′1〈U(−∞,t′1)D†nε′(t

′
1)U(t′1,t

′
2)Dnε(t′2)U(t′2,t2)D†me′(t2)U(t2,t1)Dme(t1)U(t1,−∞)〉

×s(t′1)s(t′2)s(t2)s(t1)
∑

k1,k2,k
′
2,k

′
1

e,e′,ε,ε′

ei(k1−k2)·rm+i(k′
2−k

′
1)·rn〈a†k′

1ε
′(t
′
1)ak′

2ε
(t′2)a†qfef

aqfef
a†k2e′(t2)ak1e(t1)〉ph.

(9)

For tr-RIXS, qf = qi − q, and the initial photon state
is a†qiei

|0〉. We may evaluate the photon part in Eq.(9)

to be 〈a†k′
1ε

′(t′1)ak′
2ε

(t′2)a†qfef
aqfef

a†k2e′(t2)ak1e(t1)〉ph =

δk1qi
δk′

1qi
δk2qf

δk′
2qf
eiωi(t

′
1−t1)−iωf (t

′
2−t2)δeei

δε′ei
δe′ef

δεef
.

Note that t1 and t′1 correspond to the excitation process,
while t2 and t′2 correspond to the de-excitation process.
Eq.(9) provides the scattered photon flux from the
many-body system, which evolves first up to time t1,
when an electron from the core level is resonantly
excited to the valence band, and then further evolves
the many-body state (with the core hole) up to time
t2. At this point, the valence electron drops back to
eliminate the core hole. Such evolution is represented by
the Keldysh contour shown in Fig.2.

Typically, we do not consider the phenomenological
lifetime of the excitations or quasiparticles, since it is
usually longer than the probe pulse for low-energy exci-
tations. However, since the core hole has a huge binding
energy, its lifetime has to be explicitly considered. This
means the refilling of the core hole at t2 must happen
within a certain time window after it was created at t1.
The detailed evaluation of this procedure requires the
consideration of the interaction with the environment.
Tracing out the environmental degrees of freedom then
leads to a non-Hermitian decay process, whose net
effect is a non-unitary U(t2, t1). As a phenomenological
description of the irreversible decay process, we modify
Eq.(3) and Eq.(9) for the time intervals [t1, t2] and
[t′1, t

′
2], where the core hole exists, with U(t2, t1) →

l(t1, t2)U(t2, t1) and U(t′1, t
′
2) → l(t′2, t

′
1)U(t′1, t

′
2), where

l(t1, t2) = exp(−|t2 − t1|/τch) describes the lifetime of
the core hole. The probe pulse is treated the same as
in XAS described above, i.e. s(τ) = g(τ, t), where t is
the observation time. To simply the expression, we also

define the four-point correlation function

Smneief
(t1,t2,t

′
2,t
′
1) = 〈U(−∞,t′1)D†nei

(t′1)U(t′1,t
′
2)Dnef

(t′2)

×U(t′2,t2)D†mef
(t2)U(t2,t1)Dmei(t1)U(t1,−∞)〉

(10)
Putting all of this together, we find

I(ωi, ωf , q, t) = J (2)RIXS
qfef

=

∫ ∞
−∞

dt2

∫ t2

−∞
dt1

∫ ∞
−∞

dt′2

∫ t′2

−∞
dt′1e

iωi(t
′
1−t1)−iωf (t

′
2−t2)

× l(t1, t2)l(t′1, t
′
2)g(t1, t)g(t2, t)g(t′1, t)g(t′2, t)

×
∑
m,n

eiq·(rm−rn)Smneief
(t1, t2, t

′
2, t
′
1)

(11)

Eq.(11) is the full cross section of tr-RIXS. The dipole
excitation and dipole de-excitation processes form the
scattering amplitude, resulting in a closed-form cross
section determined by t1 < t2, t′1 < t′2. We should note
that the derivation of the tr-RIXS cross section here is
generic and not dependent on a particular form of H(t)
or a specific probe shape s(t).

