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Abstract

The construction of Vibration-Transit theory of liquid dynamics is being presented in three se-

quential research reports. The first is on the entire condensed-matter collection of N -atom potential

energy valleys, and identification of the random valleys as the liquid domain. The present (second)

report defines the vibrational Hamiltonian and describes its application to statistical mechanics.

Following is a brief list of the major topics treated here. The vibrational Hamiltonian is universal, in

that its potential energy is a single 3N -dimensional harmonic valley. The anharmonic contribution

is also treated. The Hamiltonian is calibrated from first-principles calculations of the structural

potential and the vibrational frequencies and eigenvectors. Exact quantum statistical mechanical

functions are expressed in universal equations, and are evaluated exactly from vibrational data.

Exact classical statistical mechanical functions are also expressed in universal equations, and are

evaluated exactly from a few moments of the vibrational frequency distribution. The complete

condensed-matter distributions of these moments are graphically displayed, and their use in sta-

tistical mechanics is clarified. The third report will present transit theory, which treats the motion

of atoms between the N -atom potential energy valleys.
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I. INTRODUCTION

Vibration-transit (V-T) theory is about liquid dynamics, the motion of atoms in the

liquid state, and primarily monatomic liquids at this time. The major theoretical devel-

opment reached completion in a tractable description of the atomic motion, consisting of

3N -dimensional normal-mode vibrations within a liquid potential energy valley, plus tran-

sits, in which the atoms move across the intervalley intersections. The vibrational theory is

formally reduced to that of a single representative liquid valley, and is presented in Sec.23

of1. The transit theory was completed with the assignment to transits of a constant-volume

measure of the melting entropy2,3. The corresponding theoretical equations for the ther-

modynamic functions were shown to provide an accurate account of experimental data for

several elemental liquids4,5.

Since then, we have carried out two large-scale quench studies designed to quantitatively

organize the entire collection of valleys that constitute the potential energy surface (PES)

of a monatomic system. This broad study provides a clearer understanding of the liquid

vibrational theory, by seeing it as a part of the whole condensed matter theory. The first

quench analysis identifies the random and symmetric distributions, and describes the role

of the random structures in V-T theory6. The second quench analysis defines and calibrates

vibrational motion theory in one (any) 3N -dimensional potential energy valley, and is re-

ported here. We are also in the final stages of a significant upgrade in transit theory. That

research will complete the formal V-T theory of liquid thermodynamics, and we shall then

undertake a comparison of theory and experiment for elemental liquids.

The present study is about two aspects of a single theoretical construct: The potential

energy surface and the atomic motion. We write in terms of either aspect, depending on

what we are trying to say. In constructing a configuration integral, we think in terms of the

PES. On the other hand, a transit is the motion of an atom across an intervalley intersection.

Working with both aspects provides a more incisive physical picture.

In Sec. II, we define the V-T decomposition, whose key function is to produce a tractable

vibrational Hamiltonian. First, the low-lying harmonic portion of a 3N -dimensional liquid

valley is extended to infinity in all dimensions. A potential energy correction is then added to

the Hamiltonian to account for the intervalley intersections, or what is equivalent, to account

for the atomic transit motion across the intersections. Though the transit correction is
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complicated, it is relatively small, so that the decomposition makes a viable theory of liquid

dynamics.

In Sec. III, for specific application to equilibrium thermodynamics, the vibrational Hamil-

tonian is calibrated from the normal-mode vibrational frequencies, ωλ, λ = 1, 2, . . . , 3N . For

thermodynamics, the normal-mode eigenvectors are not needed, but they are always avail-

able for more intricate statistical mechanical applications. For a given set of ωλ, the formally

exact character of quantum statistical mechanics is observed and discussed.

In Sec. IV, we derive the exact statistical mechanical equations for vibrational contri-

butions to internal energy and entropy, valid at temperatures (T ) at or above the melting

temperature (Tm). These equations are in the form of exact classical statistical mechanics

plus quantum corrections. The equations are calibrated by a few characteristic tempera-

tures θn, related respectively to the nth moment of the ωλ distribution. Distributions of the

key θn for the complete collection of condensed-matter potential energy valleys are shown

graphically and discussed.

In Sec. VA, a descriptive list of the major theoretical arguments of the paper is given. In

Sec. VB, properties of V-T theory possibly useful to the Equation of State (EOS) program

are discussed.

