aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Hyperferroelectricity in ZnO: Evidence from analytic
formulation and numerical calculations
Rajendra Adhikari and Huaxiang Fu
Phys. Rev. B 99, 104101 — Published 4 March 2019
DOI: 10.1103/PhysRevB.99.104101


http://dx.doi.org/10.1103/PhysRevB.99.104101

Hyperferroelectricity in ZnO: Various evidence from analytic formulation and

numerical calculations

Rajendra Adhikari’? and Huaxiang Ful
! Department of Physics, University of Arkansas, Fayettville, Arkansas 72701, USA
2 Department of Natural Sciences, Kathmandu University, Dhulikhel, Kavre, Nepal
(Dated: January 28, 2019)

Hyperferroelectricity is an interesting phenomenon. Hexagonal ABC-type semiconductor LiZnAs
was discovered to be hyperferroelectric (HyFE) [Garrity, Rabe, and Vanderbilt, Phys. Rev. Lett.
112, 127601 (2014)]. ZnO is a technologically important semiconductor and possesses a wurtzite
crystal structure similar to LiZnAs. It raises an intriguing question whether ZnO is HyFE. Here we
use various approaches to address this question of importance, by determining the electric equation
of state, the free energy of ZnO under an open-circuit boundary condition (OCBC), as well as the
vibration properties of LO phonon. We find (i) The D ~ X curve of ZnO, where D is electric
displacement and A = P/0.844 is a parameter directly proportional to polarization P, exhibits
one and only one root at A=0; (ii) Under OCBC, the free energy of ZnO does not produce a
minimum at structural phase of nonzero polarization; (iii) The longitudinal optic (LO) phonon
with computed frequency wro=255 cm ™! in centrosymmetric ZnO is not soft and does not have an
imaginary frequency. These results corroborate the others and consistently lead to the conclusion
that, although ZnO is interestingly on the edge of becoming a HyFE, it is not yet a HyFE. We
further provide a physical origin explaining why ZnO is not HyFE, and reveal a possibility that may

turn ZnO into a HyFE.

I. INTRODUCTION

Hyperferroelectricity, in which a proper ferroelectric
solid of spontaneous polarization maintains its ferro-
electricity under an open-circuit boundary condition
(OCBC), is an interesting phenomenon of fundamen-
tal and technological relevance.’? Fundamentally, unlike
in improper ferroelectrics® %, the open-circuit boundary
condition often generates a strong depolarization field
in proper ferroelectrics, which tends to eliminate ut-
terly the ferroelectricity and polarization.”® It is there-
fore profoundly interesting to understand the physics be-
hind hyperferroelectricity, and to investigate why fer-
roelectricity and atomic off-center displacements per-
sist in hyperferroelectrics (HyFE), defying the existence
of strong depolarization fields. Possible explanations
thus far include small LO/TO splitting!, competition
between well depth and spontaneous polarization?, in-
stability driven by short-range interaction'?, and meta-
screening!'!. Furthermore, determination of the free en-
ergy when a HyFE is under OCBC, and determination
of the electric equation of state for a HyFE, are topics
of fundamental importance. These knowledge may also
help in the future search and design of new hyperfer-
roelectric solids. Technologically, HyFE can be used to
form interfaces with other functional materials such as
semiconductors, topological insulators, and ferromagnet-
ics, where a nonzero polarization maintained in HyFE
can effectively tune, control, and enhance the properties
of the functional materials. Furthermore, certain hyper-
ferroelectrics were shown to have negative longitudinal
piezoelectric coefficients.'? To take advantage of the un-
usual properties of hyperferroelectricity, determining and
understanding whether a solid is HyFE is the key.

HyFE was discovered recently in hexagonal ABC-type

semiconductors such as LiBeSb and LiZnAs.! LiZnAs
(and LiBeSb) have a crystal structure similar to the
wurtzite semiconductors, in the sense that Zn and As
occupy the atomic sites of the wurtzite lattice. Further-
more, both Zn and As atoms form tetrahedral bonds with
its neighbors. The minor difference in LiZnAs, compared
to the wurtzite structure, is the existence of stuffing Li
atoms which are located between the atomic layers in
wurtzite structure. Based on the marked resemblance
between ABC-type and wurtzite semiconductors, it is
intriguing to determine whether wurtzite semiconductor
7Zn0 is a HyFE, and to investigate the underlying physics
and mechanism behind the conclusion.