C. Comparison to Equilibrium
Kramers-Heisenberg Formula

As a special case of tr-RIXS, the equilibrium RIXS
cross section can be obtained by assuming a time-
independent Hamiltonian, i.e. H(t) = H(t + τ) = H
for any τ . Assuming zero temperature, we evaluate the
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four-point correlation function to be

Smneief
(t1, t2, t

′
2, t
′
1) =

〈
Ψ0
i

∣∣D†nei
e−i(H−Ei)(t

′
1−t

′
2)Dnef

× e−i(H−Ei)(t
′
2−t2)D†mef

e−i(H−Ei)(t2−t1)Dmei

∣∣Ψ0
i

〉
(12)

where
∣∣Ψ0

i

〉
is the initial ground state with energy Ei.

For the equilibrium case, Eq.(11) should be understood
in terms of a constant rate of detection for the scattered
photons[39, 45], and we should set the probe shape
function g(ti, t) = 1. This then yields

I(ωi,ωf , q, t) ∝ lim
L→∞

1

2L

∫ L

−L
dt2

∫ t2

−L
dt1

∫ L

−L
dt′2

∫ t′2

−L
dt′1

× eiωi(t
′
1−t1)−iωf (t

′
2−t2)l(t1, t2)l(t′1, t

′
2)

×
∑
m,n

eiq·(rm−rn)Smneief
(t1, t2, t

′
2, t
′
1)

(13)
Through the transformation r = t2 − t1, s = t′2 − t2, τ =
t′2 − t′1, T = (t1 + t′1)/2− t, we obtain

I(ωi, ωf , q, t)

∝ lim
L→∞

1

2L

∫ 2L

0

dτ

∫ 2L

−2L

ds

∫ 2L

0

dr

∫ L−t

−L−t
dT e−Γre−Γτ

×
∑
m,n

eiq·(rm−rn)
〈
Ψ0

i

∣∣D†nei
e−i(ωi−H+Ei)τDnef

× ei(∆ω−H+Ei)sD†mef
ei(ωi−H+Ei)rDmei

∣∣Ψ0
i

〉
∝ lim
L→∞

∫ 2L

0

dτ

∫ 2L

−2L

ds

∫ 2L

0

dr∑
m,n

〈
Ψ0

i

∣∣D†nei
e−Γτ−i(ωi−H+Ei)τDnef

e−iq·rnei(∆ω−H+Ei)s

× eiq·rmD†mef
e−Γr+i(ωi−H+Ei)rDmei

∣∣Ψ0
i

〉
(14)

where the inverse core-hole lifetime Γ = 1/τch. Using∫∞
0
dr e−δr+iαr = i(α + iδ)−1 and

∫∞
−∞ eicsds = 2πδ(c)

(for real c), we obtain the equilibrium RIXS cross-section

Ieq(ωi, ωf , q, t) =
∑

f

|Af |2δ(∆ω − Ef + Ei) (15)

where f labels an eigenstate
∣∣Ψ0

f

〉
of H with energy Ef ,

and

Af =
〈
Ψ0

f

∣∣∑
m

eiq·rmD†mef

1

ωi −H+ Ei + iΓ
Dmei

∣∣Ψ0
i

〉
(16)

is the scattering amplitude. This recovers the Kramers-
Heisenberg formula for equilibrium RIXS[23, 46, 47].

The above derivation assumes infinite probe width. In
practice, a finite probe width typically gives a linewidth
on top of the δ-functions in photoemission or Raman
scattering[39, 43]. Similarly in RIXS, the conventional
Kramers-Heisenberg formula Eq.(1) differs from Eq.(15)
by a consideration of finite linewidth as a result of the
probe shape. However, we notice that this linewidth is
in fact a complicated form instead of an inverse of the
probe width. That is because in Eq.(14) the part that
corresponds to energy loss ∆ω only contains the photon
emission time t2 and t′2, while the probe shape contains
t1 and t′1. The consequence is that the final effective
linewidth, if written in the Kramers-Heisenberg form,
contains a renormalization by the core-hole lifetime τch.
Conceptually it indicates the “excitations” effectively
develops at a weighted average time between t1 and t2
(or t′1 and t′2). When the core-hole lifetime is much
shorter than the probe duration, which is typical in
experiments, we can simply reduce the shape function
by g(t1, t)g(t2, t)g(t′1, t)g(t′2, t) ≈ g2(t2, t)g

2(t′2, t) similar
to the nonresonant scattering[43, 44]. This recovers the
well-known Kramers-Heisenberg formula.