II. THE V-T DECOMPOSITION

It has long been considered that the condensed-matter PES for monatomic systems con-

sists of a great many 3N -dimensional intersecting potential energy valleys. From extensive

analysis of experimental thermodynamic data for elemental liquids and crystals, we have

constructed a detailed description of those potential energy valleys, summarized in6. The

valleys are of two classes, random and symmetric. The random valley manifold overwhelm-

ingly dominates the PES, and is the domain of the liquid phase. The random valleys are

macroscopically equivalent, i.e. they all have the same macroscopic statistical mechani-

cal properties, so that one such valley can be used for statistical mechanical calculations.

Finally, the random valleys are harmonic to good approximation. These properties, demon-

strated for elemental liquids having a wide variety of bonding types (Sec. II of6), strongly

suggest the following V-T decomposition of the liquid potential energy surface.

The V-T decomposition is the defining construct of V-T theory. A single representative
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random structure is chosen for the liquid structure, according to the discussion in Sec. IV of6.

For small displacements of the atoms from equilibrium at the liquid structure, the potential

energy is by definition positive definite harmonic. This surface is first calibrated, as we shall

describe in Sec. III, and is then extended to infinity in all 3N directions. This extension

is necessary in order to create a tractable Hamiltonian. This Hamiltonian will provide the

dominant contribution to V-T theory of liquid dynamics.

Next we add a correction to account for error in the vibrational Hamiltonian. For-

mally, this error consists of the actual liquid potential energy surface, minus the single

3N -dimensional harmonic valley. In terms of the atomic motion instead of the potential

surface, the correction requires us to account for the transit motion, in which atoms move

across the intervalley intersections. Either way, this is a very complicated problem. However,

the correction is small compared to the vibrational contribution, so the V-T decomposition

actually qualifies as a net favorable theoretical construction.

We can illustrate the preceding discussion with MD data for our liquid Na system at

N = 500 and constant volume V . Mean potential energy is denoted Φ(T ). The system has

two potential contributions, the vibrational Φvib(T ), which is known, and the correction,

which is attributed to transits and denoted Φtr(T ). Their sum is the potential ΦV T (T ) of

V-T theory. However, in order to calibrate the theory from MD, we write

ΦMD(T ) = Φvib(T ) + Φtr(T ). (1)

The MD and vibrational curves are graphed in Fig. 1. The vibrational contribution is 3
2
kBT ,

and the transit contribution is obvious as the difference ΦMD −Φvib, from Eq. (1). Figure 1

clearly shows that the magnitude of Φtr(T ) is small compared to that of Φvib(T ), to high

temperatures. Experimental entropy data for elemental liquids show the same behavior as

the potential energy shows in Fig. 12,3.

It is of interest to describe the physical character of the transit motion indicated in Fig. 1.

First, notice that the actual MD potential energy at T = 0 is the liquid structure potential

Φl
0. Here, however, Φl

0 is set to zero, since we are interested only in the thermal energy. As

Figure 1 shows, there are no transits up to around 150 K, but as T continues to increase,

Φtr(T ) increases from zero. This behavior correlates with the MD data for self-diffusion,

which also measures zero up to T around 150 K, then increases from zero together with

Φtr(T ) (Fig. 10 of7). These MD calculations confirm that transits cause the diffusion.
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FIG. 1. The straight line is the vibrational potential energy Φvib = 3
2kBT , and dots fitted by

dashed line is total potential energy from MD, ΦMD. Φtr is ΦMD −Φvib. Volume of the system is

constant at Vlm = 278a30, the volume of the liquid at melt. Tm is the temperature of the liquid at

melt.

With further increasing T , the continuing increase of Φtr(T ) is mainly due to an increasing

transit rate. The leveling of Φtr(T ) results from a saturation of the liquid transits. The

ultimate decrease of Φtr(T ) is due to removal of vibrational potential energy surface at

intervalley intersections. The latter effect, under the name of ”boundary effect”, appears in

the high-T constant-V specific heat of elemental liquids, and is exemplified by liquid Hg8.
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As T continues to increase in Fig. 1, ΦMD(T ) falls increasingly below Φvib(T ), due to the

increasing boundary effect, and the system embarks on a very broad liquid-to-gas transition

(see e.g.9).