ZnO is a polar semiconductor of technological
importance'®. Being polar, ZnO offers an interesting
possibility of utilizing its polarization to control the
already-appealing electronic properties, forming so-called
polarization electronics. Also, ZnO has an exception-
ally large exciton binding energy of ~60 meV, suit-
able for fabricating microelectronics and optical devices
that may operate at high temperatures under extreme
environments.'* Meanwhile, ZnO exhibits a large piezo-
electric coefficient'®, which makes it an excellent can-
didate for piezoelectric semiconductor. ZnO also pos-
sesses the largest electromechanical ds3 coefficient among
the wurtzite semiconductors'®, and its dzz = 12.4 pC/N
value is much larger than the ds3 = 1.58pC/N value in
GaN.!7 The large dsz coefficient in ZnO originates from
the local-polarization rotation mechanism'®, similar to
what occurs in ferroelectric solids'® 2%, Moreover, af-
ter doping, ZnO shows high electrical conductivity and
serves as a good transparent conductor.?!23

The purpose of this paper is to formulate and use vari-
ous approaches to determine whether ZnO is HyFE, and
to reveal important physics on what characteristic prop-



erties a HyFE should have. The various approaches in-
clude (i) the determination of the electric equation of
state, which yields the relationship between electric dis-
placement (D) and polarization (P); (i) the determina-
tion of free energy under OCBC with a vanishing electric
displacement (D=0); (iii) the calculation of longitudi-
nal optic phonon, which reveals lattice stability under
the open-circuit boundary condition. These formulated
methods are rather general and can be applied to solids
other than ZnO. We find that different methods lead to
a consensus conclusion, that is, although ZnO is interest-
ingly on the edge of becoming a HyFE, it is not HyFE.
We further provide a physical origin that explains why
7ZnO is not yet a HyFE, and reveal possible condition
under which ZnO may become a HyFE.

II. THEORETICAL METHODS

It is not trivial to investigate the hyperferroelectric
properties since they require to determine the electric po-
larization, the electronic screening of electric fields, and
the longitudinal optical (LO) phonon after the phonon in-
teracts with macroscopic electric fields. To tackle these
complex tasks, we use a combination of different com-
putational methods to study the structural properties,
electric polarization, dielectric susceptibility, and lattice
vibrations of ZnQ, all of which are needed in order to un-
derstand the hyperferroelectric properties of ZnO. These
techniques are described below.

Total-energy calculations and structure optimization:
The density functional theory (DFT) within the local
density approximation (LDA)?%2° as implemented in
Quantum Espresso?%27, is used to determine the total
energy, atomic forces, and optimized structure. Norm-
conserving pseudopotentials of Troullier-Martins type are
used to mimic the effects of core electrons.?® Semi-core
states of Zn 3s and 3p are treated as the valence states to
ensure better accuracy, and details of the atomic pseu-
dopotentials were given in Ref.16. These pseudopoten-
tials have been successfully used to determine the elec-
tromechanical ds3 coefficient in ZnO under finite electric
fields'®, and to predict an interesting phase transition
when ZnO is subjected to inplane tensile strains?.

Modern theory of polarization: Electric polarization in
a solid consists of contributions from both ions and elec-
trons. The ionic contribution (P,,,) can be calculated
straightforwardly using point charges. The electronic
contribution (P,) is determined using the geometrical
Berry-phase approach according to the modern theory
of polarization®®3!. More spec1ﬁcally, given Bloch wave
functions |u, ;) at wave vector k, Pel is calculated as
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the polarization contribution ¢(k) at each k is?0-31
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where || and 1 mean, respectively, parallel and perpen-
dicular to the direction of polarization, and M is the
number of the occupied bands of an insulator. The elec-
tronic polarization P.) can be further analyzed using the
theory of polarization structure, which describes the re-
lationship between phase ¢(/§ 1) and wave vector k.32

Density-functional linear response theory: The density
functional perturbation theory (DFPT)33735 is used to
determine the effective charges, high-frequency dielectric
constant €, (namely the electronic contribution to the
dielectric constant), phonon frequencies and eigenvectors
of both non-centrosymmetric and centrosymmetric ZnO.
In DFPT theory, the response |A,) of electron state
to the potential deformation AV (7) of bare ions caused
by atomic vibration is determined by solving the Stern-
heimer equation®3,

