
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Magnetoelastic and magnetoelectric couplings across the
antiferromagnetic transition in multiferroic BiFeO_{3}
Mariusz Lejman, Charles Paillard, Vincent Juvé, Gwenaelle Vaudel, Nicolas Guiblin,
Laurent Bellaiche, Michel Viret, Vitalyi E. Gusev, Brahim Dkhil, and Pascal Ruello

Phys. Rev. B 99, 104103 — Published  5 March 2019
DOI: 10.1103/PhysRevB.99.104103

http://dx.doi.org/10.1103/PhysRevB.99.104103


On the magnetoelastic and magnetoelectric couplings across the antiferromagnetic
transition in multiferroic BiFeO3

Mariusz Lejman1, Charles Paillard2, Vincent Juvé 1, Gwenaelle Vaudel1, Nicolas Guiblin3,
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Clear anomalies in the lattice thermal expansion (deviation from linear variation) and elastic
properties (softening of the sound velocity) at the antiferromagnetic-to-paramagnetic transition are
observed in the prototypical multiferroic BiFeO3 using a combination of picosecond acoustic pump-
probe and high-temperature X-ray diffraction experiments. Similar anomalies are also evidenced
using second-principles calculations supporting our experimental findings. Those calculations, in
addition to a simple Landau-like model we also developed,allow to understand the elastic softening
and lattice change at TN as a result of magnetostriction combined with electrostrictive and magne-
toelectric couplings, which renormalize the elastic constants of the high-temperature reference phase
when the critical TN temperature is reached.

PACS numbers: 75.85.+t, 75.80.+q, 75.47.Lx, 02.70.Uu, 77.80.Bh, 72.55.+s, 78.35.+c, 61.10.?i

I. INTRODUCTION

Multiferroic materials in which polarization, deforma-
tion and magnetic orders coexist have attracted con-
tinuous attention because of their tremendous poten-
tial in applications such as memories, spintronic devices,
sensors/actuators or electro-optical systems as well as
their underlying fascinating physics1,2. Among them,
the room-temperature multiferroic BiFeO3 (BFO)2 com-
pound represents a rich playground system to under-
stand the complex coupling mechanisms involving elec-
tric polarization, spin arrangement and phonon vibra-
tion allowing to manipulate their ferroic orders. Al-
though the electrical control of the ferroelectric polariza-
tion and its domain distribution in BFO is nowadays well
established4–7, especially using piezo-force microscopy3,
manipulating the antiferromagnetic G-type order (AFM)
which appears below Néel temperature TN ≈ 650 K, has
revealed to be far more difficult, owing to the impossibil-
ity of a direct manipulation using magnetic fields. The
existence of a magneto-electric (ME) effect, allowing the
control of spins with electric fields, may just provide the
long-sought route to control the AFM order. However,
this ME effect remains weak because of Dzyaloshinskii-
Moriya interactions known to be responsible for the non-
collinear cycloidal modulation with 62 nm period15,16

which superimposes to the AFM order.

It is worth mentioning that in addition to electrical and
magnetic stimuli, multiferroic properties can be most ef-

∗Electronic address: pascal.ruello@univ-lemans.fr

ficiently tuned using mechanical means. For instance,
the ferroelectric polarization can be adjusted by using
epitaxial strain or mechanical pressure8–14. Similarly,
the magnetic order can be also controlled with strain
fields through the magneto-elastic coupling. As a re-
sult, the energy spectrum of thermally induced magnons
(magnetic excitations) in BFO can be drastically modi-
fied with engineered static strain in thin films17,19 or by
pressure in bulk18. Thus, both the magneto-elastic and
magneto-electric couplings impact the magnetic arrange-
ment in BFO, as recently shown in a neutron diffraction
study20.

