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By using the dyadic Green’s matrix spectral method, we demonstrate that aperiodic deterministic
Vogel spirals made of electric dipoles support a light localization transition in three dimensions, an
effect that does not occur in traditional uniform random media. We discover a light localization
transition in Vogel spiral arrays embedded in three-dimensional space by evaluating the Thouless
conductance, the level spacing statistics, and by performing a finite-size scaling. We probe light
localization in the plane of the array by analyzing the behavior of the scattering resonances in
three-dimensional space. This light localization transition is different from the Anderson transition
because Vogel spirals are aperiodic deterministic structures characterized by non-uniform geometries.
Moreover, this transition occurs when the vector character of light is fully taken into account, in
contrast to what is expected for traditional uniform random media of point-like scatterers. We show
that light localization in Vogel arrays is a collective phenomenon that involves the contribution
of multiple length scales. Vogel spirals are suitable photonic platforms to localize light thanks to
their distinctive structural correlation properties that enable collective electromagnetic excitations
with strong light-matter coupling. Our results unveil the importance of aperiodic correlations for
the engineering of photonic media with strongly enhanced light-matter coupling compared to the
traditional periodic and homogeneous random media.

I. INTRODUCTION

Understanding the localization of vector waves in di-
electric systems provides exciting opportunities for the
realization of more efficient sensors and active photonic
platforms. Since the discovery by P. W. Anderson in 1958
that strong disorder can inhibit electronic transport1, the
quest for an optical counterpart of strong localization has
motivated an intense research activity in photonic ran-
dom media2,3. Random lasers4,5, multiple scattering in
random media3,6–17, local density of states modification
induced by multiple scattering18,19, tuning and control-
ling of coupled-random modes20–22, and speckle pattern
information decoding23–25, are some of the important re-
sults recently achieved in the field of disordered photon-
ics. However, there is no unquestionable observation of
a light localization transition in three-dimensional (3D)
uniform random systems (i.e. in a full vectorial electro-
magnetic problem) so far26–29. The lack of materials with
large enough refractive index values at optical frequen-
cies and the presence of near-field coupling effects be-
tween scatterers in dense systems are often considered the
main reasons preventing Anderson localization of light in
homogeneous random media27,30. Moreover, due to the
lack of simple design rules for efficient optimization, the
applications of uniform random structures to optical en-
gineering remain quite limited.

Aperiodic optical media, generated by simple deter-
ministic mathematical rules, offer an alternative route to
achieve light confinement with respect to uniform ran-
dom systems. Aperiodic deterministic systems have re-
cently attracted significant attention in the optics and

electronics communities31–34. This is due, not only to
their design advantages and compatibility with current
nano-fabrication technologies, but also to their distinc-
tive optical behavior34–39. In particular, determinis-
tic aperiodic structures display physical properties that
cannot be found in either periodic or uniform random
systems, such as anomalous transport40–42 and frac-
tal transmission spectra43,44. Moreover, the tunable
structural complexity of aperiodic deterministic media
leads to the formation of rich spectra of resonances,
called critical modes38,45,46, characterized by power-law
envelope localization and multi-fractal field intensity
oscillations37–39,43. Due to their unique functionalities,
deterministic aperiodic designs have been successfully
utilized in engineering applications for light emission and
lasing42, optical sensing33,35, photo-detection36, nonlin-
ear optical devices47,48, as well as optical imaging49.

In this manuscript we show that the large family of
deterministic aperiodic Vogel arrays composed of elec-
tric dipoles can be conveniently designed to achieve a
light localization transition in three dimensions. We
prove that a transition from diffusive to localized regimes
exists in planar Vogel spiral arrays embedded in 3D
space by using the dyadic Green’s matrix formalism12–15.
The Green’s matrix method has been applied to investi-
gate Anderson localization of light in uniform disordered
systems6–17 and has allowed to unveil the fundamental
scattering and transport properties of aperiodic deter-
ministic geometries37–39.

In this work we focus on open planar spiral struc-
tures as they are relevant architectures for experiments
and applications where light can leak out through the
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array plane34–36,50–52. Therefore, the dimensionality of
the electromagnetic problem is 3D but the geometrical
support of the scattering arrays is two-dimensional (2D).
In such situations the electromagnetic field, which corre-
sponds to a 3D scattering resonance, is not only spatially
confined in the plane of the array, strongly depending on
the geometry of its support, but it also leaks out from
such plane with a characteristic time proportional to the
quality factor of the resonance. The discovered 3D light
transition provides information on the localization of the
waves in the plane of the support probed by the dis-
tinct behavior of 3D scattering resonances. As a result,
this mechanism is different from a conventional 3D local-
ization transition (e.g. Anderson localization transition)
where waves are confined in all dimensions by the three-
dimensional nature of the geometrical support.

We study light localization in Vogel spiral arrays with
different geometrical parameters by evaluating the Thou-
less conductance, the level spacing distribution, and by
performing a finite-size scaling. We show the existence of
different classes of localized resonances that display spa-
tial mode profiles recently discovered across the multi-
fractal band-edges of Vogel spirals performing 2D Finite
Element Method (FEM) simulations53,54. We explain the
similarities between 3D and 2D scattering resonances in
terms of light localization in Vogel spiral arrays that is
generated by the nature of their geometrical supports.
Moreover, we provide a comparison with respect to open
uniform random planar arrays embedded in a 3D envi-
ronment for both scalar as well as vector waves unveil-
ing the full potential of aperiodic spatial correlations for
the engineering of complex photonic media with more
efficient light-matter interaction. Specifically, we demon-
strate that light localization in Vogel spirals is driven by
collective electromagnetic coupling effects that involve
multiple length scales. For comparison, we show that
vector wave localization is never achieved in planar ho-
mogeneous random systems, even when neglecting the
near-field interaction term. This is shown by separately
investigating the relative contributions of the different
coupling terms that appear in the dyadic Green’s prop-
agator and by evaluating the Thouless conductance for
sufficiently large scattering strengths. In summary, light
localization transition in Vogel spirals also occurs when
the vector nature of light is taken into account, in con-
trast to the Anderson localization transition that it is
limited to scalar waves8,9. Despite this important differ-
ence, the discovered light localization transition in Vogel
spirals remarkably shares similar properties with the An-
derson transition such as the crossover from level repul-
sion to the absence of level repulsion and the behavior
of the Thouless conductance. Hence we conclude that
structural correlations play a crucial role in light local-
ization in Vogel spirals as compared to uniform random
systems.