III. NUMERICAL CALCULATION OF TR-RIXS

In order to provide a basic picture of the nonequilib-
rium physics revealed from tr-RIXS, we study electrons
on a 2D square lattice at zero temperature as a simple
example. Although an explicit treatment of the electron
interaction is necessary in quantum materials with strong
correlations, a precise description of the many-body
states is then necessarily restricted to a small cluster,
which conceals the momentum resolution of RIXS. As a
benchmark study focused on the tr-RIXS measurements,
the conduction band can be written in a tight-binding
form:

εk = εc + µ0 − 2th
(

cos kx + cos ky
)

(17)

in which εc is the energy of the core level, µ0 is the
energy difference between core and valence electrons in
the atomic limit, and th is the hopping of the conduction
band which is chosen to be 0.3eV. The symbol εk denotes
the band dispersion. When there is an external uniform
pump field A(t), the Peierl’s substitution gives k →
k − A(t) in Eq.(17)[48]. The probe energy is set to be
ωi = µ0 to achieve resonance. We can explicitly evaluate
Eq.(11) to find
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FIG. 3: Tr-RIXS spectra for a large pump frequency. (a) schematic of the pump pulse. The Gaussian profile is shown in blue
dashed lines, and the five orange dots correspond to the times when spectra in (b)-(f) are taken. (b)-(f) The tr-RIXS spectra
at t = −2σpu,−σpu, 0, σpu, 2σpu, respectively. The inset of (b) shows the Fermi surface of the 2D electronic system with red
lines, and the blue arrows show the nesting momentum wavevector at q ' 0.4π. Unless otherwise specified, all RIXS intensities
are shown in the same arbitrary units.

I(∆ω,q,t) ∝
∫∫∫∫

t1<t2,t′1<t
′
2

dt1dt2dt
′
2dt
′
1 e

i(ωi−µ0)(t′1−t1)−i(ωi−∆ω−µ0)(t′2−t2)g(t1,t)g(t2,t)g(t′1,t)g(t′2,t)l(t1,t2)l(t′1,t
′
2)

×
∑
k

{
f(εk)

[
1−f(εk+q)

]
e
−i

∫ t′2
t2
dτ(2th)

[
cos
(
kx−Ax(τ)

)
+cos

(
ky−Ay(τ)

)]
+i

∫ t′1
t1
dτ(2th)

[
cos
(
kx+qx−Ax(τ)

)
+cos

(
ky+qy−Ay(τ)

)]}
(18)

where f(ε) is the Fermi-Dirac distribution. To mimic
the probe profile and the phenomenological decay, we
employ g(τ, t) = 1/(

√
2πσpr) exp

[
−(τ − t)2/2σ2

pr

]
and

l(τ, t) = exp[−|τ − t|/τch] in Eq.(18). Note that we do
not incorporate any specific time-dependent form for the
dipole matrix elements, nor do we correct the momentum
shift as is done in tr-ARPES to produce a gauge-invariant
Green’s function[49, 50]. The issue of gauge-invariance in
the presence of a pump is a complex one, which we defer
to future work.

A. High Frequency Pump: Floquet Physics

Here we choose a pump having a Gaussian profile,
polarized along the Brillouin zone diagonal. The width
of the pump is chosen to be σpu = 240eV−1 = 151fs, the
maximum strength of the pump in both directions are A0,
and the pump frequency is Ω. Here 1eV−1 = ~/eV =
0.628fs. Then the time-dependent pump is given by
Ax(t) = Ay(t) = A0 exp

(
−t2/2σ2

pu

)
cos (Ωt). The width

of the incoming probe pulse is σpr = 30eV−1 = 18.8fs.

The core-hole life time is τch = 1.5eV−1. The choice of
parameters is motivated by the hierachy of time scales
in the system: the probe width determines the balance
between time and energy resolution, and the pump width
guarantees a nontrivial drive and relatively long steady

state for given pump frequency[51, 52]. The Fermi energy
of the 2D system is taken to be εF = εc + µ0 − 0.1eV =
µ − 0.1eV where µ is the energy of the band center.
A 200×200 momentum grid in the Brillouin zone is
chosen in the calculation, and the time step for numerical
integration is chosen to be 0.12eV−1.

