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Abstract 

The Kagome bands hosting exotic quantum phases are generally and 

understandably pertained only to a Kagome lattice. This has severely hampered the 

research of Kagome physics due to the lack of real Kagome-lattice materials. 

Interestingly we discover that a coloring-triangle (CT) lattice, named after 

color-triangle tiling, hosts also Kagome bands. We demonstrate first theoretically the 

equivalency between the Kagome and CT lattice, and then computationally in 

photonic (waveguide lattice) and electronic (Au overlayer on electride Ca2N surface) 

systems by respective finite-element and first-principles calculations. The theory can 

be generalized to even distorted Kagome and CT lattices to exhibit ideal Kagome 

bands. Our findings open a new avenue to explore the alluding Kagome physics. 
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Two-dimensional (2D) lattice band models have been intensively studied in the 

context of band structure and band topology because Bloch electrons in such models 

give rise to exotic quantum effects. In general, a given band structure, such as the 

so-called Kagome band as displayed in FIG. 1(a) and 1(b), is pertained only to a given 

type of lattice, namely the Kagome lattice [FIG. 1(c)] [1]. On the other hand, two 

Hermitian Hamiltonians are equivalent to each other by a unitary transformation, 

producing identical eigen spectra. However, this equivalency has rarely been 

demonstrated between two different types of lattice models which could both be 

physically accessible. In this Rapid Communication, surprisingly, we discover that a 

kind of triangular lattice, which we called coloring-triangle (CT) lattice, has the 

identical Kagome band as that of a Kagome lattice. We will first prove 

mathematically the equivalence between these two lattices, which is of fundamental 

interest to further our study of 2D lattice models, and then demonstrate the 

construction of CT lattice in real photonic and electronic materials, which has 

significant implications to advance the field of materials discovery for Kagome 

physics. 

Kagome lattice is one of the most interesting lattices mainly because it exhibits 

two exotic quantum phenomena. First, spin frustration in a Kagome lattice with 

d-electrons leads to quantum-spin-liquid (QSL) phase [2]. Secondly, the Kagome 

band, arising from a Kagome lattice with single-orbital hopping, consists of two Dirac 

bands and one flat band [1]; the former, as in graphene [3,4], supports massless Dirac 

Fermions and integer quantum Hall effects [5]; the latter accommodates 

strongly-correlated topological states such as fractional quantum Hall effect [6-8]. 

Unfortunately, real materials having a Kagome lattice are very difficult to find. So far, 

only a handful materials have been identified to support QSL phase. In fact, the field 

of QSL has been staggering for a while because Herbertsmithite was the only 

promising materials candidate for QSL [9], until recent discovery of several other 

candidates, such as Zn-Barlowite [10,11] and YbMgGaO4 (with a triangular lattice) 

[12]. We have seen that each spin lattice model plays an important role in advancing 
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the field, to provide a blueprint to guide the exploration and discovery of realistic 

materials with desired magnetic properties. On the other hand, a number of 2D 

materials possessing the geometry of Kagome lattice has been theoretically studied to 

realize Kagome bands [13-16]. However, to date experimental confirmation of 

Kagome bands has only been achieved in artificial photonic lattices [17], but remains 

allusive for real electronic materials. In this regard, our discovery of another 2D 

lattice, i.e., the CT lattice to also host Kagome band will significantly expand our 

search for the alluding flat-band materials. 

 The Kagome lattice is featured with the corner-sharing equilateral triangles, 

subject to the highest wallpaper symmetry group, P6mm. In contrast, the CT lattice 

we discover here has a lower wallpaper symmetry (plane group P31m). Its geometry 

can be mapped onto a triangle tiling by filling the triangles with different edges using 

distinct colors [FIG. 1(d)], which is the reason we term it as CT lattice. Geometrically, 

this pattern can be labeled as “121213”, belonging to one class of the popular 

wallpaper tilling patterns made by coloring triangles (See FIG. S1 for nomenclature of 

triangle tiling [18]). Physically, it means that one modifies a triangular lattice by 

selectively blocking some nearest-neighbor (NN) hoppings in a √3×√3 supercell of a 

triangular lattice [see FIG. 2(b) and the discussion below]. Below we first prove that 

the CT lattice is equivalent to the renowned Kagome lattice mathematically by a 

unitary transformation and line graph construction [19-21].  
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FIG. 1 Kagome bands along high-symmetry k paths, with (a) flat band on top and (b) 

flat band at bottom. The location of the flat band depends on the sign of hopping 

integral. (c) The Kagome lattice. (d) The CT lattice. The dashed red rhombus in (c) 

and (d) denotes the three-site unit cell. 