Actually, the interplay between electric dipoles, mag-
netic orders and lattice dynamics is complex as fur-
ther highlighted in a series of recent works. For ex-
ample, thermal investigation of the phonon density of
states (DOS) using neutron scattering revealed a cou-
pling with magnons21, and a softening of transverse
acoustic branches in the vicinity of TN combined with
a phonon peak broadening was as well observed near
the AFM transition22. This coupling between magnetism
and strain in BFO is further confirmed with various tech-
niques such as Raman scattering experiments23,24, or
pulse echo method to evaluate the temperature depen-
dence of the longitudinal elastic modulus 25. This latter
work showed a step-like form softening of the elastic con-
stant (∼ 0.7%) at the Néel transition. Yet, a theoretical
work rather suggests a more monotonous change of the
sound velocity in the vicinity of the Néel temperature
without such softening26.

Despite this body of works, the mechanisms across
the magnetic Néel temperature transition and the role
of the various coupling interactions involved in BFO re-
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Figure 1: (color online) (a-b) Temperature dependence of the
a (top panel) and c (bottom panel) lattice constants of the
conventional hexagonal cell. Inset: difference of the unit cell
parameters a and c arising below Néel temperature (vertical
lines) from the deviation of the linear variation of the thermal
expansion.

main elusive. Here, using high-resolution X-ray diffrac-
tion (XRD) and picosecond acoustics pump-probe tech-
nique combined with second-principles calculations and
Landau-based phenomenological approach, we attempt
to unravel those mechanisms that couple the AFM order
to the lattice dynamics by providing a global experimen-
tal and theoretical study of the lattice behavior through
the Néel transition. We observe (i) a significant and
anisotropic change of the thermal expansion coefficients
below TN ; and (ii) clear softening of the sound veloc-
ity of coherent transverse (TA) and longitudinal (LA)
acoustic phonons above around 600K and 700K respec-
tively, along with a characteristic kink in the vicinity of
the Néel temperature TN for the TA mode (650-700K).
As a matter of fact, significant effects on the lattice of
BFO are revealed across the magnetic Néel temperature
transition and discussed in the framework of magneto-
electric and magneto-elastic couplings. Moreover, the
existence of magneto-elastic changes at the GHz range
open promising perspectives for the ultra-fast control of
AFM (or magnetic) state by strain in future spintronic
devices.
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Figure 2: (color online) (a) sketch of the pump-probe ex-
periment conducted with a disoriented BFO grain permitting
to emit both LA and TA coherent acoustic phonons27,29. (b)
Temperature dependence of the time resolved optical reflec-
tivity in BiFeO3 for three selected temperatures. Note that
the Néel temperature is about 650K. (c) corresponding Fast
Fourier Transform (FFT) of the Brillouin components (TA
and LA modes).

II. METHODS

The sample under investigation is a polycrystalline
BFO that was already described in previous works27,28.
The evolution of the (104)h and (110)h Bragg diffraction
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peaks (in the hexagonal conventional cell) with temper-
ature ranging between 300K and 900 K (precision better
than 1 K) was monitored using a high-resolution 2-axis
diffractometer equipped with a rotating anode generator
of 18 kW (Rigaku), with a Bragg-Brentano geometry and
a 50 cm focalisation circle allowing an accuracy as high
as 0.0002 Å in 2θ. The unit cell parameters a and c (the
latter being along to the polar axis) in the hexagonal
setting were then extracted (Fig. 1).

Coherent acoustic phonon dynamics were investigated
with a pump-probe set-up developed for high temper-
ature environment. Experiments were conducted on a
specific grain of the polycrystalline sample, knowing each
grain acts as a single crystal as detailed in Ref.27. The
orientation of the polar axis with respect to the flat sur-
face of the sample is roughly θ ∼ 40◦27. The BFO grain
was photo-excited with above band-gap optical transition
(2.6 eV is the bandgap of BFO30,31) using a pump beam
with 3 eV photon energy having a characteristic penetra-
tion of around 50 nm30,31). The pump beam impinges on
the sample surface with normal incidence, hence making
a 40◦ angle with respect to the polar axis of the grain as
shown in Fig. 2a. This pump beam generates LA and TA
modes, as discussed in previous papers27–29. The photo-
generated coherent acoustic waves are then detected us-
ing a probe beam with an energy of 2.13 eV well below
the bandgap energy and with a normal incidence (the
probe beam is inclined in Fig. 2a for clarity). The pene-
tration depth of the probe beam (> 1 µm30,31) allows to
probe elasticity deep beneath the surface of the sample.
Measurements were conducted in air. Heating and cool-
ing cycles were performed to check for reproducibility of
the results and stability of the sample. The highest tem-
perature reached was 873 K i.e. about 220 K above Néel
temperature.