(HSCf —&n)|A¢Yp) = Aen)|[tn) - (2)

To determine whether ZnO retains its polar nature un-
der OCBC with vanishing electric displacement (D=0),
we need to determine the LO-phonon frequency and
the structural instability of centrosymmetric ZnO at the
Brillouin-zone center. For long-wavelength phonons with
its wave vector ¢ approaching zero, the interatomic force-
constant matrix can be separated into analytic and non-
analytic parts C’gﬁ = ij’o‘ﬁ + C’Z-a"o‘ﬁ, where i and j are
atomic indices, o and 3 are direction indices. The ana-

lytic part C7; a8 is computed from the DFPT perturba-
3% 35
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tion theory, and the nonanalytic part (due to inter-
action between lattice vibration and Enacroscopic electric
field) is given as®¢ ija’aﬂ = 45—;62%, where Z
is the Born effective-charge tensor of atom 4. Since C™*
is not diagonal, it often causes a strong mixing among
different modes. This nonanalytic contribution leads to
the difference in frequency between LO phonon and TO
phonon. A rigorous definition of LO/TO splitting was
given in Ref.37.

III. RESULTS AND DISCUSSIONS
A. Ground-state properties of polar ZnO

We first describe our first-principles results on the
ground-state properties of the non-centrosymmetric (po-
lar) ZnO, since polar ZnO is an important semicon-
ductor of technological applications, and its properties
are of interest to many readers. Ground state ZnO
crystalizes in the wurtzite structure with lattice vectors



i = a(%f—i— @j), iy = a(—%z+ @j), and @3 = ck,
where a is the inplane lattice constant, and c is the out-
of-plane lattice constant. Atoms inside a unit cell are
shown in Fig.1, where four non-equivalent atoms are lo-
cated at 0d; + 0dz + Oaz (Znl), 0ad; + 0dz + uajz (O1),
1d1 + £d2 + 2a3 (Zn2), and 1a@; + 1@ + (5 +u)ds (02).

We optimize both cell parameters (¢ and ¢/a) and
atomic positions (i.e., the internal parameter u), and the
optimal values of these quantities are given in Table I.
After determining the optimized structure, we then com-
pute, from DFPT linear-response calculations, the dielec-
tric components €.l and €32 of high-frequency dielectric
constant, and the Born effective charge Z3; of Zn and O
atoms; the results are also shown in Table I.

Our theoretical values of a=3.250A and u=0.3791
in Table I are in good agreement with the experi-
mental measurement results of a=3.253A and u=0.382,
respectively.3® The Born effective charge Z33=2.20 of Zn
in this study is also close to the experimental value3® of
2.10 and another theoretical value*® of 2.05. These indi-
cate that our theoretical results are reasonably reliable.

According to the group theory*!, the normal modes
at the zone center of polar ZnO (with a wurtzite crys-
tal structure and a point-group symmetry of Cs,) are
2A, P 2B, P 2E; G 2E;. Among them, A;(TO) and
E1(TO) are polar modes, B is silent (i.e., both IR and
Raman inactive), and Es is non-polar and IR inactive
(but Raman active). At the zone center, the acoustic A,
and E; modes are trivial with zero frequencies and are
thus not discussed further. For other nontrivial modes
in polar ZnO, the computed phonon frequencies (w), IR
intensity, and phonon displacements (|d)) are given in
Table II. Phonon displacement |d) is related with the
phonon eigenvector |e) by d;q (1) = ﬁemei@'&, where
l, i, and « are respectively the indices for lattice sites,
atoms inside a cell, and the Cartesian vibration direc-
tions, and ¢ is the phonon wave vector.

The theoretical phonon frequencies are comparable
with the experimental measurements.?? For instance, in
Table II, the computed frequencies for A;(TO) (394
em~1) and for E;(TO) (414 cm™!) are in good agree-
ment with the experimental values which are 380 cm ™!
for A1(TO) and 410 cm™! for E1(TO).*? Furthermore,
two notable observations can be seen in Table II: (i) The
low-frequency phonons, e.g., E5 at 86 cm™! and By at 258
cm~! have large contributions from Znl and Zn2 cation
atoms, while the high-frequency phonons, e.g., A1(TO)
and E;(TO) have large contributions from O1 and O2
anion atoms. (ii) E;(LO) and E;(TO) have nearly iden-
tical phonon displacements in ZnO, showing that the LO
and TO modes have one-to-one correspondence. This is
in marked difference with the LO/TO phonons in ferro-
electric perovskites BaTiO3 and PbTiOgs; in the latter
case it is known that LO and TO phonons do not have
one-to-one correspondence*344, and as a result, a rigor-
ous definition of the LO/TO splitting need be carefully
formulated.3”

