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We solve analytically the problem of a finite length Kitaev chain coupled to a quantum dot (QD), which
extends the standard Kitaev chain problem to the quantum dot-semiconductor-superconductor (QD-SM-SC)
nanowire heterostructure currently under intense investigation for possible occurrence of Majorana zero modes
(MZMs). As a first step, we obtain the analytical solution of the finite length Kitaev chain without the quantum
dot, which, to the best of our knowledge, has also not appeared before. Our full solution of the Kitaev chain
coupled to a quantum dot reveals the emergence of a robust near-zero-energy Andreev bound state (ABSs)
localized in the quantum dot region as the generic lowest energy solution in the topologically trivial phase. By
contrast, in the Kitaev chain without the quantum dot such a solution does not exist. The robustness of the
ABS in the topologically trivial phase is due to a partial spatial decoupling of the component Majorana bound
states (MBSs) over the length of the dot potential. As a result, the signatures of the ABS in measurements that
couple locally to the quantum dot, e.g., tunneling measurements, are identical to the signatures of topologically-
protected MZMs, which arise only in the topological superconducting (TS) phase of the Kitaev chain.

I. INTRODUCTION

Non-Abelian Majorana zero modes (MZMs),1–3 which
were theoretically predicted4–10 to arise as zero-energy ex-
citations at the edges of low-dimensional spin-orbit cou-
pled semiconductors with proximity induced superconduc-
tivity in the presence of a Zeeman field, have emerged11–13

as the leading candidate in the creation of topological quan-
tum bits essential to fault-tolerant quantum computation.2,3

This research has been bolstered by recent experimental
progress leading to observations of key signatures of Majo-
rana zero modes14–25 in semiconductor-superconductor (SM-
SC) nanowire heterostructures, particularly the emergence of
a zero bias conductance peak in the tunneling conductance
spectra at a finite magnetic field. Theoretically, such zero
bias conductance peaks (ZBCPs) were shown to also arise
due to low energy states generated by several different phe-
nomena unrelated to topology.26–44 However, the low-energy
states of non-topological origins are usually found to gener-
ate ZBCPs that are not quantized at peak height 2e2/h and/or
are not stable against variations of various experimental con-
trol parameters such as magnetic field, chemical potential, and
tunnel barrier height. This is the main reason why recent ex-
periments capable of measuring ZBCPs which remain quan-
tized at 2e2/h over a finite range of control parameters,25

as required theoretically for the signatures of topological
MZMs,45–48 have garnered a great deal of excitement.49

To properly analyze the Majorana zero mode experiments
on SM-SC heterostructures, it is useful to note that many
of the systems under experimental investigation should be
described as a quantum dot-semiconductor-superconductor
(QD-SM-SC) nanowire heterostructure (rather than a sim-
ple SM-SC heterostructure without the QD as was originally
proposed4–10), because a QD is almost inevitably formed in
the bare SM wire segment between the normal tunnel lead
and the epitaxial SC shell owing to band bending and/or
disorder.21,25 Therefore, while the topological properties of
the theoretically proposed simple SM-SC heterostructure in
the presence of spin-orbit coupling and Zeeman field can be

described in terms of an effective model consisting of a finite
length Kitaev chain,2 the correct effective model for the sys-
tems under experimental investigation is a finite length Kitaev
chain coupled to a QD, where the QD is defined by a region at
the end of the chain in the presence of a local electric poten-
tial and vanishing superconducting pair potential ∆. In this
paper, we analytically solve this effective model in the long-
wavelength, low-energy limit. In addition to providing the
analytical solution to a valuable extension of the celebrated
Kitaev model (i.e., Kitaev chain coupled to a quantum dot, an
extension motivated by experiment), our study allows a qual-
itative understanding of recent numerical work50,51 on prox-
imitized SM-SC heterostructures coupled to a QD, which has
shown that it is possible to have quantized ZBCPs of height
2e2/h forming robust plateaus with respect to the experimen-
tal control parameters even in the topologically trivial phase.