Fig.3 shows the time-resolved RIXS spectra at t =
−2σpu, −σpu, 0, σpu, and 2σpu respectively with Ω =
0.5eV and A0 = 2.4. The transferred momentum q lies
along the x direction, i.e. q = (q, 0). At the beginning
and the end of the pump (i.e. t = −2σpu and 2σpu), the
RIXS spectra are similar to the equilibrium result[21].
The RIXS spectra depict the particle-hole continuum of
the band: the excitation softens to zero at the (weak)
nesting momentum q ' 0.4π that spans the Fermi surface
[as shown in Fig.3(b) inset] along (π, 0) at the given
εF , and strong intensity is observed at q = π,∆ω '
1.2eV, consistent with the Lindhard response (see more
discussion in Appendix A).

When approaching the pump center, the spectra is
flattened (i.e., become essentially dispersionless for most
q), together with the appearance of replicas of the
spectra. This phenomenon is most prominent at the
pump center [see Fig.3(d)], with completely flat spectra
and replicas at multiples of the pump energy. When
the pump field fades away as t > 2σpu, the spectrum
recovers to the equilibrium result before the pump. Due
to the lack of many-body interactions, there is no net
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excitation induced after the pump terminates since the
electron distribution nk is conserved. In addition, at
time t and −t, the spectra are the same to numerical
accuracy because of the a symmetric pump profile obeys
time-reversal symmetry.

The replica features and the energy renormalization in
tr-RIXS spectra can be explained in the Floquet frame-
work. A system driven by a time-periodic external field
is described by Floquet theory[53, 54]. Combined with
spatial periodicity, a lattice under periodic excitation
would have Floquet-Bloch electronic bands that exhibit
periodicity in both momentum and energy. The steady-
state Floquet theory, with an infinitely long pump,
predicts two critical signatures at the lowest order: the
replicas above and below the original bands separated
by integer multiples of the pump frequency, and the
band renormalization by J0(A0) where J0 is the Bessel
function of the first kind [54–56]. The steady state band
structure is renormalized into

Ek,n = µ− 2th
∑
α=x,y

J0(Aα0) cos(kα)± nΩ (19)

where Aα0 is the constant amplitude of a periodic pump
field in α direction, and n is an integer for the replicas.
More discussion on the derivation of Eq.(19) can be
found in Appendix B. Complementary to the substan-
tially studied single-particle Floquet properties[57–60],
the tr-RIXS here examines the multi-particle features
associated with Floquet physics, with both energy and
momentum resolution. In our calculation, σpu is much
larger than the pump oscillation period 2π/Ω and the
core-hole lifetime τch, thus the transient states can be
approximated by the steady state at the (slowly-varying)
instantaneous pump amplitude[52], consistent with the
experimental setup in [36]. Due to the changes of the
single-particle band structure, the particle-hole excita-
tions revealed in tr-RIXS also exhibit the replicas and
renormalization signatures. In this case, the transient
states are manipulated adiabatically by the pump field,
leaving the energy renormalization predictable by the
steady state assumption. At the pump center, the flat
band arises as the pump strength Aα0 = 2.4 is close to
the zero of the Bessel function J0.

To verify the above interpretation and the relation to
Floquet physics, we examine the tr-RIXS for different
pump amplitudes in Fig.4. For a given momentum
transfer q = (q, 0), let k(k′) be the momentum of the
electron decaying to (excited from) the core. The upper
bound of the particle-hole excitation given q can be
achieved at the maximum of Ek′,n−Ek,n. From Eq.(19)
this happens when their momenta along the x direction
satisfy kx + k′x = π. Together with q + kx = k′x, we
can conclude that the upper bound of each branch of the
particle-hole continuum is ∆ω = 4thJ0(A0) sin q

2 ± nΩ,
as shown in dashed lines in Figs.4(a) and (b), agreeing
well with calculated spectra. This consistency further
confirms our interpretation of the multi-particle features
through the steady-state assumption.

On the other hand, the steady-state assumption can
also be directly validated through the change of the pump
frequencies. To quantify the replica features, we define
the autocorrelation via[56]

C(q, η, t)∝
∫ ∞
−∞

I(ω, q, t)I(ω + η, q, t)dω (20)

which represents the self-similarity of the nonequilibrium
spectral function with a shift η in the energy loss.
In Fig.4(c), we plot the autocorrelation at qx = π
which has the highest spectral weight at t = 0. The
strong autocorrelation along with the theoretical Floquet
predictions confirm that branches of the particle-hole
excitations are separated by the pump frequency. This
is a consequence of the pump-induced redistribution of
the electrons to different sidebands separated by nΩ
without many-body scattering. The autocorrelation map
confirms that the steady-state assumption is valid and
the Floquet physics dominates the dynamics for a large
pump frequency.