This paper is organized as follows. In Sec. II we de-
scribe the Green’s matrix method and the Vogel spiral
photonic array. In Sec. III we present and discuss our

findings whereas Sec. IV is devoted to the conclusions.

II. METHODOLOGY: THE VOGEL SPIRAL
PLATFORM AND THE GREEN’S MATRIX

FORMALISM

Vogel spiral point patterns have been studied in
physics, mathematics, botanics, and theoretical biol-
ogy in relation to the fascinating geometrical prob-
lems offered by the field of phyllotaxis37,54–57. This
class of deterministic aperiodic media is a powerful
platform for nanophotonics and nanoplasmonic applica-
tions. Polarization-insensitive light diffraction36, light-
emission enhancement50,51, enhanced second-harmonic
generation58, and omni-directional photonic band-
gaps59,60 are some of them. Vogel spiral geometries
are characterized by diffuse scattering spectra like uni-
form random media but with circularly symmetric scat-
tering rings that can be easily controlled by the spiral
geometry37,53,61. By using simple generation rules, par-
ticle arrays with Vogel spiral geometry can be easily de-
signed to produce a very rich structural complexity best
described by multi-fractal geometry53. Moreover, Vo-
gel spirals support distinctive scattering resonances that
have been shown to encode well-defined numerical se-
quences in the orbital angular momentum of light, which
have a great potential for device applications to singular
optics and optical cryptography62,63.

Vogel spiral arrays are defined in polar coordinates
(r, θ) by the following parametric equations:

rn = a0
√
n (1)

θn = nα (2)

where n = 0, 1, 2, ... is an integer, a0 is a positive con-
stant called scaling factor, and α is an irrational num-
ber, known as the divergence angle57. This angle speci-
fies the constant aperture between successive point par-
ticles in the array55. Since the divergence angle is an
irrational number, Vogel spiral point patterns lack both
translational and rotational symmetry. The divergence
angle (α◦, in degrees) can be specified by the choice
of an irrational number ξ according to the relationship
α◦=360◦−frac(ξ)×360◦ where frac(ξ) denotes the frac-
tional part of ξ. Vogel spirals with remarkably different
structural properties can be obtained simply by selecting
different values for the irrational number ξ. For instance,
when ξ is equal to the golden mean ξ=(1+

√
5)/2 the cor-

responding divergence angle α ∼ 137.508◦ is called the
“golden angle” while the resulting Vogel spiral structure
is called the golden angle spiral, or GA spiral. This pro-
vides opportunities to tailor different degrees of aperiodic
structural order in a very efficient way37,61

In this work, we primarily focus on four different types
of Vogel spiral arrays introduced in Refs.37,52,62, which
are called GA-spiral, τ -spiral, π-spiral, and µ-spiral.
They are generated according to Eq.(1) and Eq.(2) choos-

ing the values ξ=(1 +
√

5)/2, ξ=(5 +
√

29)/2, ξ=π, and
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ξ=(2 +
√

8)/2, respectively. The π-spiral exhibits the
lowest degree of structural order, followed by the µ-
spiral, the τ -spiral, and the GA-spiral37,61. This ordering
reflects the smallest number of convergents (i.e. ratio-
nal approximations) necessary to approximate the irra-
tional number ξ in continued fractions at any level of
accuracy37,62.

We now investigate the spectral and wave localiza-
tion properties of Vogel spirals using the Green’s matrix
method. This approach provides access to all the scat-
tering resonances of a system composed of vector elec-
tric dipoles in vacuum and accounts for all the multiple
scattering orders, so that multiple scattering process is
treated exactly. In addition, this method allows for a
full description of open 3D scattering resonances of a
large-scale structures at a relatively low computational
cost if compared to traditional numerical methods such
as Finite Difference Time Domain (FDTD) or FEM tech-
niques. Each scatterer is characterized by a Breit-Wigner
resonance at frequency ω0 and width Γ0 (Γ0� ω0). The
quasi-modes of this scattering system can be identified

with the eigenvectors of the Green’s matrix
←→
G which, for

N vector dipoles, is a 3N×3N matrix with components9:

Gij = i
(
δij + G̃ij

)
(3)

G̃ij has the form:

G̃ij =
3

2
(1− δij)

eik0rij

ik0rij

{[
U− r̂ij r̂ij

]
−
(
U− 3r̂ij r̂ij

)[ 1

(k0rij)2
+

1

ik0rij

]} (4)

when i 6= j and 0 for i = j. k0 is the wavevector of light,
the integer indexes i, j ∈ 1, · · · , N refer to different par-
ticles, U is the 3×3 identity matrix, r̂ij is the unit vector
position from the i-th and j-th scatter while rij identifies
its magnitude. This method is suitable not only for the
study of atomic clouds, as atoms are perfect dipoles, but
also provides fundamental insights into the physics of pe-
riodic, aperiodic, and uniform random systems of small
scattering particles6–17,37–39. The Green’s matrix (3) is a
non-Hermitian matrix. As a consequence, it has complex
eigenvalues Λn (n ∈ 1, 2, · · · , 3N)12,13. The real and the
imaginary part of Λn are related to the detuned scatter-
ing frequency (ω0 − ωn) and to the scattering resonance
decay Γn both normalized with respect to the resonant
width Γ0 of an isolated dipole9–11. In the following, we
define ω̂n=(ω0 − ωn)/Γ0.