In this paper we analyze a Kiaev chain of length L, charac-
terized by a superconducting pair potential ∆, which is cou-
pled to an end QD of length x0 (see Eq. 21) defined by an
effective potential of height V (V = 0 in the bulk of the Ki-
taev chain, see Fig. 3). Experimentally, the effective poten-
tial in the QD region (which we model, for simplicity, as a
step-like potential well of depth V ) may be induced by a local
gate and/or by a position-dependent work function difference
between the SM and the SC (which is nonzero in the prox-
imitized segment of the wire and vanishes in the uncovered
regions). Note that this type of position-dependent effective
potential is manifestly different from the smooth confinement
potential at the end of the chain considered in Ref. [32] (see
also Ref. [50]). More importantly, the mechanisms for the
formation of robust near-zero-energy non-topological ABSs
are qualitatively different in the two models. In particular, in
the presence of a smooth confinement potential32,50 the pair of
component MBSs constituting a robust near-zero-energy ABS
originates from two different spin channels of a confinement-
induced sub-band, while in the presence of a step-like poten-
tial well in the QD region (Fig. 3a), the component MBSs
originate from the same spin channel (see Sec. V and Fig. 9).
This is why the topological properties of the QD-SM-SC hy-
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brid structure with a step-like potential well can be understood
in terms of an effective representation of a Kitaev chain cou-
pled to a QD (since the low-energy physics involves a single
spin channel), while the SM-SC heterostructure with smooth
confinement potential32 cannot be analyzed using such a rep-
resentation (because in this case both spin channels are re-
quired).

First, we solve analytically the Hamiltonian for a finite
length bare Kitaev chain (i.e. without the quantum dot) and
obtain the wave functions corresponding to the lowest energy
eigenvalues. To the best of our knowledge, the lowest energy
wave functions with eigenvalues±ε emerging in the “topolog-
ical” phase of a finite length Kitaev chain, with the putative
Majorana energy eigenvalues ±ε oscillating with the chemi-
cal potential and the chain length L, have so far only been es-
timated perturbatively based on the overlap of end-localized
wave functions corresponding to a semi-infinite Kitaev chain
or SM-SC Majorana wire.52,55–57 By contrast, our analytical
treatment of the finite chain provides non-perturbative solu-
tions for the energy splitting oscillations of the putative Ma-
jorana modes (as function of the chain length and chemical
potential), as well as the exponential decay of the amplitude
of these oscillations with increasing system size. In particular,
we show explicitly that the energy splitting oscillations are a
direct consequence of imposing appropriate boundary condi-
tions in a finite system. Next, armed with these solutions, we
solve the problem of a finite length Kitaev chain coupled to a
quantum dot, where by quantum dot we mean a small region at
the end of the chain defined by a local potential well of height
V and a reduced (possibly vanishing) induced superconduct-
ing pair potential, as suggested by the experimental setups in-
volving semiconductor-superconductor hybrid structures.21,25

Our analytical solution of the full problem is characterized
by a pair of robust low energy Bogoliubov-de Gennes (BdG)
states with energies ±ε localized in the quantum dot region as
the generic lowest energy eigenstates in the topologically triv-
ial phase of the Kitaev chain. We emphasize that no such near-
zero-energy robust BdG states exist as low energy solutions in
the topologically trivial phase of the finite length Kitaev chain
without a QD. In the topological superconducting phase, the
lowest energy solutions are (topological) MZMs localized at
the two ends of the chain. We find that the robustness of the
near-zero-energy BdG states φ±ε that emerge in the presence
of the QD is due to a partial decoupling of the component
Majorana bound states (MBSs), χA = 1√

2
[φε + φ−ε] and

χB = i√
2

[φε − φ−ε], over the length of the quantum dot. It
follows that such partially-separated ABSs (ps-ABSs), which
were first introduced in the numerical study of the SM-SC
heterostructure coupled to a QD,50,51 generate signatures in
experiments involving local probes, e.g., in charge tunneling
experiments, identical to the signatures of topological MZMs.