III. CALIBRATION OF THE VIBRATIONAL HAMILTONIAN

To begin the vibrational calibration for a liquid, we carry out a number of quenches

for the appropriate MD system, and study several properties of the structures in order to

identify the random structures6. We then choose a representative random structure for

the liquid structure, and calibrate the vibrational Hamiltonian as follows. The information

contained in the liquid structure is its potential energy per atom, Φl
0, and the set {RK}

of atomic equilibrium positions, for K = 1, 2, . . . , N . The potential energy due to small

displacements uK of the atoms from equilibrium is a positive definite quadratic form, i.e.

a stable harmonic valley, in the 3N Cartesian components of the set {uK}. The matrix

of potential energy coefficients, also called force constants, divided by the atomic mass M ,

is the dynamical matrix. The eigenvalues of the dynamical matrix are ω2
λ, where ωλ is the

vibrational frequency of mode λ, and ω2
λ > 0 for λ = 1, 2, . . . , 3N−3. The three translational

modes having ωλ = 0 are removed for statistical mechanical applications. As a matter of

principle, the complete calibration must be done for a single structure.

The set of frequencies is all one needs to calculate vibrational contributions to the thermo-

dynamic functions (see discussion for crystals pp. 147-149 of1). However, the normal mode

eigenvectors are also valuable, because they extend the coverage of vibrational statistical

mechanics far beyond thermodynamics.

We generally make statistical mechanical derivations in quantum formulation, because

that is the complete theory at all T . Classical expressions can be extracted from the quantum

formulas, but the reverse is not possible. Formal theory of vibrational thermodynamics

for any 3N -dimensional harmonic valley is derived in Secs. 16 and 17 of1, especially in

Eqs. (16.13) - (16.20) and (17.1) - (17.8).

The normal vibrational modes obey Bose-Einstein statistics. The creation and annihila-

tion operators are respectively A+
λ and Aλ for mode λ, and the vibrational Hamiltonian per
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atom is Hvib, where

Hvib =
3

3N − 3

∑
λ

~ωλ(A+
λAλ +

1

2
). (2)

For mode λ, ~ωλ is the vibrational-level spacing, A+
λAλ measures the discrete occupation

level in a system eigenfunction, and the term in 1
2

is the zero-point energy. The mean

occupation number is nλ(T ) =
〈
A+
λAλ

〉
, where 〈. . . 〉 is the canonical average, and

nλ(T ) =
1

eβ~ωλ − 1
; β =

1

kBT
. (3)

The thermodynamic internal energy is Uvib = 〈Hvib〉, so from Eq. (2),

Uvib(T ) =
3

3N − 3

∑
λ

~ ωλ[nλ(T ) +
1

2
]. (4)

The entire volume dependence of these equations is in the ωλ(V ). These few equations are

sufficient to illustrate the quantum formulation, and to show in Sec.IV how we transform to

the classical regime without losing information.

By derivation, a statistical mechanical function is expressed as a sum over vibrational

normal modes, as e.g.
∑

λ fλ in Eq. (4), where fλ expresses information belonging to mode

λ. The information generally includes both frequency and eigenvector data. For thermo-

dynamic functions, such a sum is traditionally replaced by an integral over the normalized

frequency distribution g(ω), in the form
∫
f(ω)g(ω)dω, where f(ω) expresses information

belonging to the increment dω at ω. The integral formulation does not contain eigenvector

information, therefore is limited to functions having no eigenvector dependence (see the dis-

cussion of Eq. (5.2) of1). The function g(ω) has become an investigative tool for comparing

vibrational spectra of different systems.

In Section IV, we shall test our Na calibration parameters by comparison with an in-

dependent DFT calibration. We begin that comparison here. We work with histograms

because that form introduces the minimal amount of extraneous information required to

present the list of ωλ in graphical form.

Figure 2 shows the liquid g(ω) as calculated from our Na potential, which has reliably

produced excellent agreement with experimental data for crystal and liquid phases1. Figure

3 shows the liquid g(ω) computed from DFT. Both histograms display three characteristics

commonly observed in our liquid studies to date: The low-ω edge is an accurate straight

line that intersects zero count at ω > 0; the high-ω edge is also a good straight line, steeper
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FIG. 2. Histogram of g(ω) from the set of vibrational frequencies ωλ, calculated from the dynamical

matrix. Calculations are based on the Na pair potential φ(r;V ).

than the lower edge; and the top is roughly constant, with a two-step refinement that is

pronounced in Fig. 2 and is weak in Fig. 3. From the overall similarity of the two graphs, we

conclude that the fundamentally different computational methods will produce qualitatively

similar vibrational thermodynamics for the liquid. A more incisive comparison appears at

the end of Sec. IV.
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FIG. 3. Histogram of g(ω) made as in Fig. 2 from calculations based on first-principles DFT.