In order to establish light localization, we have an-
alyzed two parameters. The first parameter character-
izes the degree of spectral overlap between different op-
tical resonances and it is called Thouless conductance
g64,65. The second parameter quantifies the sensitiv-
ity/insensitivity of scattering resonances with respect to
a perturbation of the system boundary conditions and
it is known as the β parameter. In order to prove a

light localization transition we have applied two criteria.
First, the g conductance, which is proportional to the
scattering mean free path of the system, must decrease
when increasing the scattering strength, i.e. increasing
the optical density ρλ2. Here ρ is the number of particles
per unit area while λ is the optical wavelength. Second,
the scaling of the β parameter with respect to the log-
arithmic conductance (β=β[ln(g)]) must show a critical
point qc=ln(gc) at which β vanishes, i.e. the Thouless
conductance does not depend on the system size L66,67.
Moreover, we have corroborated our analysis by showing
a crossover from level repulsion to the absence of level
repulsion of the level spacing statistics (see Appendices
E for details).

Within the Green’s matrix formalism, the Thouless
conductance is defined as the ratio of the dimensionless
lifetime (δω)−1=1/=[Λn] to the spacing of nearest dimen-
sionless resonant frequencies ∆ω=<[Λn] − <[Λn−1]9. In
order to study the behavior of g as a function of the res-
onance frequencies, we have subdivided, for each value of
the scattering strength ρλ2, the range of resonance fre-
quencies in 300 equispaced intervals. This allows to con-
sider the average value of g within each subinterval and
to obtain its frequency dependence by plotting the aver-
age values associated to each subinterval. The Thouless
conductance g can be written in terms of the eigenvalues
of the Green’s matrix as

g = g(ω) =
δω

∆ω
=

(1/=[Λn])−1

<[Λn]−<[Λn−1]
(5)

where {· · · } indicates the average of g over each fre-
quency subinterval. The frequency ω is the central fre-
quency of each subinterval used to sample the <[Λn] axes.
Differently from the uniform random scenario6–17,68, we
do not perform any average with respect to different ge-
ometry configurations because Vogel spirals are deter-
ministic structures.

III. RESULTS AND DISCUSSIONS

We will first consider the case of N = 2000 electric vec-
tor dipoles arranged in a GA Vogel spiral configuration.
The 3N×3N Green’s matrix (3) is diagonalized numeri-
cally and the Thouless conductance g, defined by Eq.(5),
is calculated as a function of the frequency ω for differ-
ent values of ρλ2. Fig.1 panel (a) and (b) show the dis-
tribution of the resonant complex poles Λn, color-coded
according to the log10 values of the Mode Spatial Extent
(MSE), when the optical density is set equal to 1 and to
15, respectively. The MSE parameter characterizes the
spatial extent of a photonic mode20.

At low optical density (ρλ2=1), the system is in the
delocalized regime. The complex eigenvalue distribution
does not show the formation of any long-lived resonances
with Γn/Γ0 � 1. Consistently, the spatial profiles of the
modes in this regime are delocalized across the array. For
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FIG. 1. Eigenvalues of the Green’s matrix (3) are shown by
points on the complex plane for 2000 electric point dipoles
arranged in a GA Vogel spiral geometry. Panel (a) and (b)
refer to an optical density of 1 and 15, respectively. Scattering
resonances with very small decay rates (=[Λn] = Γn/Γ0 � 1)
appear only when ρλ2=15. The data are color-coded accord-
ing to the log10 values of the MSE. Insets: spatial profiles
of representative quasi-modes. Panel (c) and (d) show the
frequency dependence of the Thouless conductance g when
ρλ2 is equal to 1 and 15, respectively. The dashed-black lines
identify the threshold of the diffusion-localization transition.

example, two representative eigenvectors that correspond
to the smallest decay rates around ω̂n∼ −0.3 (white-
square marker) and ω̂n∼0.8 (white-pentagram marker),
are shown in the inset of Fig.1 (a). Expectedly, we found
that the Thouless conductance is always larger than one
in this case, as shown in Fig.1 (c).

However, at large optical density (ρλ2 =15), the situ-
ation is completely different. Long-lived resonances ap-
pear and a significant fraction of the complex eigenval-
ues of the Green’s matrix have a very small decay rate
(Γn/Γ0 � 1). For comparison, no such long-lived reso-
nances appear in uniform random media when the vector
nature of light is taken into account (see Appendix A and
Refs.8,9,16 for more details). We show the spatial profiles
of two representative eigenvectors in the inset of Fig.1
(b) and we report in Fig.1 (d) the Thouless conductance
as a function of frequency. These findings clearly demon-
strate that the system reached the localization regime at
large optical density, namely the eigenvectors are radially
confined and g(ω) < 1. We notice that the long-lived res-
onances shown in Fig.1 (b) are clustered around two “tail
regions” that appear at the frequency positions where g
becomes lower than one (see Fig.1 (d)).

Two other important features arise at sufficiently large
optical density: the existence of a spectral gap region
and the absence of sub-radiant “dark” states, also called
proximity resonances, in the complex distribution of the
eigenvalues12,37,69. Proximity resonances are sub-radiant
states localized around pairs of scatterers and can be
identified in random systems by their typical spiral distri-

butions in the complex eigenvalue plane and are charac-
terized by MSE=28,12,68. The absence of proximity res-
onances in Vogel spiral systems was originally reported
in Ref.37 and attributed to the more regular structure
of Vogel spirals compared to random media. This can
be understood based on the fact that, for a given opti-
cal density, the first-neighbor distance of the particles is,
on average, larger in the case of Vogel spirals. Indeed,
we have previously shown that the probability distribu-
tion of first-neighbor distances is non-Gaussian for Vogel
spirals and characterized by long tails34,37,53,70. More
specifically, the mean value of the first-neighbor distances

of the GA-spiral is δ
1st

=1.70± 0.02 (in units of the scal-
ing factor a0). In contrast, uniform random point pat-
terns, with the same density, are characterized by a Pois-
sonian first-neighbor distribution71 with larger fluctua-

tions: < δ
1st

>e=0.89±0.47. Here < · · · >e indicates the
average over two hundreds different point pattern realiza-
tions. Therefore, for a given optical density the probabil-
ity of observing two very close particles is much larger for
the uniform random patterns (see Appendix B for more
details). Interestingly, these fluctuations increase up to
almost 20% in the π-spiral configuration, which in fact is
the most disordered Vogel spiral considered in this work.
The lack of significant contributions from the sub-radiant
resonances in Vogel spiral has profound consequences for
light localization and simplify considerably the analysis
of g and the β-scaling compared to uniform random sys-
tems where the proximity resonances need to be carefully
removed8–10.