B. Low Frequency Pump: Effect on nesting
conditions in one dimension

The Floquet steady-state picture is valid only when
the pump has high frequency with much shorter period
than the duration of both the pump and probe pulse.
However, this can be violated for the pump at small
frequency, e.g. when driving the system through a phonon
mode. In this case, we expect tr-RIXS to reflect adiabatic
real-time dynamics of the particle-hole excitations. For
a 1D electronic system, an important signature is the
momentum nesting at 2kF where low energy particle-
hole excitations exist. It is important to see the adiabatic
dynamics of such signatures under an external drive, so
we calculated the tr-RIXS of a 1D tight-binding model
with the same th as before and we set kF = 0.34π ≈ 1.07
which means it is hole-doped. To reflect the new time
scale, the pump width is still σpu = 240eV−1 = 151fs but
with a much lower frequency Ω = 0.02eV. It is aligned
along the 1D chain with a small amplitude A0 = 0.4.
The probe width is σpr = 15eV−1 = 9.4fs to balance the
time and energy resolution. Note that the probe width is
chosen to be much smaller than the period of the pump
oscillation. The core-hole lifetime here is τch = 0.5eV−1,
still very small compared to σpr.

Fig.5 shows the tr-RIXS spectra of this 1D system
at t = −720eV−1, −150eV−1, 300eV−1, and 720eV−1

respectively. At t = −720eV−1, the pump has just
been turned on, and we can clearly see the momentum
nesting in Fig.5(b) with zero energy excitation just at q =
±2kF ≈ ±2.14. However, as the pump gets stronger, the
momentum nesting features become different. Under the
pump A(t), an electron that had momentum k initially
will appear at k − A(t) adiabatically. As the electrons
oscillate in momentum space, the tr-RIXS spectrum near
2kF “breathes” accordingly. At t = −150eV−1, A(t) is
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FIG. 4: (a)(b) Tr-RIXS spectra for different pump amplitudes A0 at the pump center: (a)A0 = 0.8 and (b)A0 = 1.6. Both
pumps lie along x = y with frequency Ω = 0.75eV. The dashed lines are the Floquet theoretical upper bounds of branches of
the particle-hole continuum. The colorscale is the same as in Fig.3. (c) The autocorrelation C(q, η, t) for q = (π, 0) at t = 0.
The black, magenta, and green lines show the theoretical 1st, 2nd, and 3rd Floquet frequencies nΩ respectively. A0 is kept at
2.4 throughout.

FIG. 5: Tr-RIXS spectra of the 1D system with a low pump frequency. (a) schematic picture of the pump pulse. The Gaussian
profile is shown in blue dashed lines, and the four orange dots correspond to the time when spectra in (b)-(e) are taken. (b)-(e)
The tr-RIXS spectra at t = −720eV−1,−150eV−1, 300eV−1, 720eV−1 respectively. The insets plot the band structure and
electron distributions in momentum space (shown in red) at each time point.

negative, and the electrons move to +x direction along
the cosine band. This makes the excitation at 2kF have
a nonzero energy while a finite range of momenta around
−2kF could have zero energy excitations. As observed in
Fig.5(c), the nesting point at 2kF lifts off and the nesting
at −2kF gets flattened. Similarly, at t = 300eV−1, A(t) is
positive, the electrons move to−x direction adiabatically,
as shown in the inset of Fig.5(d). The nesting at −2kF
lifts off while the 2kF nesting gets flattened. Finally, at
t = 720eV−1, the pump is almost zero and the spectrum
recovers to the original form. Since tr-RIXS can be used
to track momentum nesting, it would be interesting to
see how the charge density waves change as well when the
pump is on. It has been theoretically proposed that most
charge density waves actually result from strong electron-
phonon interaction rather than Fermi surface nesting[61].
Therefore, by tracking momentum nesting and charge
density waves at the same time in tr-RIXS experiments,

we may answer whether Fermi surface nesting is the
origin of charge density waves in certain materials.