 

We begin with the simplest triangular lattice of single-orbital hopping (the one 

has mirror symmetry with respect to the lattice plane, such as s, pz or dz
2). In this 

minimal model, each unit cell only contains one orbital and the TB Hamiltonian in 

second quantization form reads 

 †

,

. .ij i j
i j

H t c c h c
< >

= +∑ , (1) 

where †
ic and jc are the electron creation and annihilation operator at site i and j 

respectively with tij being the hopping integral. The summation runs only over all the 

NN sites. The triangular lattice can be patterned by altering the hoppings, which in 

turn forms interesting electronic bands. For example, in a previously studied dice or 

T3 lattice [22], a patterned removal of one-third of NN hoppings leads to emergence 

of localized electronic wave functions and hence flat bands. In fact, the Kagome 

lattice shown in FIG. 1(c) can be realized by blocking the hoppings around one lattice 

site in a 2×2 supercell of triangular lattice, as illustrated in FIG. 2(a). In analogy, here 

we propose another patterning scheme by blocking the hoppings around the center of 

a triangle in a √3×√3 supercell of a triangular lattice, as illustrated in FIG. 2(b). This 

results in the CT lattice, which physically can be realized by introducing a 2D 

periodic potential to make t2=0 [FIG. 2(b)]. It can be shown that the NN hoppings in 

the CT lattice in FIG. 2(b) can be mapped to a trichromatic triangle tiling in FIG. 1(d) 

if one colors the triangles according to the hoppings along edges (bonds): blue for 

triangles with three unperturbed bonds (t1), orange for triangles with three removed 

bonds (t2=0), and yellow for the triangles with two t1 and one t2 bonds. 

One can prove that the effective TB Hamiltonian associated with the new CT 

lattice is equivalent to that of the conventional Kagome lattice. The three-band TB 
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Hamiltonian of conventional Kagome lattice can be expressed in the k-space by a 

traceless matrix [1,6] 

 
1 3 1 1

1 3 1 2

1 1 1 2

0 2 cos( / 2) 2 cos( / 2)

( ) 2 cos( / 2) 0 2 cos( / 2)

2 cos( / 2) 2 cos( / 2) 0

K

t k v t k v

H k t k v t k v

t k v t k v

⎡ ⎤⋅ ⋅
⎢ ⎥

= ⋅ ⋅⎢ ⎥
⎢ ⎥⋅ ⋅⎢ ⎥⎢ ⎥

r rr r

r r rr r

r rr r
,  (2) 

here 3 1 2( )v v v= − +r r r
 is introduced for convenience. Diagonalization of this 

Hamiltonian gives rise to the Kagome bands, which can be expressed as 

 0 1 1 1 1 2 3-2 ; ( ) 8cos( / 2)cos( / 2)cos( / 2)+1E t E k t t k v k v k v±= = − ± ⋅ ⋅ ⋅
r r r rr r r .  (3) 

Correspondingly, the TB Hamiltonian of CT lattice can also be constructed in k-space 

as 

 

1 3 3 2 1 32 1

3 2 1 32 1 2 1

3 2 1 32 1 2 1

3 3 3 3
1 1

3 3 3 3
1 1

3 3 3
1 1

0 [ ] [ ]

( ) [ ] 0 [ ]

[ ] [

v v v v v vv vik ik ik ik

v v v vv v v vik ik ik ikCT

v v v vv v v vik ik ik ik

t e e t e e

H k t e e t e e

t e e t e e

− − −−⋅ ⋅ − ⋅ − ⋅

− −− −− ⋅ − ⋅ ⋅ ⋅

− −− −⋅ ⋅ − ⋅ − ⋅

+ +

= + +

+ +

r r r r r rr rr r r r

r r r rr r r rr r r r

r r r rr r r rr r r r

r

3 ] 0
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⎢ ⎥
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.  (4) 

A band structure identical to Eq. (3) can be obtained by diagonalizing Eq. (4). In fact, 

one can demonstrate that Eq. (4) is unitary transformable to (2) by using the following 

simple transformation matrix 

 

1

2

3

- /6

- /6

- /6

0 0

0 0

0 0

ik v

ik v

ik v

e

U e

e

⋅

⋅

⋅

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

r r

r r

r r

 . (5). 