The reminder of this paper is organized as follows. In Sec-
tion II we provide some preliminaries for the Kitaev chain
model with periodic boundary conditions, which is applicable
for infinitely long systems. In Section III, we detail the non-
perturbative solution of the finite length Kitaev chain (with
open boundary conditions). In Section IV, we solve the prob-
lem of a finite length Kitaev chain coupled to a QD both an-

alytically and numerically (for comparison). First, in Section
IV A, we consider the case of no proximity effect in the QD
from the adjoining SC, and find that, in this case, near-zero-
energy ABSs do not exist as low energy solutions in the topo-
logically trivial phase of the Kitaev wire. In Section IV B,
we assume a slice of the QD adjoining the SC to be proxim-
itized and show that correct matching of the boundary condi-
tions in the different regions of the Kitaev chain coupled to
the QD produces robust near-zero-energy ABSs localized in
the QD region as generic low energy solutions in the topolog-
ically trivial phase of the bulk Kitaev chain. We also analyze
the wave functions of the component MBSs of the low energy
ABSs and find that these states are spatially separated by the
length of the proximitized region in the QD. We discuss the
overlap of the component MBSs and the resultant splitting os-
cillations of the so-called partially separated ABSs, and find
that the splitting is generically lower for these states because
of the existence of the adjoining Kitaev chain in which the
component MBSs can relax. We end with a summary of the
main results and some concluding remarks in Section V.

II. KITAEV MODEL PRELIMINARIES

The one-dimensional model of topological superconductiv-
ity proposed by Kitaev2 can be derived from the tight binding
Hamiltonian for a 1D superconducting wire as follows,

H = −
N∑
j=1

[
µc†jcj +

(
tc†j+1cj −∆cjcj+1 + h.c.

)]
(1)

where t, µ, and ∆ are the nearest neighbor hopping ampli-
tude, chemical potential, and superconducting pairing poten-
tial, respectively, and c† and c are the second quantized cre-
ation and annihilation operators. Introducing the operators
γ2j−1 = cj + c†j and γ2j = i(c†j − cj) allows the Hamiltonian
H to be rewritten as,

H = −iµ
2

N∑
j=1

γ2j−1γ2j

+
i

2

N−1∑
j=1

[(t+ |∆|)γ2jγ2j+1 + (−t+ |∆|)γ2j−1γ2j+2]

(2)

In the limit µ = 0 and t = |∆| > 0 the Hamiltonian becomes,

H = it

N−1∑
n=1

γ2nγ2n+1. (3)

Because γ1 and γ2N do not appear in the Hamiltonian this rep-
resents the topological phase of the wire described in Eq. 2,
in which a single pair of zero energy MZMs appear at the
ends of the wire while the bulk of the wire remains gapped
at an energy of ± |t|. More generally, applying periodic
boundary conditions, and Fourier transforming the Hamil-
tonian in Eq. 1 into momentum space, the Bogoliubov-de
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Gennes (BdG) Hamiltonian can be written as (with the lattice
constant a = 1),

H =

∫
dkΨ† (k)HBdGΨ (k) Ψ† =

(
c†k, ck

)
HBdG = (−2t cos k − µ)τz + 2∆τy sin k

(4)

where k is the momentum and τz, τy are the Pauli matrices
operating in the particle-hole space. The bulk band struc-
ture for the wire, found by diagonalizing Eq. 4 is E =√

(2t cos k + µ)2 + 4 |∆|2 sin2 k, which shows a bulk band
gap closure at k = {0, π} for µ = ±2t, representing the topo-
logical quantum phase transition (TQPT) as described in the
Kitaev model.

In the long wavelength limit near the band gap closure as
k → 0, such that sin k → k and cos k →

(
1− k2/2

)
, Eq. 4

can be rewritten as,

H̃BdG = (−t∂2x − µ̃)τz + i∆̃∂xτy (5)

where µ̃ = µ − 2t and ∆̃ = 2∆. Because the chemi-
cal potential is being measured from the bottom of the band
(µ̃ = µ − 2t), the phase transition points in Eq. 5 (µ̃ = ±2t)
are now at µ = 0 and µ = 4t.

Solutions to the eigenvalue equation

H̃BdGφ (x) = Eφ (x) (6)

are found by applying a trial wave function of the form
φ (x) = (u (x) , v (x))

T
= φ̃ (x) (ũ, ṽ)

T in which the spatial
dependence is fully incorporated in the function φ̃ (x) ∝ eiλx
with ũ, ṽ being independent of x. Substituting the trial func-
tion φ(x) in Eq. 6 we find the characteristic equation,

E2 −
(
λ2 − µ

)2 −∆2λ2 = 0 (7)

along with the following constraint on the spinor degrees of
freedom

ṽ = i
λ2 − µ− E

∆λ
ũ. (8)

Here, all the terms are written in terms of the hopping energy
t, so all the parameters with dimension of energy are rendered
dimensionless in the rest of the paper.