B. Electric equations of state: the E-)\ and D-\
relations

To find whether ZnO is HyFE, we need to determine
whether ZnO can retain ferroelectric polarization with
nonzero atomic off-center displacements under OCBC
(i.e., under the condition in which electric displacement

D vanishes along the polar direction). We therefore in-
tend to determine the electric equation of state, which
is the relationship between electric displacement and po-
larization. We use two atomic configurations: one is the
ground-state configuration of polar ZnO where the opti-
mal atomic positions are denoted as 7", and the other
is the centrosymmetric configuration of nonpolar ZnO
where atoms are located at high-symmetry nonpolar po-
sitions (to be denoted as 7f). We then construct the
intermediate configurations, controlled by parameter A
as 7(\) = 7f + A7 — 7F). Bach X yields a different
atomic configuration with different polarization. Obvi-
ously the nonpolar configuration and the optimal polar
configuration are just two special cases among all possi-
ble 7;(\) configurations: the former corresponds to A =0
while the latter corresponds to A = 1.

We begin with the free energy F'(\) when ZnO is un-
der an electric field E, which is applied along the polar
direction. F()\) is defined as*®

FO) = U0 — Q0 | POVE + %eoxoo()\)EQ C®)

where U(N), P(A), Xoo(A), and (X) are respectively the
DFT total energy per unit cell, the electric polarization,
the diagonal component Y33 of high-frequency dielectric
permittivity along the polar direction, and the unit-cell
volume of ZnO when the bulk solid is at configuration
A. € is the dielectric constant of free space. Since the
electric field is applied along the polar direction of ZnO,
the vector signs are dropped in Eq.(3). The method of
building free energy has also been used in the interface
design for enhanced ferroelectricityC.

Equation (3) is essentially a second-order Tylor expan-
sion of F(\) as a function of E at the configuration A,
with the expansion coefficients U(\), P()), and Xoo ()
corresponding to the quantities at zero macroscopic field.
Therefore U(A), P(X), and X0 (A) need be computed un-
der the short-circuit boundary condition (SCBC) with
E=0. On the other hand, since the macroscopic field E
in Eq.(3) may be either zero or nonzero, the free energy
F(\) in Eq.(3) can thus describe the situations of either
SCBC, or OCBC, or circumstances other than SCBC or
OCBC.

For a given F field, the optimal A should satisfy ‘g—f\? =
0, namely,

U
) )
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E*l=0. (4)

Here, it worths mentioning that knowing how U(\),
P(\), and xoo(A) depend on A (which can be computed



from the DFT and DFPT calcuations), it is straightfor-
ward to determine using Eq.(4) the E ~ A relation. In
contrast, it is generally not a good idea to determine the
inverse A\ ~ FE relation, which actually is not needed.
Furthermore, Eq.(4) tells that the F field is determined
only by the derivatives ag(;‘), a(éZAP), and a(%’;“’)
than by the magnitudes of U and P.

To obtain the D ~ A\ relation, we determine using
Eq.(3) the electric polarization as Py —%g—g =
P(\) + €0Xoo(A)E, where the first term accounts for the
fact that the electric field will cause ions to displace, and
the second term account for the effect that the electric
field will also polarize the wave functions of valence elec-
trons. The electric displacement D then becomes

D=cE+ P =co [1+XcN] E+ PN . (5)

When combined with the E ~ X relation obtained from
Eq.(4), Eq.(5) leads to the D ~ X relation. Using this
D ~ ) relation, one can examine whether the atomic
off-center displacement A vanishes under OCBC (D=0),
to find out whether ZnO is HyFE. If polar displacement
exists (i.e., A # 0) when D=0, then the solid is a HyFE.