Thus, the CT lattice is inherently equivalent to the Kagome lattice. The physical 

connection between the U matrix elements and the movement of lattice sites is 

elucidated in FIG. S2 [18]. One can further generalize our theory to a series of 

distorted lattices in between the Kagome and CT lattice. In Eq. (5) we derived a 

transformation matrix with the diagonal elements containing a phase factor 

=exp(- / 6)l lik vφ ⋅
r r (l=1, 2, 3). This means that the unitary transformation represents a 

geometric operation between the Kagome and CT lattice by rotating the two triangles 
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inside the three-site unit cell about their center by an angle of θ=30o. In such a 

rotation operation (note that it is not a pure rotation because the size/shape of triangle 

also has to change slightly to fit the lattice), each site l in the Kagome lattice moves 

by a vector of - lvr /6 (which is the origin of the phase factor). Then, one can 

immediately see that another unitary matrix with a smaller rotation angle (0 < θ < 30o) 

will also produce the same Kagome band, except now =exp(- 3 tan / 6)l li k vφ θ ⋅
r r  

(FIG. S2). In principle, Eq. (5) can be extended to a more generic mathematic form by 

replacing the vl (l=1, 2, 3) vectors with rl which represents displacement of l-th lattice 

site (within the unit cell) from the original position of the Kagome lattice. However, 

the hypothesis that all hopping integrals are equal is only physically plausible if all 

NN bonds have the same norm. This constraint then limits the possible deformations 

of the lattice to the CT-like pattern. This is very interesting because usually lattice 

distortion will inevitably modify band structure. In contrast we prove mathematically 

that for the types of distortion here the band stays intact as they represent a unitary 

lattice transformation. In fact, two previous calculations have indeed shown the 

Kagome bands from such distorted lattices [15,16]. 

Furthermore, an elegant mathematical theory of line graph has been shown by 

Mielke that Kagome lattice is in fact a line graph of hexagonal lattice which defines 

the condition for the existence of flat band. Correspondingly, we found that the CT 

lattice as well as those distorted lattices in between the Kagome and CT lattice are 

also line graphs of hexagonal lattice as they should be, albeit with a different 

construction [illustrated in Fig. 2(c) and (d)] [18]. Consequently, all the exotic 

topological characteristics presented in Kagome bands can also be achieved in the CT 

lattice. If one includes a non-vanishing t2 and spin-orbit coupling or many-body 

interaction [23] in the CT lattice, it provides an extra degree of freedom to tune the 

band as shown in Fig. 2(e) and (f) [18].   
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FIG. 2 Illustration of (a) Kagome lattice and (b) CT lattice formed by patterning a 

triangular lattice. The red arrows denote the patterned unit cell basis vectors. (c) Line 

graph of a Kagome lattice (blue) constructed from a parent hexagonal graph (lattice, 

green dots) with straight edges (red). (d) Line graph of a CT lattice (blue) constructed 

from a parent hexagonal graph (green dots) with curved edges (red). (e) Band 

variation in a √3×√3 supercell of triangular lattice with one third of the NN hoppings 

tuned from t2=0 to t2=t1 (bands corresponding to three typical t2/t1 ratios, namely, 0, 

0.5 and 1, are presented). Note that for the t2=0 case the three bands are just folded 

from a single band of perfect triangular lattice. The inset shows the first Brillouin 

zone of the supercell (green) folded from that of the unit cell of triangular lattice 

(blue). (f) The Kagome bands realized in the CT lattice for t2 = t1/4, without (green) 

and with (red) SOC (λ = 0.01t1). 

 

 All the discussions above in electronic systems are readily transferrable to 

describe the dynamics of photonic systems [18,24]. Considering that there is a 

significant body of literature implementing flat band models in dielectric waveguide 

array [17], we first discuss how to realize a photonic CT lattice. We start by 

constructing a 2D photonic triangular lattice using silica (the refractive index n0 = 

1.45) as the bulk dielectric medium. The cylindrical waveguides distributed on the 
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triangle lattice sites can be technically realized by the femtosecond direct-writing 

method [25]. Each waveguide supports one single mode, which is placed at a distance 

of 15 μm from each other to only allow for NN hopping, as determined by the 

interaction strength between adjacent waveguides. We set Δn = 2.17×10-3, the 

diameter of waveguide is 4 μm, and the wavelength is 633 nm. Band structure was 

calculated using mode analysis in full-wave numerical simulation software COMSOL 

52a based on finite element method [26,27].  