In addition, Metropolis Monte Carlo simulations
based on the effective Hamiltonian method described in
Refs.34–37 were carried out in order to gain microscopic
understanding of the relevant coupling responsible for the
elastic anomalies observed. In essence, this method con-
sists in considering only a few relevant degrees of free-
dom per 5-atom perovskite cell, here the polarization, the
magnetization vector, the tilt of the oxygen octahedra, an
inhomogeneous local strain, and a homogeneous strain
tensor ηi. A 12 × 12 × 12 supercell of BFO, represent-
ing 8640 atoms, was considered. It was cooled down from
1500 K to 5 K under an applied electric field of magnitude√

3×109 V.m−1 applied along the [111] pseudo-cubic di-
rection to ensure that the low temperature phase is the
monodomain R3c ferroelectric ground state. Note that a
G-type AFM order is obtained, and no cycloid order is
considered in those calculations. 4×104 MC sweeps were
used during the field cooling procedure. Then, starting
from the obtained low temperature field-cooled configu-
ration, the field was removed and the supercell relaxed,
starting at the temperature of 5 K and subsequently heat-
ing up. During this zero field heating phase, we used 106

MC sweeps at each temperature. The various statistical
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Figure 3: (color online) Temperature dependence of the Bril-
louin frequencies of the (a) TA and (b) LA modes. The inset
in (b) shows the temperature evolution of normalized Bril-
louin frequencies.

averages used to extract relevant thermodynamic quan-
tities were performed using the last 8× 105 MC sweeps.
The thermal evolution of the relevant degrees of freedom
(soft mode, tilt and antiferromagnetic moment) are de-
picted in the Supplementary Figure 2 of the Note II of the
Supplementary Material and show a Néel temperature of
about 730 K38 .

III. RESULTS

Figures 1(a,b) show the thermal evolution of the hexag-
onal lattice constants a and c. Both unit cell parameters
exhibit linear variation in the high-temperature region
(900 K > T > TN ). Below the Néel temperature, there
is a significant deviation for both lattice constants from
the linear variation observed at high temperature, with a
contraction of the polar axis c and a change of the ther-
mal expansion slope. This can be more clearly observed
once the high-temperature trend is subtracted from the
data, as shown in the inset of Fig. 1b. The contraction of
the polar axis length below TN was previously observed
in neutron diffraction experiments and attributed to the
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magnetostrictive-magnetoelectric coupling caused by the
onset of the AFM order20. In contrast, the lattice param-
eter a exhibits a significant elongation (Fig. 1a) below
TN along with a modification of the thermal expansion.
This trend is also in agreement with Ref.20. The overall
volume of the hexagonal unit cell is decreased in the AFM
phase below TN with respect to the extrapolated volume
from the high-temperature paramagnetic phase. This re-
sult is shown in Supplementary Figure 1 of Ref.38,39.

Interestingly, the kink observed at TN in the lat-
tice constants, which are essentially static/time-averaged
properties, are concomitant to anomalies observed in the
lattice dynamics, as shown in the following. The typical
transient optical reflectivity signal (Fig. 2(b)) is com-
posed of a sharp variation when the material is excited
by the pump laser followed by a decay in time due to the
electronic relaxation. Oscillations are superimposed on
this baseline, as previously characterized27,29. These os-
cillations, called Brillouin oscillations, are the results of
the time-dependence of optical interferences of the probe
beams reflected at the free surface and scattered by the
moving acoustic pulses (LA and TA pulses). In other
words, due to momentum conservation during the inter-
action between the probe light wave and the propagating
acoustic front (for incident probe beam normal to the
surface), only the acoustic phonon component with the
Brillouin frequency (fB) is detected27,32, accordingly to:

fB =
2nvs
λ

(1)

where λ, n and vS are the probe wavelength in vac-
uum, the refractive index of BFO at the wavelength λ and
the sound velocity in BFO (of either LA or TA waves),
respectively. While BFO is birefringent28, the effect is
limited in the considered orientation and only a mean
refractive index was used in the present study. The Bril-
louin differential reflectivity signal dRB(t) can be cast in
the general form33:

dRB(t) ∝ sin(2πfBt+ φ)e−β(T )×te−α(T )×vs(T )t (2)

where φ is the phase of the oscillatory signal and has
both a contribution from the phonon field and from the
optical detection process32. β(T ) is the intrinsic anhar-
monic phonon term which governs the phonon damping.
The partial penetration of the probe beam can also give
rise to a damped signal as soon as the acoustic phonons
leave the region of probe penetration. This contribution
is described by the term α(T )vs(T ) where α is the optical
absorption coefficient at the probe photon energy and vs
is the sound velocity (LA or TA). Based on this formula
and applying Fast Fourier Transform (FFT) (shown in
Fig. 2(c)) or time-domain fitting, the frequencies of the
TA and LA modes are extracted, as well as their damp-
ing time. The temperature evolution of the TA and LA
frequencies is shown in Figs. 3(a,b). It is clear that the
Brillouin frequencies associated with both LA and TA

modes do not have a linear dependence with tempera-
ture (see inset of Fig. 3b). The TA wave shows a com-
plex temperature behavior. It seems that the Brillouin
frequency slightly softens in the vicinity of Néel transi-
tion (710− 850 K) with respect to the high-temperature
linear trend observed above 800 K, as shown by the ar-
row in Fig. 3a. Below TN and more specifically below
710 K, the evolution of the TA Brillouin frequency can
be described using two quasi-linear regimes with differ-
ent slopes, the first occurring between 710 K and 570 K,
and the second one below 570 K. The Brillouin frequency
is connected to the speed of sound through Eq. (1), and
the speed of sound is related to the elastic constant C

as vs ∝
√

C
ρ with ρ being the density of the medium.

Hence the observed softening at TN may be explained
by the softening of elastic constants, as for instance also
observed by Smirnova et al.25 in the longitudinal elas-
tic constant. Nonetheless, direct comparison is impeded
as Smirnova et al. used a polycrystalline sample and
thus sample an average of different crystallographic ori-
entations (i.e., elastic constants) while here we study an
individual grain/crystal. In contrast to the TA signal,
no clear softening at TN is observed in the LA signal,
possibly because of the large damping of the LA signal
(see Figs. 2(b,c)) which considerably affects the accu-
racy of the measurement. Nevertheless, the LA wave
(see Fig. 3b) clearly displays two linear regimes with dif-
ferent slopes with the change of regime occurring at the
Néel temperature.

Note that the anomalies observed at TN in the Bril-
louin frequencies of LA and TA modes could also come
from anomalies in the optical index according to Eq. (1).
However, no significant change in the optical index was
observed through the Néel temperature in previous re-
ports31, and its evolution is thus considered to be linear
with temperature. Besides, the global softening of the TA
mode (∼ 9%) is twice as large as that of the LA mode
(∼ 4.5%), thus indicating that the observed behaviors
come from elastic properties anomalies (see inset of in
Fig. 3(b)) and not from optical properties anomalies.

We have also analyzed the damping time. Using the
estimates of the absorption coefficient α(T ) of Ref.31,
and extrapolating up to 900 K, we have extracted the
damping term (αvs term in Eq. (2)) coming from the
finite probe light penetration length. We have found
that this last term reproduces well the experimental
observations, indicating it dominates over the intrinsic
phonon damping characteristic time 1

β(T ) in Eq. (2)

excluding the possibility to investigate the spin-phonon
collision process.