In order to gain more insights on the localization tran-
sition we study the logarithm of the averaged Thouless
conductance for different values of the optical density
(starting from 0.1 up to 30 with a resolution of ρλ2=0.1)
as a function of ω. In this way, highly resolved maps of
the quantity ln[g] = ln[g(ω, ρλ2)] can be obtained. The
results of this analysis are summarized in Fig.2 (a-d) for
the GA, τ , π, and µ spirals, respectively. The data are
color-coded according to the logarithmic values of the
Thouless conductance. The diffusion-localization thresh-
old is defined according to ln[g(ω, ρλ2] = 0 and it is iden-
tified by the cyan color. Insets display enlarged views of
the threshold region for the diffusion-localization transi-
tion. Localization begins to take place at ρλ2 ∼ 3.5 for
all the geometries except for the more disordered π-spiral
configuration, whose threshold occurs at ρλ2 ∼ 2. While
this analysis focused on spirals with N=2000, we have
numerically verified that the the results are robust with
respect to system size (N=500−4000) and the frequency
resolution used in the computation of the Thouless con-
ductance g.

The appearance of localized resonances, identified by
the green-red-yellow features in Fig.2, shows a clear dis-
persion branch with respect to the frequency ω in all
the investigated geometries. These features cannot be
obtained in a uniform random medium where the attain-
able value of the Thouless conductance are always larger
than one8,9. (See also Appendix A for a detailed compar-
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FIG. 2. Highly resolved maps of the logarithmic values of the
averaged Thouless conductance are evaluated for different val-
ues of the optical density ρλ2 as a function of ω. The data of
panels (a-d) are color-coded according to ln[g] and refer to the
GA-spiral, τ -spiral, π-spiral, and µ-spiral, respectively. Each
Thouless conductance g(ω) is characterized by 300 points.
These maps are calculated in the range ρλ2=[0.1,30] with a
resolution of 0.1. Insets: enlarged view of the threshold region
for the diffusion-localization transition. Green-red-yellow fea-
tures identify the appearance of localized resonances that fol-
low clear dispersion branches with respect to ω. Different
markers identify the classes of localized resonances that pro-
duce the stronger localization feature in the considered Vogel
spirals.

ison with respect to the vector and the scalar model of
uniform random planar arrays embedded in a 3D space
with the same optical density of Vogel spirals). In Vogel
spirals different classes of localized resonances are clearly
visible in Fig.2.

To achieve a deeper understanding on the nature of
these localized scattering resonances that belong to dif-
ferent dispersion branches, we have systematically ana-
lyzed the spatial distributions of few representative ex-
amples identified by the markers shown in Fig.2. These
markers identify the behavior of the class of scattering
resonances that produce the stronger localization feature
in the considered Vogel spirals. We first focus on the type
of resonances highlighted with the white-circle markers
in Fig.2 (a). The spatial distributions of eigenvectors of
the Green’s matrix corresponding to the three resonances
with the lower decay rates are labeled in Fig.3 as A1, A2,
and A3, respectively. In Fig.3 (a-c) the optical density
ρλ2 is fixed to 10, 20, and 30, respectively. For each
one of them, the frequency of the scattering resonance
ω̂n is also indicated. It is clearly shown that exactly the
same spatial profile is retrieved when scanning along the
dispersion branches for all the three resonances A1, A2,
and A3. The effect of increasing the optical density ρλ2

is simply to produce a frequency shift in the complex
scattering plane. Interestingly, we notice that the spatial
profiles of the scattering resonances shown in Fig.3 agree
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FIG. 3. Representative spatial distributions of the Green’s
matrix eigenvectors that belong to the class of scattering res-
onances that produce the stronger localization feature in the
the GA-spiral. A1, A2 , and A3 identify the first three res-
onances with the lower decay rates( Γn/Γ0 � 1). Panels
(a-c) show these quasi-modes when the optical density ρλ2

is fixed to 10, 20, 30, respectively. The spectral positions of
these quasi-modes are identified by the white-circle markers
in Fig.2 (a).

very well with what has been previously reported based
on 2D FEM method53,54,70, demonstrating the power of
the more efficient Green’s matrix approach. Specifically,
in our previous 2D numerical studies we discovered that
the localized modes of Vogel spirals have a quality factor
that scales linearly with the frequency, which allowed us
to classify them into different classes53,54,70. The modes
belonging to the same class have similar spatial patterns
and each one of them has a degenerate counterpart char-
acterized by a complementary spatial profile. We now
report a complete classification of the Vogel spiral modes
based on the more systematic and general dyadic Green’s
matrix analysis that provides access to all the scatter-
ing resonances that exist, for a given optical density, in
an open 3D electromagnetic system. As an example, the
three types of resonances shown in Fig.3 have exactly the
same spatial profiles that correspond to band-edge modes
of class A, as defined in Refs.53,54,70. Moreover, also the
degenerate modes of A1, A2, and A3 can be identified by
using the dyadic Green’s matrix formalism. They occur
exactly at the same ω̂n and they are characterized by a
complementary spatial profile. This comparison demon-
strates also that light localization in Vogel spirals is pro-
duced at the band-edge due to the strongly-fluctuating
(multi-fractal) dispersion in the density of states53. Ex-
actly the same conclusions are obtained for the τ -spiral,
π-spiral, and µ-spiral (see Appendix C for more details).