IV. VIBRATIONAL STATISTICAL MECHANICS

Exact classical statistical mechanics is contained in the high-T expansion of quantum

statistical mechanics. Under the high-T condition (~ωλ/kBT ) << 1, Eq. (3) becomes

nλ(T ) +
1

2
=
kBT

~ωλ

[
1 +

1

12

(
~ωλ
kBT

)2

− 1

720

(
~ωλ
kBT

)4

+ . . .

]
. (5)

The first term on the right is classical theory, and the terms in T−2, T−4, . . . constitute the

quantum correction series. By ”classical regime” we mean temperatures where the quantum

correction is small, but not necessarily negligible. We always keep at least the leading order
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quantum correction, because as we shall see, it can provide an estimate of the entire series.

Keeping the quantum correction also makes our calculated thermodynamic functions exact

in principle in the classical regime.

From Eqs. (4) and (5), the vibrational internal energy per atom is

Uvib(T ) =
3kBT

3N − 3

∑
λ

[
1 +

1

12

(
~ωλ
kBT

)2

− 1

720

(
~ωλ
kBT

)4

+ . . .

]
. (6)

The sum
∑

λ converts the numerators of the quantum correction terms into moments of the

ωλ distribution. Long ago, a set of modified moments of g(ω) was defined10, and has since

been widely applied (see e.g. the compendium of crystal phonon data11). For application to

lattice dynamics theory, we converted those moments to a set of characteristic temperatures

θn, the natural dimension for scaling thermodynamics at high T (pp.147-152 of1). These θn

are now applied to liquid dynamics theory, and are defined for n ≥ −3, as follows.

kBθn =

[
n+ 3

3

1

3N − 3

∑
λ

(~ωλ)n
]1/n

, n 6= 0 and n 6= −3; (7)

ln(kBθ0) =
1

3N − 3

∑
λ

ln(~ωλ); (8)

θ−3 = lim
n→−3

θn. (9)

Some technical notes are in order. First, the actual moments of10, defined in terms

of g(ω), are eliminated in the definitions (7)-(9). Eqs. (7)-(9) are in the exact statistical

mechanical formulation, as
∑

λ fλ. Second, the scaling factor (n + 3)/3 is present in all

three equations (7)-(9). This scaling is not present in the standard definition of moments

of a distribution, but was inserted specifically to scale moments of a Debye distribution to

a constant10. Simpler math would be to remove this spurious scaling, but it is by now a

theoretical legacy.

To show the role of the θn in vibrational thermodynamics, we list the equations for the

internal energy and the entropy Svib:

Uvib(V, T ) = 3kBT

[
1 +

1

20

(
θ2(V )

T

)2

− 1

1680

(
θ4(V )

T

)4

+ . . .

]
; (10)

Svib(V, T ) = 3kB

[
ln

(
T

θ0(V )

)
+ 1 +

1

40

(
θ2(V )

T

)2

− . . .

]
. (11)
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Fvib(V, T ) is constructed from Eqs. (10) and (11) (see Eqs. (17.5)-(17.7) of1). For all such

equations, θ2 determines the first quantum correction. Higher terms can be estimated from

θ2n ≈ θ2, n = 2, 3, . . . . θ2 is also useful in the approximations θ1 ≈ θ2 ≈ e
1
3 θ0 (p.152

of1). Finally (kBθ2)
2 is proportional to the dynamical matrix trace, which can be evaluated

without calculating the entire matrix (pp. 132-133 of1). Because θ2 is easy to evaluate, it is

often used as a general estimator for θn, n ≥ −2. θ0, Eq. (8), profoundly controls Svib(V, T )

by dominating its V -dependence and scaling its T -dependence in Eq. (11). The quantum

zero-point vibrational energy is given by the term in 1
2

in Eq. (4), and is expressed by the

characteristic temperature θ1 via the relation

3

3N − 3

∑
λ

1

2
~ωλ =

9

8
kBθ1. (12)

Hence the liquid quantum ground-state energy is Φl
0+ 9

8
kBθ1, while the classical ground-state

energy is Φl
0. In the classical regime, the quantum zero-point energy disappears, and the

high-T forms are pure classical plus small quantum corrections going as T−2 + . . . .

θ−3 is the Debye temperature θD, and has physical meaning only at very low temperatures.