In order to confirm the elastic origin of the anoma-
lies observed in the LA and TA Brillouin frequencies,
we used effective Hamiltonian calculations. The static
elastic compliance tensor Sij in the pseudocubic axes
was computed from the fluctuations of the homogeneous
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Figure 4: Calculated independent elastic stiffness tensor com-
ponents Cij in the conventional rhombohedral axes show
anomalies at the Néel temperature (red curves). Results with
the absence of the magneto- elastic coupling terms in the ef-
fective Hamiltonian (λL = 0, blue diamond curve), with the
absence of magneto-electric coupling terms (λLP = 0, green
square curve) and the absence of both (λL, λLP = 0, purple
triangle curve) are also shown for comparison.

strain degrees of freedom,

Sij =
〈V 〉
kBT

(〈ηiηj〉 − 〈ηi〉 〈ηj〉) (3)

with ηi being a pseudocubic strain tensor component
(in Voigt notation), kB being the Boltzmann constant,
T the temperature and 〈V 〉 is the mean volume. Sec-
ondly, the elastic compliance was transformed into the
conventional rhombohedral axes system40 (correspond-
ing to the pseudocubic directions [11̄0], [112̄] and [111]
respectively), from which the elastic stiffness tensor Cij
was derived using the relations given in Nye40. Follow-
ing this procedure, the elastic constants obtained in the
rhombohedral conventional axes are depicted in Fig. (4).
The elastic constants obtained at low temperature (5 K)
agree well with previous calculations at 0 K from first-
principles and related methods41–43. The obtained low-
temperature evolution for C11, C33, C12 and C13, in red
circles in Fig. (4)) is rather flat until a significant soften-
ing is observed in the temperature range 550 K-850 K.
In particular, a softening peak is observed at the com-
putationally predicted Néel temperature of 730 K (see
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Figure 5: Simulation of the temperature dependence of the
LA (left columns) and TA (right columns) sound velocities for
variable grain orientation angle θ. The values are normalized
to the value obtained at 5K.

red curves Fig. (4)). Further softening occurs above
850 K, caused by the proximity of the strong first-order
ferroelectric-paraelectric phase transition which occurs at
about 1100 K. We do not explore this region further as
our focus is on the AFM-paramagnetic transition, and its
implication on lattice properties. In addition, the trans-
verse elastic constants C44 and C14 also exhibit a slight
(but not as marked as C11 or C33 for instance) change
above the Néel temperature, as the absolute value of their
slope increases above TN .
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IV. DISCUSSION

A. Landau model

We have developed a simplified Landau model inspired
from Refs.45–47, purely for a qualitative understanding,
which describes (i) a second-order phase transition with
an antiferromagnetostriction term, (ii) a first-order phase
ferroelectric transition with an electrostriction term, and
includes (iii) a bi-quadratic magneto-electric coupling
between polarization, P , and antiferromagnetism. The
antiferromagnetic order parameter L is coupled to the
strain η through a linear-quadratic term 1

2λLηL
2, and

indirectly to it through the magneto-electric coupling
term λLPL

2P 2 combined with the electrostrictive term
λP ηP

2. Further details about the model are given in the
Ref. 44–47. The thermodynamic potential Φ with respect
to the high-symmetry cubic phase potential Φ0 can be
cast as:

Φ− Φ0 =
1

2
α0
L(T − TN )L2 + βLL

4

+
1

2
α0
P (T − T0)P 2 +

1

4
βPP

4 +
1

6
γPP

6

+
1

2
λLηL

2 +
1

2
λP ηP

2 + λLPL
2P 2 +

1

2
C0η2,(4)

with α0
L > 0, βL > 0, α0

P > 0, βP < 0 and γP >
0 constants; C0 represents the elastic constants in the
cubic phase, assumed to be temperature-independent. In
other words, we neglect the anharmonic phonon coupling
responsible for the temperature dependency of the elastic
constants.