In principle, the free energy in open-circuit (or short-
circuit) boundary condition can be obtained using the
fixed-E or fixed-D methods*®. However, the computation
will be intensive for the following reasons. (i) The elec-
tric field in the fixed-E or fixed-D methods couples the
single-particle states at different electron wave vectors E,
and the Berry-phase calculation of polarization must be
inside the charge self-consistent process (not as a post-
process). Both make the computation time-consuming.
(ii) Atomic geometry need be optimized for each electric
field, which further increases computation. In contrast,
the current approach used here has several advantages.
First, all calculations are performed at zero macroscopic
field using common DFT methods, and the approach can
thus be widely applied. Further, the approach offers im-
portant physics insight as demonstrated analytically in
this paper. We should also mention that the nonlinear
effect is largely included in Eq.(3). Since A depends im-
plicitly on the F field as shown in Eq.(4), polarization
P(\) and high-frequency dielectric susceptibility Xoo ()
thus also depend on E. Therefore, the coupling term
Q(A\) [P(N)E + $e0Xo0(A)E?] in Eq.(3) includes the non-
linear effect.

Our calculated U ~ X relation (obtained from DFT
structural optimization and total-energy calculations),
and the P ~ X relation (obtained from the Berry phase
calculations using the modern theory of polarization), are
shown in Fig.2, while the calculated e, ~ A relation (ob-
tained from the DFPT linear-response calculations) is
depicted in the inset of Fig.2.

From Fig.2, we see that: (i) Under the short-circuit
boundary condition, the U ~ X curve shows that the
non-polar ZnO (at A=0) is not stable, and polar ZnO
(at A=1) is stable as it should be. When A is increased
to be larger than 1, U increases sharply, which is en-
ergetically less favorable. The depth of potential well

, rather

AU =U\ =1)—-U(\ = 0) is -0.609 eV. This AU is
in fact comparable to the well depths (typically ranging
from -0.20 to -0.80 eV) in the recently-discovered ABC-
type ferroelectrics?”. (ii) The polarization P depends on
Ain a linear fashion, increasing from zero at A=0 to 0.844
C/m? at A=1. In other words, P = 0.844), and )\ is thus
a direct measure of the magnitude of polarization by be-
ing proportional to the latter. (iii) High-frequency € ()
in the inset of Fig.2 shows a non-monotonous dependence
on J, increasing from €,,=4.37 at A=0 to €,,=5.09 at
A=1, and then starting to decrease at A\ >1.

The E ~ X relation, determined from Eq.(4), and
the D ~ X relation, determined from Eq.(5), are shown
in Fig.3. It worths pointing out that the £ ~ A and
D ~ X curves themselves are of considerable significance
in terms of understanding the electrical properties, in ad-
dition to determining whether a solid is HyFE. In fact,
electric D displacement was shown to be a fundamental
variable in electronic-structure calculations.*>*8 Several
marked observations can be made in Fig.3.

First, and interestingly, we see in Fig.3 that the £ ~ A
curve has three roots at A = 0 and A = 1. This does
not occur by accident, and can be intuitively explained as
follows. At the above three A values, energy U is either

a minimum or a saddle point, i.e., 8%9) =0. Meanwhile,

. : AU (A
it can be easily seen from Eq.(4) that, when %:O,

Eq.(4) has a solution of E = 0, which explains why A = 0
and X\ = &1 must be the roots of the E ~ A curve.

However, the D ~ X curve in Fig.3 reveals that it
has only one root at A=0, showing that, only when A
is zero, electric displacement D vanishes. Since A=0 cor-
responds to a nonpolar phase, the D ~ A curve in Fig.3
thus demonstrates that ZnO is nonpolar under the open-
circuit boundary condition D = 0, or in other words,
Zn0 is not HyFE. In order to be HyFE, the solid needs
to exhibit a D ~ A relation as shown in the inset of Fig.3,
where the curve has three roots at A, B, and B’. At B
and B’, X is nonzero.

It is important to understand why the D ~ X curve
of ZnO in Fig.3 does not possess a nonzero root. We
recognize from the E ~ A curve in Fig.3 that the elec-
tric field £ at A=0.6 is negative and large in magnitude.
Since D is directly related to E, it raises an interesting
question, that is, why the D value near A=0.6 is not neg-
ative, which may otherwise lead to a nonzero root for D.
The question can be answered by Eq.(5). Although the
first term in Eq.(5) is negative, the P(\) term at A=0.6
is nevertheless positive and dominates, which results in
a positive D. We thus see that a large spontaneous po-
larization could be detrimental to the occurrence of hy-
perferroelectricity. This result is, interestingly, consistent
with the general guideline proposed in Ref.9 that a HyFE
needs to have a deep double-potential well and a small
polarization.