θD is theoretically given by sound velocities at T = 0, and θD scales the T -dependence of

specific heat at very low T (pp.162-165, p. 136, of1).

For our well-studied Na MD system at N = 500, we carried out 1000 quenches to struc-

tures, calculated and diagonalized the dynamical matrix for each structure, and evaluated

the sets of θn for n = 2, 1, 0. We refer to these as the central θn, because these n measure

most uniformly across the ωλ distribution. θn for higher and lower n, respectively, concen-

trate on higher and lower ωλ. The θn distributions are graphed against the distributions of

the structural potential Φ0 in Figs. 4-6. Each figure includes data points for 1 crystal, 18

symmetric and 982 random structures.

The dominant characteristic in Figs. 4-6 is the alignment of the entire θn distribution

with the crystal-liquid axis, for n = 2 and n = 1, with a small departure for n = 0. The

slope of the axis decreases and passes through zero at n between 2 and 1 (Figs. 4 and 5).

Where the slope is zero, θcn = θln, and this is a qualitative measure of the most uniform

weighting of the ωλ in Eq. (7) for kBθn. The largest scatter belongs to the symmetric

distributions. That scatter is not random, but shows a filamentary order that varies with n,

and signifies underlying structural symmetries. The graphs provide an organization of the

entire condensed-matter distribution of central θn, and they invite us to investigate.
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FIG. 4. Distribution of θ2 from 1000 quenches to structures, graphed against the structure potential

Φ0. Solid dots are the random distribution and the revealed cross locates the liquid structure. Open

circles are the symmetric distribution. The bcc crystal Φ0 is set to zero for graphical clarity.

We shall now make specific application of Figs. 4-6 to the calibration of liquid vibrational

theory. This will be done by making the same comparison here as in Sec. III, for the same

g(ω) shown in Figs. 2-3, but comparing the central θn instead of the g(ω) graphs. The θn are

calculated directly from Eqs. (7) and (8), and they contain much more precise information

than do the g(ω). The results are listed in Table I, and discussed next.

Table I compares the central liquid θln between the Na potential calculation and the DFT
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FIG. 5. Distribution of θ1 (details as in Fig. 4).

calculation, at the same volume Vlm. The deviation is defined as

∆θln =
θln(φ(r;V ))− θln(DFT )

θln(DFT )
. (13)

The deviation is systematic in n, because the crystal-liquid axis changes with n. The de-

viation is sufficiently small that both computational methods are verified to high accuracy.

We now have the capability to make first-principles calculations of the liquid vibrational

parameters, hence of the liquid vibrational thermodynamics.
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V. CONCLUSION

A. Theoretical concepts

Secs. II-IV present a detailed description of the construction and calibration of the liquid

vibrational theory. We shall now present a parallel description of the theoretical concepts

that underlie the technical description. This presentation brings out the logic of V-T theory.

1. Of the vast number of potential energy valleys that constitute the condensed matter

PES, the random valleys are macroscopically equivalent, and constitute the domain
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TABLE I. θln from the Na potential φ(r;V ) is compared with θln from DFT. V is the volume per

atom.

Data source θl2(K) θl1(K) θl0(K) N V (a30)

φ(r;V ) 154.1 147.1 98.6 500 278

DFT 148.6 143.3 97.7 500 278

∆θln 0.037 0.027 0.009

of the liquid phase. These concepts profoundly shape V-T theory. Vibrational theory

is to be based on a single representative random valley, while a complex space of

intervalley intersections becomes the research assignment.

2. The philosophy of many-body theory guides us to the V-T decomposition, in Sec.II.

The motivation is to first construct a tractable Hamiltonian, which is done by extend-

ing the harmonic liquid valley to infinity. The tractable Hvib is written in Eq. (2). The

equally important companion step is to show that the Hamiltonian correction required

to achieve liquid behavior is relatively small, which is done in Fig. 1. These two steps

alone qualify the formulation as an acceptable starting point for a liquid dynamics

theory.

3. Vibrational calibration parameters are evaluated at a liquid structure. For logical

clarity, we keep the structural potential Φl
0 separate from the atomic motion. The

vibrational parameters are then the equilibrium positions {RK}, the mode frequencies

{ωλ}, and the mode eigenvectors. These parameters measure a representative potential

energy valley belonging to the liquid domain of the PES. In other words, the calibration

measures the potential surface that drives the liquid atomic motion. This is the correct

physical calibration.