Based on the definition of the thermodynamic equi-
librium, we can first derive the lattice strain induced in
the AFM phase with respect to the strain caused by the
ferroelectric order. It can be approximately cast in the
form 44–47

η = A (TN − T ) +B′
[
1 + (1 +D(T0 − T ))

1/2
,
]
. (5)

where A, B′ and D are coefficients.
Secondly a renormalization of the elastic constant C

of the material in the antiferromagnetic phase (T < TN )
can be derived 44,

C = C0− λ2P
2βP

1

1 + 2γP
βP

P 2
− λ2L

2βL

− λ2LP
βPβL

1

1− λ2
LP

βP βL
+ 2γP

βP
P 2

×

[
λ2P
2βP

1

1 + 2γP
βP

P 2
+

λ2L
2βL

− λLλP
λLP

]
. (6)

In Eq. (6), one can clearly separate (i) a softening

induced by the magnetic transition in red, − λ2
L

2βL
; (ii)

a softening at the ferroelectric transition, in blue; and
(iii) a mixing of the ferroelectric and magnetic soften-
ings caused by the magneto-electric coupling λLPL

2P 2

(in green). We note that the contribution (i) was al-
ready mentioned in Ref.25. The renormalization of the
elastic constant is plotted in Supplementary Figures 3-
544, where we discuss the different contributions (mag-
netostrictive, electrostrictive, and both the mechanisms
at the same time).

We can observe that the experimental strain renormal-
ization of the lattice parameter a (see inset of Fig. 1b)
appears to be consistent with the linear term A (TN − T )
shown in Eq (5) as if the magnetostrictive term pre-
vails in comparison to the electrostrictive-piezoelectric
term (i.e. A > B′). In contrast, the renormaliza-
tion of experimental lattice parameter c (along which
the ferroelectric order takes place) does not follow a lin-
ear temperature dependence (see inset of Fig. 1b) which
may indicate in that case that both the magnetostrictive
(A) and electrostrictive-piezoelectric /magnetoelectric-
piezoelectric (B′) terms contribute, without being possi-
ble to provide at this stage a quantitative estimate. It is
worth to mention that the tensorial nature of the Landau
model can be accounted for and separate expressions for
the a (i.e., η1) and the c axis (i.e., η3) can be obtained
44, but the qualitative physical ingredients are already
included in Eq. (5).

In order to compare the experimental results of elas-
tic properties with effective Hamiltonian calculations,
we calculated the velocity of sound for different grain
orientations, each of which involves different mixtures
of elastic constants because of the inclination of the
grain/crystal at an angle θ 48,49. The determination of
the TA and LA sound velocity has been performed with
elastic constant computed with the magneto-elastic and
magnetoelectric interaction terms (λL, λLP 6= 0), see red
curves in Fig. 4. The results, plotted in Fig. 5, show that
the LA wave sound velocity should exhibit a clear soften-
ing peak at TN for all grain orientations. This theoretical
prediction of the softening at the Néel temperature (dip)
would be consistent with the observations of Smirnova
et al.25. In our specific case (θ ≈ 40◦, close to 45◦), this
magnetic anomaly (dip of sound velocity) is not observed
in Fig. 3b, but the non-linear decrease of the Brillouin
frequency with the temperature (Fig. 3b), clearly differ-
ent from a linear regime expected for a phonon-phonon
anharmonic behavior, likely reproduces the envelop of
the predicted renormalization of the elastic constant due
to the magnetostrictive-magnetoelectric-electrostrictive
couplings (Supplementary Figures 4 and 5 in Ref.44 ).
The agreement with experiments is much better for the
TA waves, since the calculated sound velocity value vTA
for θ = 45◦ in Fig. 5 predicts a small softening near
TN , which actually is qualitatively consistent with the
observed kink in the TA Brillouin frequency in Fig. 3a
(see arrow). However, calculations predict an almost
temperature-independent TA sound velocity below 575-
600 K, while a continuous variation of the TA Brillouin
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frequency is observed in Fig. 3a. One should however re-
member that the effective Hamiltonian does not include
the complete set of anharmonic phonon-phonon interac-
tions, and thus the elastic constants of the high temper-
ature cubic phase are nearly temperature independent,
whilst they should typically harden at low temperature.
As a result, we are missing a global linear baseline varia-
tion in the calculated sound velocity which may account
for some of the discrepancies between our simulated re-
sults and the observed evolution of the Brillouin frequen-
cies of the TA and LA waves.