Note that λ in the trial wave function φ̃(x) is a complex
number which can be written as, λ = k + iq (k, q ∈ R).
Substituting it back to Eq. 7 gives us,(

E2 −∆2(k2 − q2) + 4q2k2 − (k2 − q2 − µ)2
)

−2iqk
(
2(k2 − q2) + ∆2 − 2µ

)
= 0

(9)

The eigen-energy E being real, it follows that the imaginary
part in Eq. 9 must vanish,

−2iqk
(
2(k2 − q2) + ∆2 − 2µ

)
= 0 (10)

There are three possible cases which can be extracted from
Eq. 10, namely, (a) q = 0, and λ = k is purely real, (b)

k = 0 and λ = iq is purely imaginary, and (c) k, q 6= 0 with
λ = k+iq a complex number. Substituting the three solutions
to Eq. 10, namely, q = 0, k = 0, and 2(k2− q2) = (2µ−∆2)
back in Eq. 9 for the cases (a), (b), and (c), respectively, we
have,

(k2 − µ)2 + ∆2k2 − E2 ≡ 0 (11a)

(q2 + µ)2 −∆2q2 − E2 ≡ 0 (11b)

(∆2µ−∆4/4)− 4k2q2 − E2 ≡ 0 (11c)

We can now solve k, q in a form k(E), q(E) (energy depen-
dent) for each case in Eq. 11. However, we can roughly an-
alyze the approximate range of the eigen-energy E in each
case before moving on. In case (a), E2 = (k2 − µ)2 + ∆2k2

would give us |E| ≥ |µ| if µ ≤ 0. As for µ > 0 we have
E2 u µ2 + (∆2 − 2µ)k2 for k2 � µ, which would again
give us |E| with some value near µ. Similarly in case (b), we
have E2 u µ2 + (2µ − ∆2)q2 for q2 � µ. It follows that
both cases (a) and (b) cannot support a low energy solution
(E � |µ|) appropriate for MZMs in the topological phase.
However, in case (c), we can have a solution with low energy-
eigenvalue E, which is our main interest. In case (c) we have
E2 = ∆2(µ − ∆2/4) − 4k2q2, which could be tuned to get
a near-zero-energy solution independently of k, q in the topo-
logical phase. It will indeed provide us with a nontrivial so-
lution in terms of putative Majorana zero modes as discussed
below.

III. FINITE LENGTH KITAEV CHAIN AND SPLITTING
OSCILLATIONS

In order to find the solutions to the full problem of a fi-
nite length Kitaev chain coupled to a QD, we first analytically
solve the finite length bare Kitaev chain without the QD. To
the best of our knowledge, these solutions, which reveal the
exponential decay and splitting oscillations of the lowest en-
ergy eigenvalues with the chain length L and the chemical
potential µ non-perturbatively, have not been written before.
Later, we will use these exact solutions to find the solutions
for the full problem of the Kitaev chain coupled to a quantum
dot by matching the wave functions of the full Bogoliubov-de
Gennes equations.

For a given one-dimensional Kitaev chain in the topological
superconducting phase of finite length L, to support a pair of
low energy solutions at energies ±E, the roots λi of Eq. 7
are necessarily complex (case (c) below Eq. 10). combining
Eq. 11(c) with 2(k2 − q2) = (2µ − ∆2) (requirement for a
complex λ, discussed in the last section), solutions of the form
λ ≡ iq + k are found in which

k =
1√
2

((
µ−∆2/2

)
+
√
µ2 − E2

) 1
2

q =
1√
2

(
−
(
µ−∆2/2

)
+
√
µ2 − E2

) 1
2

(12)

When combined with the constraint on the spinor degrees of
freedom in Eq. 8, and the assumption that |E| < |µ|, the gen-
eral eigenfunction solution for the Hamiltonian in Eq. 5 can be
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(a)

(b)

(c)

(d)