By removing a waveguide to block the hopping around it, one obtains the 

photonic Kagome lattice [FIG. 3(a)]. The spacing is tuned to make NNN hopping 

negligible, so that an ideal photonic Kagome band is obtained [FIG. 3(c)]. Each band 

is degenerate because of the high symmetry of waveguide. To create a photonic CT 

lattice, the hopping term t2 can be blocked by introducing air holes [28] which 

decrease the overlap of evanescent wave [FIG. 3(b)]. When the air hole enlarges, the 

hopping term t2 decreases. However, if it is too large, the symmetry of the field 

distribution will be broken and band will split (FIG. S3 [18]). Therefore, the air hole 

has to be delicately designed to match field distribution so that t2 can be reduced as 

much as possible while preserving the symmetry. After some attempts, we found a 

desired shape and size of air hole [FIG. 3(b)] to achieve the ideal Kagome bands with 

a nearly flat band in the photonic CT lattice [FIG. 3(d)]. We note that the air hole can 

be replaced by a high refractive index waveguide [18], and hopping can be more 

delicately tuned by designing a chain of additional waveguides [18,29].  
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FIG. 3 Unit cell of photonic (a) Kagome and (b) CT lattice formed by weakly coupled 

waveguide arrays (dark blue circles). The silica medium is colored light blue, and the 

air holes in the CT lattice are colored white. (c) and (d) Band structure corresponding 

to the photonic Kagome and CT lattice, respectively. 

 

 We expect that the photonic CT lattice we proposed above can be readily 

achieved experimentally in comparison with the photonic Kagome lattice [30] to 

confirm our prediction. On the other hand, realization of electronic materials of CT 

lattice is more challenging. Nevertheless, below we demonstrate such a possibility 

based on an approach of patterning the nearly-free 2D electron gas (2DEG). It has 

been theoretically proposed [31] that patterning 2DEG with a uniform triangular 

potential lattice can produce massless Dirac Fermions. If one further tunes the 

triangular potential lattice based on the hopping texture of CT lattice, in principle 

Kagome bands should be present. Experimentally, scanning tunneling microscopy 

(STM) affords delicate manipulations of atoms or molecules on clean crystal surface, 

making patterning of surface electron gas practical [32]. In the search of nearly-free 

2DEG in realistic materials, we pay attention to electrides, a class of materials 

featured by the concept of “anionic excess electrons”. In particular, we select 
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monolayer Ca2N, an experimentally already realized layered electride [33-36], as a 

candidate to materialize our patterning scheme. 

Previous experimental and theoretical studies have shown the feasibility of Au to 

form a long-range ordered monolayer on different compound surfaces, which 

potentially realizes exotic electronic states [37-39]. In Ca2N the two layers of 

inter-penetrating Ca triangular lattice form a honeycomb lattice, and according to our 

first principles calculations [40-43] (Computational details can be found in [18]), the 

energetically favorable site for Au adsorption is the hollow site of the hexagons (on 

top of N atoms), as shown in FIG. 4(a).  

In FIG. 4(b) we plot the 2D contour of charge density, before and after the 

deposition of an Au monolayer. One can clearly see the top triangular lattice of Ca is 

patterned when the Au lattice is introduced, exhibiting a texture resembling our 

proposed CT lattice. The band structure of the Au patterned Ca2N system in FIG. 4(c) 

displays a Dirac point at the first Brillouin zone corner, which we will show later is 

indeed a set of Kagome bands originated form the CT lattice of Ca-s orbitals. The 

orbital composition of each band is denoted by the size of the circles. Due to the 

unique electride nature of Ca2N, the bands near the Fermi level are occupied by 

electrons that are loosely bound to Ca ions, while the projected bands only count the 

charge in spheres around the ions but cannot fully capture the delocalized charge 

spreading out in real space. Therefore, Fig. 4(c) can only be viewed as a qualitative 

assignment of electronic bands into several mainfolds according to the chemical 

species. However, by doing an electron counting, one can easily confirm that all 

N-p-orbital dominated bands are mainly distributed in an energy window ~2 eV below 

the Fermi level. On the other hand, it is clearly seen that the Au-5d6s bands are buried 

deep below the Fermi level. Considering the electronic configuration of Au atom 

(5d106s1), one can conclude that each Au atom accommodates one extra electron from 

the underneath Ca2N layer. Bader charge analysis confirms that ~0.97 electron is 

transferred from the Ca2N monolayer to each Au atom, forming a triangular lattice of 

Au- anions. The negative charge of Au- anions is beneficial for its uniform distribution 
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because the Coulomb repulsion can help prevent them from clustering on the Ca2N 

surface similar to other surface overlayers [39]. 