The physical origin of these elastic anomalies in the
vicinity of the Néel temperature is complex since a com-
bination of magnetostrictive, electrostrictive and mag-
netoelectric effects actually exist. In order to unveil the
microscopic origin of the observed elastic softening at the
Néel temperature, we carried out three additional calcu-
lations.

B. Disabling magneto-elastic coupling

In the first one, denoted λL = 0, and depicted as blue
diamond symbols in Fig. (4), we set all coupling terms of
the form Gij,l,αγηl(i)miαmjγ (miα is the αth component
of the magnetic moment at site i, and ηl(i) the lth com-
ponent of the strain tensor) to vanish36. This effectively
precludes any direct/intrinsic magneto-elastic coupling
between magnetic moments and strain, which is why we
denote it λL = 0, in analogy with the term λLηL

2 later
described in a simplified Landau model above. Fig. (4)
shows that the elastic softening is slightly shifted at lower
temperature, which correlates with the slight shift of Néel
temperature observed as well 44. The elastic softening
survives, although its depth is reduced by 28% and 38%
for C11 and C33.

C. Disabling the direct magneto-electric coupling

In the second set of calculations, denoted λLP = 0
and depicted as green square in Fig. (4), we set only all
coupling terms of the form Eij,αβγδmi,αmj,βui,γui,δ to
zero36. We thus effectively remove the direct magneto-
electric interaction that couples magnetic moments with
electric dipoles. In a crude approximation, the term
λLPL

2P 2 that is used in the Landau model above is ne-
glected, hence the notation λLP = 0. In this case, we ob-
serve the Néel temperature to be shifted down by roughly
350 K! In addition, no elastic softening is observed at the
new Néel temperature, highlighting the crucial role of the
magneto-electric coupling with the converse piezoelectric
effect in the modifications of the elastic properties across
TN .

D. Disabling both the magneto-electric and
magneto-elastic couplings

In the latter set of calculations, denoted λL, λLP = 0
and depicted with purple triangles in Fig. (4), we set
simultaneously to zero all coupling terms described in the
two previous section. The results are not very different
from the case λLP = 0.

V. CONCLUSION

Using a combination of experimental and theoretical
investigations of the complex coupling of polarization,
magnetization and deformation in BiFeO3, this work
highlights the significant coupling of strain with the AFM
order. Indeed, anomalies at the Néel temperature are
detected both in experiments, via the evolution of Bragg
peaks (static regime) and acoustic waves Brillouin fre-
quencies (dynamic regime), and modeling via the tem-
perature evolution of the elastic constants using both
second-principles and Laudau-based calculations. Our
results indicate a crucial role of the magnetostricive con-
tribution for the lattice parameter a while a combination
of magnetostrictive and electrostrictive effects are found
to be active on the polar lattice parameter c, as further
confirmed by effective Hamiltonian based Monte Carlo
simulations. Interestingly, there is a qualitatively good
agreement between the experimental observations (espe-
cially for the TA waves) and the calculated results in
Figs. 3 and 4. The calculations strongly support a cru-
cial role of the magnetoelectric coupling with the con-
verse piezoelectric effect in the renormalization of the
elastic constants across TN , and hence in the anomalies of
the sound velocities. Additional picosecond acoustics ex-
periments are now necessary to further explore the com-
plex anisotropic effect our calculations have predicted for
various crystal orientations as shown in Fig. 5. More-
over, further pump-probe experiments could be also en-
visioned with probe wavelength in the near infra-red to
increase the probe light penetration in order to extract
the damping of acoustic phonons coming from phonon-
phonon and phonon-spin collisions. Besides these per-
spectives, our results demonstrate that the existing cou-
pling between magnetic ordering and strain paves the
way for possible coherent control of antiferromagnons
with coherent acoustic phonons, in line with the recent
ultrafast magneto-acoustic experiments in ferromagnetic
materials50–54.
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