IV. DISCUSSION AND CONCLUSION

The RIXS process studied here is direct RIXS: the
incoming photon promotes a core electron to an empty
valence band state, and then an electron from a different
state in the valence band decays and annihilates the core
hole[23]. The core-hole itself does not leave quasiparticles
after it is filled. In contrast to the crucial role core-hole
attraction plays in indirect RIXS where it scatters va-
lence electrons and creates excitations in the intermediate
state[23, 62–64], for direct RIXS it does not manifest
explicitly. Currently we have not included the core-
hole potential in this work, since it is computationally
expensive. In our future work, we will include the core-
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hole potential for systems in which it is important.
Tr-RIXS has opened a gate for investigating a variety

of important physical problems. A pump can be used to
achieve band engineering. Tr-RIXS can detect momen-
tum nesting and charge density waves changed by such
band engineering and shed light on their relationship.
Tr-RIXS can also decipher the topological effects in
charge excitations brought by the pump in materials like
TMDC[65]. Besides, in systems with spin-orbit coupling,
we can use tr-RIXS to track the interplay of charge and
spin excitations under an external pump[4]. Our theory
does not depend on the form of the Hamiltonian and thus
could be used to study materials with strong correlation.

In conclusion, this study proposed a generic theoretical
formalism for calculating time-resolved resonant spectro-
scopies, including tr-XAS and tr-RIXS. We benchmarked
this method on a non-interacting system and calculated
the tr-RIXS spectra under a pump pulse. The evolu-
tion of the particle-hole excitations can be resolved in
the spectra. For a high-frequency pump, the tr-RIXS
spectrum displays both replica excitations and band
renormalization. Through an autocorrelation analysis
for various pump frequencies, we found the features can
be captured by a steady state assumption and Floquet
theory for multi-particle excitations. However, when
the pump frequency is low, the dynamics of the system
behaves more adiabatically and displays a breathing of
the spectrum near the nesting momentum, which results
from real-time electron oscillations in momentum space.
In both situations, tr-RIXS exhibits particular advances
in tracking the nonequlibrium behavior of multi-particle
excitations, and is complementary to tr-ARPES and
optics. With progress in experimental techniques as
well as computing power and algorithm, we may address
a wider range of systems including strongly correlated
materials, topological materials, magnetic materials, and
many others, and we believe tr-RIXS will bring new
insights to the rich nonequilibrium physics in those
systems.
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Appendices

A: RIXS and Lindhard Response

For the single-band model studied here, due to the full
configuration of the core shell, the kinetic energy of the
transient core hole vanishes. The Fourier transform of
Eq.(16) yields (note that there are no spin flips)

Af =
〈
Ψ0

f

∣∣∑
kσ

pkσ
1

ωi −H+ Ei + iΓ
p†k+qσ

∣∣Ψ0
i

〉
=
〈
Ψ0

f

∣∣∑
kσ

pkσGc(ωi − εk+q,k + q)p†k+qσ

∣∣Ψ0
i

〉
(A.1)

where pk,σ annihilates a conduction electron with mo-
mentum k and spin σ, and εk is its energy measured
from the valence level in the atomic limit (i.e. εk =
εk − εc − µ0). Here, Gc(ω,p) = 1

ω−µ0+iΓ represents the

core-hole propagator. Thus

I(ωi,∆ω, q) ∝
∑
k

f(εk)(1− f(εk+q))G∗c(ωi − εk+q,k + q)δ(∆ω − εk+q + εk)Gc(ωi − εk+q,k + q)

∝ − Im lim
δ→0+

∑
k

f(εk)
[
1− f(εk+q)

] 1

∆ω − εk+q + εk + iδ
|Gc(ωi − εk+q,k + q)|2

(A.2)

For the Lindhard response of such a system[66], we have

χ(q, ω) =
1

V

∑
k

f(εk)
[
1− f(εk+q)

] [ 1

ω − εk+q + εk + iδ
− 1

ω + εk+q − εk + iδ

]
(A.3)
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FIG. A1: Comparison of (a) the negative imaginary part of the Lindhard response calculated from Eq.(A.3) and (b) the
equilibrium RIXS spectrum I(ωi,∆ω, q) calculated from Eq.(A.2) for the 2D tight-binding model Eq.(17) as parameterized in
Sec.III A. In numerical evaluation, Γ = 0.80eV and δ = 0.042eV. q = (q, 0) for both calculations.