In order to understand the similarities between the spa-
tial distribution of the localized scattering resonances of
Vogel spirals in 2D and 3D environments, we have calcu-
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lated their spatial distributions and average modal life-
times using the cylindrical Hankel functions, which de-
scribes a 2D electromagnetic problem, as well as a dyadic
Green’s matrix method, which describes 3D electromag-
netic systems. We find that localized eigenmodes sup-
ported by open Vogel spiral arrays embedded in a 3D
environment correspond very well to the ones obtained
for a 2D electromagnetic problem at large optical densi-
ties. This is due to the fact that the geometrical support
is the same and that light localize in the plane of the
spirals. Indeed, the 2D modes survive in a totally open
3D environment if the optical density is large enough to
induce light localization in the plane of the support. On
the other hand, Fig.1(a) demonstrates that 2D modes do
not correspond to the scattering resonances supported by
open Vogel spiral arrays embedded in 3D space in the dif-
fusive regime. In this case the scattering resonances are
short-lived and hence very different from the 2D ones (see
inset of panel (a) of Fig.1). However, 3D scattering res-
onances have much smaller average modal lifetimes due
to the open nature of the 3D space with respect to their
2D counterparts (see Appendix F for details).

Motivated by the similarities between the light local-
ization transition in Vogel spirals and the Anderson light
localization transition in random media characterized by
a Gaussian (uniform and isotropic) disorder model, we
perform the scaling analysis of localization9 for Vogel spi-
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FIG. 4. The β-scaling analysis is performed by increas-
ing the number of scatters from N=500 up to N=4000.
Panels (a-d) display the results of this scaling for the GA-
spiral, τ -spiral, π-spiral, and µ-spiral, respectively. Differ-
ent markers correspond to calculations of the β function
for all the possible combinations of N . Red-circles, blue-
diamonds, olive-squares, and gray-triangles determine the
combination of N=500 versus N=1; 2; 3; 4×103, N=1000 ver-
susN=2; 3; 4×103, N=2000 versusN=3; 4×103, andN=3000
with respect toN=4×103, respectively.The dashed-black lines
identify the β-parameter transition threshold. Insets: set of
different Vogel spirals generated by increasing the number of
scatters: N=4000 (yellow), N=3000 (grey), N=2000 (olive),
N=1000 (blue), and N=500 (red).

rals. For the Anderson localization in random media, this
analysis predicts that a phase transition between localiza-
tion and diffusion exists only in 3D, whereas the system
is expected to be in the localized regime in lower dimen-
sions for sufficiently large systems66. Therefore, the dif-
fusive and localized regimes are separated by a critical
point, called the ”mobility edge”. The scaling analysis is
characterized by only one parameter, the Thouless con-
ductance g. According to the scaling theory of Anderson
localization, the dependence of the conductance on the
system size can be described by the β-function66:

β(ln[g]) =
d ln[g]

d ln[L]
(6)

where L is the product of the wavevector k0 and the
system size R, which is the maximum radial coordinate
of the spiral (see insets of Fig.4). Eq.(6) assumes that
Thouless conductance g is a continuous and monotonic
function of L. Fig.4 (a-d) display the results of the scal-
ing analysis applied to GA-spiral, τ -spiral, π-spiral and
µ-spiral, respectively, by increasing the number of scat-
ters from N=500 up to N=4000. Even though a scal-
ing theory of localization for non-uniform systems is cur-
rently missing, the analysis reported in Fig.4 suggests the
existence of a localization transition in Vogel structures
because the sign of β changes from negative to positive,
consistently with the one-parameter scaling theory. How-
ever, deeper theoretical investigations, beyond the scope
of the present work, are necessary to fully understand
the nature of the discovered light transition probed by
the 3D scattering resonances of Vogel spirals.

Our results demonstrate a light localization transition
supported by open Vogel spirals planar arrays embedded
in three dimensions. This phenomenon cannot occur in
traditional uniform random media when the vector na-
ture of light is taken into account within the Green’s
matrix formalism (see Refs.8,9 and Appendices A and D
for more details). These results put into evidence the
main difference between the light localization transition
in Vogel spirals and the Anderson localization transi-
tion, which occurs only in the scalar approximation for
point-like electric dipoles8,9. However, the light localiza-
tion transition in Vogel spirals remarkably shares simi-
lar properties with the Anderson transition such as the
crossover from level repulsion to the absence of level re-
pulsion (as demonstrated in Appendix E) and the behav-
ior of the Thouless conductance. It is important to note
that in our study, although the dipoles are arranged in
planar Vogel spiral arrays, the electromagnetic field is not
only confined in the plane but it also leaks out to free-
space according to the quality factors of the scattering
resonances (see Appendix F for more details). Therefore
such systems are truly open scattering 3D systems. In
contrast, in a two-dimensional problem the electromag-
netic field is uniform along the z-axis and its propagator
is the 2D Green’s function15–18.

In order to investigate the role of cooperative effects
in the light localization of Vogel spirals we have decom-
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posed the Green’s matrix of Eq.(4) into the sum of three
coupling terms. Each term describes different electro-
magnetic coupling regimes proportional to 1/rij , 1/r2ij ,

and 1/r3ij , corresponding to long-range, intermediate-
range, and short-range electromagnetic interactions, re-
spectively. We separately investigated these different
contributions of the dyadic Green’s propagator and, for
each one of them and for their different combinations, we
evaluated the Thouless conductance for an optical den-
sity ρλ2 =10. Fig.5 summarizes our results for the case
of a GA-spiral (similar results are obtained for all the
other investigated Vogel spirals and compared with uni-
form random media in Appendix D). Panels (a-d) show
the frequency dependence of the Thouless conductance g
obtained by using Eq.(5) after diagonalizing the 3N×3N
Green’s matrix associated to only the near-field term, the
near-field term plus the intermediate-field contribution,
the far-field term only, and all the coupling contributions,
respectively. Light localization, characterized by g <1,
occurs only when all the coupling terms, including the
near-field regime, are simultaneously taken into account.
Therefore, our results demonstrate for the first time that
light localization in Vogel spirals results from a collec-
tive coupling effect that involves multiple length scales.
Remarkably, we also demonstrate that vector wave local-
ization is never achieved in uniform random systems with
a planar support, even neglecting the near-field interac-
tion term (see Appendices A and D for more details).