Thus, the patterned system holds a nominal chemical formula [Ca2N]+
3[e-]2[Au-]. 

The two excess anionic electrons with the smallest binding energy fill the highest 

occupied band, making the physics near the Fermi energy dominated by the 

Kagome-like bands. They are separated from other occupied bands in energy, 

enabling us to study the low-energy physics by projecting them onto a subspace 

spanned by the Ca-s orbitals. Here we use the maximally localized Wannier Functions 

(MLWFs) [44] as the basis instead of atomic s-orbitals of Ca so as to include possible 

hybridization with other electronic states. FIG. 4(d) shows that the bands formed by 

the MLWF basis well reproduce the salient features of DFT bands, indicating the 

existence of two sets of Kagome-bands arising from the two layers of patterned Ca-s 

triangular lattice, one on top right below the Au atoms and the other at the bottom 

farther away from Au [18]. 

 

 

FIG. 4 (a) Top and side view of a triangular Au lattice deposited on the surface of 

Ca2N monolayer. The blue and red rhombus denotes the unit cell and √3×√3 supercell 

of the pristine Ca2N monolayer, respectively. (b) Charge density distribution in the 

plane 1 shown in the side view of (a), without and with the Au lattice patterning. (c) 

Electronic band structure of the Au-patterned Ca2N monolayer, with band 
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composition displayed in different colors. (d) The DFT band structure near the Fermi 

level (red) and the interpolated bands from MLWFs with Ca-s characteristics (green). 

 

Considering the relativistic effect of Au, SOC may have a pronounced effect on 

the Ca-s dominated Kagome bands. In FIG. S4(a) [18], we plot the DFT band 

structure including SOC, where a gap of 106 meV at K is observed. However, a small 

electron pocket along the Γ-M path makes the bands not globally but only gapped at 

certain k-points as in the topological electride Y2C [45]. We find that by applying an 

in-plane biaxial strain, the electron pocket shrinks and finally disappears. The band 

evolution under a tensile strain is traced in FIG. S4(b) [18]. The global gap emerges in 

a slightly strained structure (<2%) and increases up to 40 meV as the strain is further 

raised to 8% [18]. We note that in-plane strain is a practical technique to tune the 

electronic structure and properties of 2D layered materials [46], and more importantly, 

lattice engineering of Ca2N has already been achieved in a recent experiment [47]. We 

further confirm the nontrivial band topology of the Au-decorated Ca2N from first 

principles calculations [48] and TB modeling [49] of the CT lattice with SOC [18]. 

Based on the above analysis, we summarize the roles of the Au triangular lattice 

in forming the topologically nontrivial Kagome-like bands in the Au-Ca2N system. (1) 

It provides a triangular periodic potential which patterns the nearly-free 2DEG of the 

Ca2N surface to create a CT lattice as our theoretical model predicts. (2) The 

stoichiometry (Ca6N3Au) and the electronic configuration of Au (d10s1) tune the Fermi 

level right at the Dirac points of the Kagome-like bands. (3) The Au overlayer 

introduces strong SOC that opens a relatively large nontrivial band gap at the Dirac 

points. We have also tried the patterning procedure by using Ag or Cu instead of Au, 

which leads to a similar effect but with weaker SOC. The discovery of more and more 

new electride materials holding anionic electrons [50,51], especially the 

experimentally synthesized layered electrides such as Y2C [45,52], provides a unique 

material platform to achieve the novel patterning procedure. The emergent 2D 

molecular crystals and metal-organic frameworks can serve as another category of 
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candidates to materialize the proposed CT lattice model. 

In summary, we have rigorously proved the equivalency of a CT lattice to the 

conventional Kagome lattice. Furthermore, we demonstrate the possibility to realize 

the CT lattice in both photonic and electronic systems. Well-developed femtosecond 

direct-writing method enables fabricating artificial photonic lattice with designer 

geometry and can be implemented to realize the photonic CT lattice. We suggest that 

layered electrides might provide a useful materials platform for patterning 2DEG, in 

order to realize a range of 2D lattices, including the new CT lattice we propose here. 

It is worth mentioning that the idea of CT lattice may be generalized to Kagome 

magnetic [53] or cold-atom [54] systems. 
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