C. Free energy under OCBC

An alternative (and efficient) approach to investigate
whether a solid is HyFE is to determine the free en-
ergy under the open-circuit boundary condition. When
D vanishes, one obtains using Eq.(5) that

P
co[1+xo(N)]

By substituting the above expression into Eq.(3), the free
energy F' under the D=0 condition can be determined as

2
FO) =T -a® {‘eo [1]1 Eii(xﬂ

| P2())
XN [1+xoo<x>12}' @

One distinctive feature of this free-energy approach is
that there is no need to determine the £ ~ A and D ~ X\
relations (which are often less accurate since they require
numerical derivatives). Instead, knowing the U(X), P(\),
Xoo(A) curves as computed in Fig.2, we can directly cal-
culate using Eq.(7) the free energy as a function of A.

The free energy for ZnO under OCBC is depicted in
Fig.4. Comparing the U(A) curve in Fig.2 and the F()\)
curve in Fig.4, we see two critical differences: (i) Al-
though the U(X) curve has a minimum at A=1 (which
forms one of the two minima of the double-potential
well), the F'(A\) curve nevertheless has only one mini-
mum at A=0. (ii) U is unstable at A=0 by being a saddle
point, but F' is stable at A=0. Fig.4 thus reveals that,
under OCBC, the free energy of ZnO is stable only at the
nonpolar phase with A=0. In other words, ZnO is non-
polar under OCBC. Therefore ZnO is not HyFE, which
is consistent with the results obtained from the electric
equation of state in the previous section.

From the point of view of free energy, the reason that
7Zn0 is not HyFE can be understood as follows. Un-
der OCBQC, if ZnO were polar with nonzero polarization,
then a nonzero depolarization E field will be generated
according to Eq.(6). This strong and non-vanishing de-
polarization field increases the contribution of the second
term in Eq.(7) to the free energy, which ultimately elim-
inates the polarization.

The theoretical finding that ZnO is not HyFE is consis-
tent with available experimental observation. In experi-
ment, polar surface of ZnO was found to be unstable, and
it undergoes surface reconstruction.*® The observation is
in agreement with our result that ZnO is not polar under
OCBC. Furthermore, according to our theory, the insta-
bility of ZnO polar surface is caused by the existence of
strong depolarization field.

E=- (6)

D. LO phonon in ZnO

When a hyperferroelectric solid is in its (unstable) cen-
trosymmetric phase, its longitudinal-optic (LO) phonon

should exhibit an imaginary frequency at the zone
center?19  which manifests the fact that ferroelectric
instability persists despite the existence of depolarizing
field. Here it worths pointing out that, when a solid is
in the centrosymmetric phase, whereas a soft transverse-
optic (TO) phonon at the zone center is quite common
and indicates the existence of ferroelectric instability”, a
soft LO phonon at the zone center is rare, which explains
why HyFE is unique and special.

To determine whether ZnO possesses a soft LO
phonon, we have computed the TO and LO frequencies
of the centrosymmetric (nonpolar) ZnO, using the DFPT
linear response theory. We find wro=243i cm™!, show-
ing that nonpolar ZnO is unstable with an imaginary wro
frequency under the short-circuit boundary condition of
E =0, as it should. Meanwhile, we find wr,0=255 cm ™!,
revealing that nonpolar ZnO is stable with a large and
positive wr,o frequency under the open-circuit boundary
condition of D = 0. This reveals that ZnO is not HyFE.

It is interesting to go one step further and explore why
ZnO0 is not HyFE although it has a similar wurtzite struc-
ture as the ABC-type semiconductor LiZnAs; LiZnAs on
the other hand was discovered to be HyFE!. We find
that it may be attributed to the small high-frequency
dielectric constant €5, in ZnO. To demonstrate this, we
examine nonpolar ZnO and numerically change its €y
value, and then compute the non-analytic part CZ-“"’B
of the dynamical matrix as well as the frequency of LO
phonon. The obtained frequency squared, w%o, of the
LO-phonon is shown in Fig.5 as a function of e5,. The
DFT-computed value of ey is 4.37 for nonpolar ZnO.
Fig.5 shows that, when €., is artificially increased from
4.37, w%o decreases sharply. As €., is increased to a
critical value €5,=9.12, w?, becomes negative and ZnO
becomes a HyFE. The result reveals that a moderate in-
crease in €, will turn ZnO into a HyFE, signaling that
small e, value is indeed responsible for ZnO to be non-
HyFE. Interestingly, this discovery is consistent with LiZ-
nAs and other ABC-type HyFE semiconductors, which
all have a fairly large e, on the order of ~15.