4. Given the quantum Hamiltonian, Eq. (2), statistical mechanical equations are derived

by analysis and are formally exact. These equations are expressed as sums over eigen-

modes λ. Eqs. (2)-(12) of the present study are formally exact. They are subject to

zero theoretical error, by definition, and are subject only to numerical error, which

includes finite-N error. We avoid the integral formulation of thermodynamics, Sec. II,

as it can only express a small segment of statistical mechanics theory.

15



5. The high-T expansion of quantum statistical mechanics is useful because it separates

into exact classical statistical mechanics plus the quantum correction, Eqs. (7)-(12).

The classical theory is easy to work with because its liquid thermodynamics is primarily

calibrated by just three parameters, the central θn, and the quantum correction goes

to zero as T increases above Tm.

6. The deviations between the liquid central θln from two different computational meth-

ods are listed in Table I. These deviations serve as an estimate of error in the vibra-

tional calibration for monatomic liquids. The consequent relative error in the functions

Uvib(T ) and Svib(T ) is on the order of 0.005 at Tm, and decreasing as T increases from

Tm. We conclude that the liquid vibrational thermodynamics can in practice be eval-

uated to negligible error.

B. Relations of V-T theory to EOS modeling

Modeling of the thermodynamic properties of the liquid state has a long history with

extensive literature, beginning with van der Waals famous two-term equation12, to contem-

porary research which may involve hundreds of terms and parameters13. Improved accuracy

in the measurements of the thermodynamic properties has led to the continuing develop-

ment and complexities of the EOS models14–16. Those complex EOS are capable of accuracy

within a fraction of a percent of the experimentally measured values. In a more general

scope, beyond just fluids, a standard three term free-energy construction of the EOS is often

used17–19 with accuracies of a few percent. The first contribution of the EOS construction is

that of the zero-temperature compression response curve, which in V-T theory is the liquid

ground state energy6. The second EOS model contribution is the thermal response related

to the atomic motion, which in V-T theory has vibrational contributions discussed in this

paper, plus a transit contribution. Finally the third EOS term is that related to the elec-

tronic thermal excitation with temperature, and V-T theory contains the same term. While

these EOS are constructed as a single phase, V-T theory is developed within the multiphase

EOS program and represents the liquid. The vibrational contribution is first principles and

can be evaluated at any volume.

The general EOS liquid models often treat the thermal atomic response as being Debye

like near melt, which is experimentally motivated for metallic systems20, and then interpolate
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to the extreme high temperature ideal gas limit21. This interpolation is constrained by

shock Hugoniot data into the liquid regime and increasingly by ab initio simulation22,23.

Increases in the quantity and accuracy of the constraining data have shown deficiencies

in these interpolative models24, which leads to the same path of needing more parameters

in increasingly complex models to cover the regimes of interest. In order to extend our

formulation beyond V-T theory, to the ideal gas, we are developing an appropriate tractable

Hamiltonian to replace the numerical interpolation.

Over many years of development, liquid dynamics theory has included consideration of

many-atom correlated vibrational motion, referred to as ‘collective modes’, or ‘phonons’. In

an exemplary study early in the development of collective motion theory, the liquid dynamics

is represented by a set of propagating periodic density fluctuations, in the form of Fourier

transforms of the atomic positions and momenta25. The theoretical objective was to modify

the transforms so as to make the atomic motion consistent with a Hamiltonian based on

interatomic central potentials. This part of the approach did not survive. Later, longitudinal

and transverse ‘phonons’ in metallic liquids were described in detail26 (Secs. 3.14 and 3.15).

In the spirit of inquiry, Fourier components of the density operator were treated as phonons27

(Secs. 8.5 and 8.6). In the ‘phonon theory of liquid dynamics’, thermodynamic functions are

formulated in terms of a Debye distribution of vibrational modes, plus a modification of the

lowest-frequency transverse modes to account for diffusive motion28–32. The modification is

calibrated from the viscosity relaxation time, which is T -dependent. Experimental data has

been employed to test and develop the theory for a wide variety of liquid types, and wide

ranges of V and T 29,33–35. These references also provide a thorough compilation of published

data supporting the presence of collective modes in liquid dynamics.

In V-T theory, as described in Secs. II-IV, liquid vibrational motion is attributed to the

actual quantum vibrational modes, as calculated from the actual liquid potential energy

surface. For the necessary companion component of liquid atomic motion, we shall turn

next to a detailed presentation of transit theory.
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