Note that the second term of χ(q, ω) is negligible for
positive ω: either f(εk)

[
1− f(εk+q)

]
or Im 1

ω+εk+q−εk+iδ

is close to zero. We can see that the RIXS spectrum is
a convolution of the negative imaginary part of χ and
|Gc|2. We may compare the two numerically to see that
they are basically the same, which is shown in Fig.A1.

B: Floquet band renormalization

Under the steady state assumption, the electronic
wavefunction is determined by the Hamiltonian HF with
a periodic pump. We want to find the solutions to the
Schrödinger equation

i
∂

∂t
|ψ(t)〉 = HF [A(t)] |ψ(t)〉 (A.4)

where A(t + T ) = A(t) and thus HF (t + T ) = HF (t).
The Floquet theorem dictates that the generic solutions
to this equation satisfy[53, 54]

|ψλ(t)〉 = e−iελT |uλ(t)〉 (A.5)

where |uλ(t)〉 = |uλ(t+ T )〉.
We may expand both HF (t) and |ψ(t)〉 in Fourier

series as HF (t) =

∞∑
n=−∞

HneinΩt and |ψλ(t)〉 =

∞∑
n=−∞

e−iελteinΩt |uλ,n〉. Then they are inserted into

Eq.(A.4), and we find solving ελ is equivalent to solving

the following eigenvalue problem:∑
r

(Hn−r + nΩδn,r) |uλ,r〉 = ελ |uλ,n〉 (A.6)

Let Hr be the matrix of Hr. In explicit matrix form,
we are solving the eigenvalues of the following infinite
dimensional matrix:

HF =



. . .
. . .

...
...

. . . H0 + Ω H1 H2 . . .

. . . H−1 H0 H1

...

. . . H−2 H−1 H0 − Ω
...

...
...

. . .
. . .


(A.7)

For the single-band tight-binding model Eq.(17) under
a pump A(t), the Hamiltonian can be written as

H(t) =
∑
k

εk−A(t)p
†
kpk, εk = −2th [cos(kx) + cos(ky)]

(A.8)
and we have the following expansion[67]

cos[k −A cos(Ωt)] = J0(A) cos(k)

+

∞∑
m=1

(−1)mJ2m(A) cos(k)
(
ei2mΩt + e−i2mΩt

)
+

∞∑
m=0

(−1)mJ2m+1(A) sin(k)

×
[
ei(2m+1)Ωt + e−i(2m+1)Ωt

]
(A.9)
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FIG. A2: The middle part (i.e. n close to 0) of the Floquet band structure calculated from Eq.(A.6) by only considering J0

and considering up to J4. In evaluating Eq.(A.6) r ranges from -12 to 12. Since the Fourier transform is linear, here we only
considered terms in Eq.(A.8) related to the x direction (i.e. essentially a 1D tight-binding model). The two calculations are
almost indistinguishable.

Thus under a linear-polarized harmonic pump A(t) =
A0 cos(Ωt), by comparing coefficients of Fourier series,

we may conclude that Hr =
∑

k Er,kp
†
kpk, where

E0,k = −2th [J0(Ax0) cos(kx) + J0(Ay0) cos(ky)]

E1,k = E−1,k = −2th [J1(Ax0) sin(kx) + J1(Ay0) sin(ky)]

E2,k = E−2,k = 2th [J2(Ax0) cos(kx) + J2(Ay0) cos(ky)]

· · · (A.10)

HF is a quasi-band matrix: when |n| is large, Jn(A)→
0, Hn → 0. As a result, the off-diagonal higher

orders of Jn(A) contribute little to the quasi-energy.
Thus we only consider diagonal elements of HF in
Sec.III A and obtain the quasi-energy ελ = Ek,n =
−2th [J0(Ax0) cos(kx) + J0(Ay0) cos(ky)] ± nΩ. In fact,
we have compared the quasi-energy obtained considering
up to J4 with that only considering J0, as shown in
Fig.A2, with A0 = 1.6 and Ω = 0.3eV. Note that
J4(1.6) = 0.015 which is already very small compared
to Ω and J0(1.6) = 0.455. The two calculations are
almost indistinguishable, justifying the simplification in
the band renormalization calculation.
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