To further confirm that a larger e, value will indeed
turn ZnO into a HyFE, we change the e, value of nonpo-
lar ZnO to 10.37 (which is larger than the critical value
of €¢,=9.12), and calculate using Eq.(7) the free energy
under OCBC as a function of A. The result is depicted
in the inset of Fig.4, showing that the free energy now
exhibits double minima at nonzero A = £0.18. There-
fore, ZnO indeed becomes a HyFE when €, is increased.
The fact that ZnO can be turned into HyFE also suggests
that, compared to LiZnAs, wurtzite semiconductors may
become hyperferroelectric without Li.

There are two possible routes in experiments to change
the €5 value in ZnO. One is by biaxial inplane strain?,
and the other is by doping. Both routes will alter the
band gap of ZnO and thus the high-frequency electronic
contribution to the dielectric constant.

Our theoretical study also provides a unified
scheme linking different explanations for the origin of



hyperferroelectricity."*?'* From the point of view of LO
phonon, a large high-frequency dielectric €., constant
shall reduce the LO/TO splitting and give rise to a soft
LO phonon, which is consistent with the explanation of
Garrity et al. that HyFE is caused by small LO/TO
splitting.! Meanwhile, large e, constant will also lead
to meta-screening, which is in accord with the explana-
tion in Ref.11. From the point of view of the free energy
under OCBC, a small spontaneous polarization, a large
high-frequency dielectric xo susceptibility, and a deep
potential well all favor the emergence of double minima
in free energy [see Eq.(7)], which is consistent with the
explanation of Ref.9. Furthermore, a large dielectric €4,
constant will lead to a strong screening of the long-range
interaction and make the short-range interaction become
prominent in causing hyperferroelectricity, which is in
line with the explanation in Ref.10.

To confirm that our theory in Eq.(7) also works for
other materials, we apply it to LiBeSb, one of the hy-
perferroelectrics in Ref.1. As shown in the inset of Fig.4,
in order for a solid to be hyperferroelectric, the free en-
ergy F' in Eq.(7) should have double minima. In other
words, the F' ~ X curve should have a negative curvature
near A = 0. By using the computation data available
in Ref.1, we find that the F' ~ X relation for LiBeSb is
F = —0.1686\2 eV per unit cell, showing that the cur-
vature is indeed negative. Therefore, LiBeSb is a hyper-
ferroelectric according to Eq.(7), and our theory is thus
general and works for other materials.

IV. SUMMARY

Hyperferroelectricity is an interesting phenomenon,
and understanding whether a solid is HyFE is a topic of
importance. We have described three approaches to in-
vestigate the hyperferroelectric properties of ZnO, which
include (a) determining the electric equation of state, (b)
calculating the free energy under OCBC, and (c) deter-
mining the properties of LO phonon. The current study
also provides a unified scheme linking different explana-
tions for the origin of hyperferroelectricity. Our specific
findings are summarized in the following.

(i) The E ~ X relation is shown to be determined only
by the derivatives 8%&’\), 9P) and 22X=) a5 revealed
in Eq.(4). For a ferroelectric solid, we find that the E ~ A
curve must have three roots at A =0 and A\ = £1.

When ZnO is under the short-circuit boundary condi-
tion, the depth AU of the double-potential well is found
to be 0.609 eV, which is comparable to those in ABC-type
semiconductor ferroelectrics?*”. The polarization in ZnO
is shown to be directly proportional to A as P = 0.844\
C/m2.

On the other hand, when ZnO is under the open-circuit
boundary condition, we find that its D ~ A curve exhibits
only one root at A =0, showing that ZnO possesses no
polarization when D=0. ZnO is thus not a HyFE. The
absence of nonzero root in the D ~ A curve of ZnO can be
attributed to the large spontaneous polarization, namely
the second term in Eq.(5) is detrimentally too large.

(ii) To predict whether a solid is HyFE, we find that an
alternative (and more effective) approach is to calculate,
directly using Eq.(7), the free energy under OCBC, which
bypasses the determination of the D ~ A relation. Using
this approach, we reveal that the free energy of ZnO un-
der OCBC is most stable at A=0, and ZnO is thus not
polar under OCBC, which is consistent with the result
obtained from the electric equation of state.