The effect of the optical density on the minimum value
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(c) (d)
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FIG. 5. Panels (a-d) display, in a semi-log-y scale, the
frequency dependence of g after diagonalizing the 3N×3N
Green’s matrix associated to only the near-field term, the
near-field term plus the intermediate-field contribution, the
far-field term only, and all the coupling contributions, respec-
tively. These data refer to the GA-spiral when the optical
density ρλ2=10. The dashed-black lines identify the thresh-
old of the diffusion-localization transition g=1. Similar re-
sults are obtained for all the other investigate Vogel spirals
and compared with uniform random media in Appendix D.
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FIG. 6. (a) The minimum value of the Thouless conductance
as a function of ρλ2 is reported in a semi-log-y scale. Differ-
ent markers identify the different analyzed structures. Red-
circle markers, blue-diamond markers, gray-square markers,
olive-triangle markers, and red/black-hexagram markers re-
fer to the GA-spiral, τ -spiral, π-spiral, µ-spiral, and to the
uniform random configuration (i.e. UR), respectively. 10 dif-
ferent disorder realizations are considered for the UR analysis.
(b) min[g] behavior as a function of the divergence angle α
(expressed in radiant) when ρλ2=5. 300 Vogel spirals, with
remarkably different structural correlations, are generated be-
tween α = 2.4 rad and α ∼ 5.4 rad. Some representative
Vogel spiral geometries are shown in panel (c). The dashed-
black lines identify the threshold of the diffusion-localization
transition g=1.

of the Thouless conductance g is illustrated in Fig.6(a)
where we also compare with the case of planar uniform
random media, referred as UR in the legend. All the
structures have N=2000 interacting particles and the
random system’s results are averaged over 10 different re-
alizations. Moreover, in order to eliminate the contribu-
tion of proximity resonances from the analysis of the ran-
dom configuration, we have carefully neglected the reso-
nances with MSE=28,12,68. Fig.6(a) shows that light lo-
calization never appears in uniform random arrays. This
analysis is performed for different values of ρλ2 up to 50.
In contrast, all the Vogel spirals exhibit light localization
starting from a threshold value of ρλ2 ≥ 2, as previously
discussed. The π-spiral configuration, whose geometry
is the most disordered, displays the lowest localization
threshold as well as the minimum g value. In order to
generalize our findings to a much larger set of Vogel spi-
rals we compute in Fig.6 (b) the minimum value of g at
optical density ρλ2=5 for 300 different Vogel spirals ob-
tained by continuously varying the polar divergence angle
α defined in Eq.(2). All these structures are generated
with a divergence angle that linearly interpolates between
the GA-spiral and the π-spiral. Some representative ge-
ometries are shown in Fig.6 (c). These data demonstrate
that vector wave localization is a very robust feature of
Vogel spiral arrays that can be achieved for many differ-
ent choices of the divergence angle α. The results of our
paper clearly establish the relevance of controllable ape-
riodic correlations for the engineering of photonic scat-
tering platforms with strong light-matter interaction.
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IV. CONCLUSIONS

In summary, we have demonstrated a light localiza-
tion transition supported by Vogel spiral planar arrays
embedded in three dimensions by means of the dyadic
Green’s matrix method. Specifically, a clear transition
from the diffusive to the localized regime, different from
the Anderson localization transition in three dimensions,
is discovered by evaluating the Thouless conductance, the
level spacing statistics, and by performing a finite-size
scaling analysis of the scattering resonances. This tran-
sition is a result of the complex interplay between the na-
ture of the 2D geometrical support and wave propagation
in three-dimensions. Different classes of localized scat-
tering resonances in Vogel spirals with distinctive spa-
tial distributions have been identified and analyzed. By
decomposing the dyadic field propagator in its different
components we show that light localization in Vogel ar-
rays originates from collective electromagnetic coupling
involving the contributions of multiple length scales. All
these effects do not occur in traditional uniform random
media. Our results unveil the importance of structural
correlations in deterministic aperiodic photonic media
for the design of localized states with strongly enhanced
light-matter interactions. In addition, our findings may
open new vistas for the engineering of mesoscopic trans-
port and localization phenomena and should encourage
deeper investigations of photonic devices based on deter-
ministic aperiodic architectures.
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Appendix A: Planar uniform random configuration

The relevant features of light localization properties of
uniform random arrays are presented in this appendix.
By following the procedure presented in Sec.II, we have
evaluated the complex eigenvalues distributions of 10 dif-
ferent realizations of 2000 uniformly random distributed
scatterers on a plane. Moreover, the spectral and opti-
cal properties of matrix (3), which takes into account the

vector nature of light, were compared with those of its
scalar approximation9

Gij = iδij + (1− δij)
eik0rij

k0rij
(A1)

Fig.7 (a-b) display the complex eigenvalues distribu-
tions obtained after diagonalizing the matrix (3) and its
scalar approximation (A1) for ρλ2=30, respectively. In
random media, long-lived resonances do not appear when
the vector nature of light is taken into account. Consis-
tently, the spatial profiles of the Green’s matrix eigenvec-
tors corresponding to the resonances with the lower de-
cay rates are delocalized across all the structure (see the
representative quasi-mode shown in the inset of Fig.7(a).
On the other hand, the situation is completely different
in the scalar configuration. Long-lived resonances are
clustered around one band of localized quasi-modes near
ω̂n ∼-2.5. The spatial distributions of quasi-modes of
the Green’s matrix corresponding to this “tail region”
are localized between several particles, as shown in the
inset of Fig.7(b) for a representative scattering resonance
(star-marker).