(iii) For centrosymmetric ZnQO, our linear response cal-
culations yield a soft TO mode with frequency wro=243:
cm ™!, which shows that ZnO has a polar instability un-
der the short-circuit boundary condition. But, the LO
frequency wro=255 cm~! does not have imaginary fre-
quency and is not soft, revealing that ZnO is stable (and
thus not a HyFE) under the open-circuit boundary con-
dition.

Furthermore, that ZnO is not a HyFE originates from
its small high-frequency dielectric constant. We show
that, when e, of ZnO is increased beyond a critical value
€5,=9.12, ZnO indeed becomes a HyFE by possessing
a soft LO mode (as shown in Fig.5) as well as double
minima of free energy (as depicted in the inset of Fig.4).

Considering that hyperferroelectricity is still at the be-
ginning and remains not adequately understood, we hope
that our study will stimulate more theoretical and exper-
imental work on this interesting phenomenon.
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TABLE I: Theoretical quantities (the second column) ob-
tained from our first-principles calculations for ground-state
polar ZnO. The available experimental results are given in the
third column for comparison.

Quantities | Present work |Experiments

a (A) 3.250 3.253 (Ref.38)
c/a 1.613 1.603 (Ref.39)
U 0.3791 0.382 (Ref.38)
el 4.73

€33 5.09

Z33 (Zn) 12.20 2.10 (Ref.39)

Z33 (0)  ]-2.20 -2.10

TABLE II: DFPT-calculated phonon frequencies (2nd col-
umn), IR intensity (3rd column), and phonon displacements
(4th column) of polar ZnO at the zone center. The experi-
mental results on phonon frequencies are given in the paren-
thesis in the second column for comparison (Ref.42). In the
fourth column, the vibration direction, i.e., the polarization
direction of phonon, is given as the subscript, and the four
components in |d) correpond to the displacments of Zn1, O1,
Zn2, O2 atoms in sequence.

Phonon |w (em™%)| IR|Displacement |d)
E, 86 0.0[(-0.536,0.461,0.536,-0.461).,
B 258 0.0{(-0.677,-0.204,0.677,0.204)
A1(TO) (394 (380)(17.3{(0.169,-0.687,0.168,-0.686) .
E1(TO)|414 (410)|15.8|(-0.168,0.687,-0.168,0.687)
)
)
)
)

Eo 445 (438)| 0.0|(-0.146,-0.692,0.146,0.692
B 547 0.0{(0.052,-0.705,-0.052,0.705) -
A1 (LO) |554 17.3{(-0.168,0.687,-0.168,0.687)
E;(LO) |566 15.8{(-0.168,0.687,-0.168,0.687)

x

o — — — — — —




FIG. 1: One unit cell of wurtzite ZnO crystal, where non-
equivalent atoms are labelled as Znl, Zn2, O1, O2. The a1,
a2, ds lattice vectors point at the a, l_;, ¢ directions in this
figure.
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FIG. 2: The total energy U (solid squares, using the left
vertical axis) and polarization P (empty squares, using the
right vertical axis) as a function of A. Inset shows the high-
frequency dielectric constant e~ (solid dots) at different .
These quantities (U, P, and € ) are calculated under SCBC.
The total energy U(A = 0) at A=0 is chosen to be the zero
reference energy. Symbols are the direct DFT calculation re-
sults, and lines are fitting curves using cubic splines.
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FIG. 3: (color online) The D ~ X relation (black curve, using
the left vertical axis) and the E ~ A relation (red curve,
using the right vertical axis) for ZnO. Inset shows a schematic
D ~ ) relation which a HyFE should exhibit.
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FIG. 4: Free energy F(M\) of ZnO under an open-circuit
boundary condition as a function of A. Inset shows the free en-
ergy of ZnO under an open-circuit boundary condition when
the dielectric constant of centrosymmetric ZnO is increased
to €00 = 10.37.
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FIG. 5: Frequency squared (wiq) of the LO phonon in cen-
trosymmetric ZnO as a function of ex. Arrow marks the
critical €5, value at which w? o becomes negative. Inset shows
how the LO frequency (wro) varies with €s. In the inset,
imaginary frequencies are ploted as negative values.
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