This analysis, inspired by Ref.9, is confirmed by the fre-
quency dependence of the Thouless conductance g. The
conductance is evaluated by using eq.(5), which has been
modified to take into account the effect of the different
disorder realizations9,10. Moreover, the contribution of
sub-radiant resonances (for which MSE=2) is omitted
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FIG. 7. Panel (a) and (b) display the complex eigenval-
ues distributions of 10 different random realizations of the
Green’s matrix defined by matrix (3) and matrix (A1), respec-
tively. The data are color-coded according to the log10 values
of the MSE. Insets: spatial profiles of representative quasi-
modes. Panel (c) and (d) show the frequency dependence of
the Thouless conductance g for the vector and scalar model,
respectively. These data are produced by fixing ρλ2=30.
The dashed-black line identifies the threshold of the diffusion-
localization transition g=1. The error bars are calculated as
the standard deviation of the Thouless conductance g evalu-
ated for the different disorder realizations.
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from this analysis8–10. As expected, Fig.7 (c) shows that
the Thouless conductance g is always larger than one
when the vector nature of light is taken into account.
On the contrary, the frequency dependence of g shows
a transition from g <1 to g >1 in the scalar case (see
(Fig.7(d))). These data are obtained by fixing ρλ2=30.
This analysis confirms the results of Refs.8,9 obtained for
a 3D random distribution of electric dipoles. However,
in our case localization is less pronounced if compared to
the case treated in8,9 for the scalar model. This is due to
the fact that in open random arrays leakage through the
system plane results in more lossy channels if compared
with the corresponding 3D case.

Appendix B: First-neighbor probability density
function analysis

In order to gain more insights on why proximity res-
onances are absent in Vogel spiral point patterns we
study the properties of the first-neighbor probability den-
sity function of a GA-spiral as compared to homoge-
neous Poisson point pattern. It is important to remem-
ber that the first-neighbor probability density function
is a measure of the spatial uniformity of a given point
pattern37,71. Fig.8 panels (a) and (b) show the results
of this analysis as a function of the spacing parameter r.
Fig.8(a) is the result of an average over 200 different ho-
mogeneous Poisson patterns with exactly the same den-
sity of the GA-spiral. The results of Fig.8 clearly demon-
strate that the GA-spiral is characterized by a more regu-
lar structure as compared to random media. Indeed, the
probability density function of a GA-spiral is extremely
peaked around the mean value of the first-neighbor dis-
tances and it is very well reproduced by considering a
Weibull distribution fitting function, as highlighted by
the black-line of Fig.8(b). On the contrary, the UR con-
figuration is characterized by a Poissonian first-neighbor

0 1 2 3 4 5
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(a) (b)

1.66 1.68 1.7 1.72 1.74 1.76
0
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FIG. 8. Panel (a) and (b) displays the first-neighbor proba-
bility density function an homogeneous Poisson process and a
GA-spiral, respectively. The black lines are the corresponding
analytical density functions obtained by using Eq(B1) and the
Weibull distribution, respectively. In the homogeneous Pois-
son process two hundred different realizations, with the same
density of the GA-spiral,are considered. All these data are in
units of the scaling factor a0 (see Eq.1).

distribution described by the analytical expression71

d1(r) =
2(λπr2)

r
e−λπr

2

(B1)

where λ is the intensity of the Poisson point process. It
is important to emphasize that the trend of < d1(r̂) >e
(< · · · >e indicates the average over an ensemble) in
Fig.8(a) is not the result of a fitting procedure. Rather,
it is obtained by using Eq.(B1) after calculating λ as
N/(π R2). Here N is the number of points equal to 2000
while R is the maximum radial coordinate of the system
(see the insets of Fig.7).

Fig.8 clearly shows that two extremely different first-
neighbor probability density functions characterize the
two considered point processes. For a given optical den-
sity, the probability of finding two particles very close to-
gether is much larger for homogeneous random patterns
(see the trend of < d1(r̂) >e near to r=0). On the con-
trary, proximity resonances do not influence Vogel spirals
thanks to these peculiar geometrical properties.
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FIG. 9. Representative spatial distributions of the Green’s
matrix eigenvectors that belong to the class of scattering res-
onances that produce the stronger localization feature in the
τ -spiral (panel (a)), π-spiral (panel (b)), and µ-spiral (panel
(c)), respectively. Bj , Cj , and Dj (with j=1,2,3) identify the
first three resonances with the lower decay rates (Γn/Γ0 � 1).
Moreover, panels (a-c) report these quasi-modes when the op-
tical density ρλ2 is fixed to 10, and 30. The spectral positions
of these scattering resonances are identified by the different
markers of Fig.2 (b-d).

Appendix C: Representative eigenvectors of
different localized-resonance bands

Figure 9 (a-c) display representative eigenvectors cor-
responding to the different classes of the scattering reso-
nances that lead to more pronounced localization in the
τ , π, and µ spirals, respectively. The spatial distribu-
tions of these quasi-modes correspond to the three eigen-
values of the Green’s matrix with the lower decay rates.
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FIG. 10. Semi-log plots of the Thouless conductance, as a function of ω, obtained by using Eq.(5) after diagonalizing the
3N×3N Green’s matrix associated to only the near-field term (panel (a)), the near-field term plus the intermediate-field regime
(panel (b)), the far-field term only (panel (c)), and all the coupling contributions (panel (d)) for the τ , π, µ spirals as compared
to the UR configuration. This analysis is performed by fixing ρλ2 equal to 10. The error bars are evaluated as the standard
deviations of the Thouless conductances calculated for 10 different disorder realizations. The dashed-black lines identify the
threshold of the diffusion-localization transition g=1.

They are labeled Bj , Cj , and Dj (with j=1,2,3) in the
τ , π, and µ configurations respectively. In each panel of
Fig.9 the optical density is fixed to 10, and 30. More-
over, for each of them, the frequency ω̂n is also reported.
We clearly observe that exactly the same spatial profile
is retrieved when scanning along the dispersion branches
identified by the different markers of Fig.2. The effect
of increasing the optical density ρλ2 is simply to pro-
duce a frequency shift in the complex scattering plane,
as discussed in the main text for the GA-spiral. More-
over, we notice that the spatial profiles reported in Fig.9
agree very well with what previously reported based on
the FEM technique53,70. This analysis demonstrate that
the different localized resonances of Fig.2 are the differ-
ent localized band-edge modes produced by the strongly-
fluctuating (multi-fractal) dispersion of the density of
states in the different investigated Vogel spirals53,70.

Appendix D: Different coupling terms of the dyadic
Green propagator

The effects of the different coupling terms of the dyadic
Greens’s propagator are analyzed for the τ , π, µ Vogel

spirals as compared to the UR configuration. Fig.10 dis-
plays the frequency dependence of the Thouless conduc-
tance g obtained by using Eq.(5) after diagonalizing the
3N×3N Green’s matrix associated to only the near-field
term (panel (a)), the near-field plus the intermediate-
field contribution (panel (b)), the far-field term only
(panel (c)), and all the coupling contributions (panel
(d)). These results are obtained for ρλ2=10. Light lo-
calization, characterized by g <1, only occurs in Vogel
spirals when all the coupling terms, including the near-
field regime, are taken into account. This shows that light
localization in Vogel spiral arrays composed of point-like
scatterers results from a collective coupling effect that
involves multiple length scales.

On the other hand, homogeneous planar random me-
dia do not show any light-localization transitions when
the vector nature of light is taken into account confirm-
ing the results of Refs.8,9,16. Indeed, the localization cri-
terium g(ω) <1 is never satisfied in the UR configura-
tion (see the last column of Fig.10). Interestingly, the
Thouless conductance is larger than one also when the
only far-field coupling term is taken into account. Hence
our findings clearly demonstrate that the absence of any
structural correlations is the main responsible that pre-
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FIG. 11. Level spacing statistics of the Green’s matrix eigenvalues for two different regimes: ρλ2 = 0.1 (panels a-d) and
ρλ2 = 10 (panels e-h). Panels (a-e), (b-f), (c-g), (d-h) refer to the GA-spiral, τ -spiral, π-spiral, and µ-spiral configurations,
respectively. The fitting curves are performed by using the critical cumulative distribution37,38,72 (solid curves in panels (a-d))
and the Poisson distribution (solid curves in panels (e-h)).

vents light localization in uniform random arrays when
the vector nature of light is taken into account.

Appendix E: Level spacing statistics in Vogel spirals

Level statistics provides important information about
electromagnetic propagation in both closed and open
scattering systems. Indeed, the concept of level repulsion
is related to the transport properties supported by eigen-
modes because it indicates the degree of spatial overlap
between them73. Level repulsion can help to discrim-
inate a transition from a delocalized (presence of level
repulsion) to a localized wave transport regime (absence
of level repulsion). In Refs.37,38 the distribution of level
spacings was investigated in different open scattering sys-
tems for different scattering strengths. The presence
of the level repulsion is characterized by the derivative
of the interpolation function, called critical cumulative
probability72, while the suppression of level repulsion is
indicated by fact that the level spacings is described by
the Poisson distribution37,38,74.

The distribution of level spacings is calculated for two
different optical densities (0.1 Fig.11 (a-d) and 10 Fig.11
(e-f)) for all the investigated Vogel spiral configurations.
Fig.11 shows a clear transition between level repulsion
at low optical densities and the absence of level repul-
sion at large optical densities. For large optical density,
the distribution of level spacings follows the Poisson dis-
tribution (no level repulsion), as it occurs for uniform
random systems in the localized regime37. On the other
hand, for weakly scattering systems the level spacing dis-
tribution follows the same critical distribution that de-
scribes the Anderson transition in random media, where
wave functions feature multi-fractal scaling72. Differently
from traditional uniform random media where criticality
is achieved at the localization threshold, which occurs for
a specific optical density in 3D, in Vogel spirals we have
verified that the critical behavior occurs for a broader

range of optical densities. Interestingly, this behavior
was reported also for complex prime arrays38.
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FIG. 12. Panels (a-b) show representative spatial distribu-
tions of localized Green’s matrix eigenvectors generated by
using the cylindrical Hankel functions and the dyadic for-
malism applied to the golden-angle Vogel spiral, respectively.
Panel (c-d) reports the average modal lifetime as a function
of ρλ2 in a 2D and 3D environments, respectively.

Appendix F: Average modal lifetime

In order to address the similarities between our prob-
lem and the scattering resonances of a 2D open system
we have calculated their spatial distributions and their
mean lifetimes in both a 3D and a 2D environment. This
analysis is summarized in Fig.12.

Fig.12 (a-b) show a comparison between representative
spatial distribution of localized Green’s matrix eigenvec-
tors calculated using the cylindrical Hankel functions17

and the dyadic formalism applied to the golden-angle Vo-
gel spiral, respectively. The 2D localized scattering reso-
nances are very similar to the ones found in a 3D scenario.
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This comparison clearly shows that the geometrical na-
ture of the 2D support determines, even in the case of
3D open systems, the spatial distribution and the local-
ization properties of localized modes in the plane of its
support. This feature allows the 2D modes to be probed
by the scattering resonances of their 3D counterparts if
the scattering strength is sufficiently large to induce light
localization in the 2D support. However, such 3D scatter-
ing resonances have smaller average modal lifetime due
to the open nature of the 3D space with respect to their
2D counterparts, as shown in Fig.12 (c-d). In fact, Fig.12

(c-d) compare the average modal lifetime Γ̂ = 〈Γ0/Γn〉,
which determines the mean time that light spends in-
side a medium surrounded by vacuum7,14, in the 2D and
3D scenarios as a function of ρλ2 for all the investigated
spirals.

For comparison, Fig.12 (d) also reports the average
modal lifetimes of uniform planar random arrays that
are much smaller than the ones of Vogel spirals. This
result is consistent with the fact that a light localization
transition is never achieved in the random case.
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