FIG. 1. (Color online) Lowest-energy spectra for the finite length Ki-
taev chain in the topological phase µ > 0 as a function of chemical
potential µ in (a)–(b) and Length L in (c)–(d). Analytical results (red
dotted line) are based on Eq. 18, while the simulation results (blue
solid line) are from direct diagonalization of the tight binding hamil-
tonian in Eq. 1 for a finite length L. The cyan dashed lines in (a)–(b)
show the condition µ ≥ ∆2/4 discussed below Eq. 18, after which
the analytical solutions are valid. It shows a lower hopping energy t
reduces the energy splitting in (a) relative to that in (b); a higer SC ∆
offers a more effective exponential protection in (d) than that in (c).
All of this can be explained by the dependence of the lowest energy
E on the parameters µ,L, respectively, through Eq. 18. A slight shift
of the analytical results relative to the simulation results is caused by
the dropped terms for q and k in Eq. 18. The other model parameters
are L = 71 in (a)–(b) and µ = 0.25t0 in (c)–(d), and t0 = 1.

constructed as the linear combination φ(x) =
∑4
i=1 ciφi (x)

such that

φ1(x) = eiλx
(

1
−qα+ ikβ

)
ũ,

φ2(x) = e−iλx
(

1
qα− ikβ

)
ũ,

(13)

with φ3 (x) = φ∗1 (x) and φ4 (x) = φ∗2 (x). The two energy
dependent weight components α, β are defined as,

α ≡ 1

∆

(
1 +

√
µ+ E

µ− E

)
; β ≡ 1

∆

(
1−

√
µ+ E

µ− E

)
(14)

The energy E can be found by constructing a matrix equa-
tion AX = 0 such that A consists of the four wave func-
tions φi (x) with the boundary conditions φũ (x = 0) =
φṽ (x = 0) = φũ (x = L) = φṽ (x = L) = 0 applied,
here φũ, φṽ are the spinor components of φ(x) and X =
(c1, c2, c3, c4)T . The existence of nontrivial solution for X
requires Det(A) = 0, which yields the transcendental equa-
tion

k|β| sinh qL = qα| sin kL| (15)

Because we are interested in the lowest energy modes such
that E � µ, Eq. 12 is expanded to first order in E/µ, q u
qF +O(E2) and k u kF +O(E2), resulting in

qF = ∆/2, kF = (µ− (∆/2)
2
)

1
2 (16)

Similar expansion of Eq. 14 yields

|β|
|α|

u
E

2µ
(17)

Combining Eqs. 16-17 with Eq. 15 and solving for E, we an-
alytically find the exponentially protected ground state energy
solution for a finite 1D p-wave superconducting nanowire

E u
4µqF
kF

e−qFL| sin(kFL)|+O(e−3qFL) (18)

Results following from Eq. 18 are plotted in Fig. 1 (dotted
lines) and compared with those of a direct numerical diag-
onalization of the Hamiltonian in Eq. 5 (solid lines). Here
we note that because q and k shown in Eq. 12 are real, the
above solution is valid for energy values which are not near
the TQPT point, such that 0 ≤ E2 ≤

(
µ∆2 −∆4/4

)
, re-

sulting in µ ≥ ∆2/4. The cyan line in Fig. 1(a)-(b) shows
this critical value of the chemical potental µ, above which the
analytical and simulated results are in close agreement.

Because the Hamiltonian as shown in Eq. 6 is real, the non-
degenerate eigenfunctions φ(x) associated with this Hamilto-
nian must be either purely real or purely imaginary, resulting
in c1,2 = ±c3,4. In the limitE → 0, the weight coefficients in
Eq. 14 are qα ' 1 and β ' 0, hence the spinor part for wave-
function φ(x) can be written as (ũ, ṽ)

T
= (1,−sign(q))

T (the
spinor term ũ is incorporated into the normalization factor
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FIG. 2. (Color online) Lowest energy wave functions φ±E as de-
fined in Eq. 19 and its counterpart by particle-hole transformation,
for the lowest energy modes of a pure Kitaev chain in the topolog-
ical regime (µ > 0). The inset shows the corresponding MZMs as
defined by Eq. 20. The dotted lines correspond to analytical results
while the solid lines correspond to numerical simulation. The black
dashed line shows the exponential decay envelope of the wave func-
tion which is proportional to e−qFL. Parameters used were ∆ = t0,
t = 15t0, and µ = 2t0. In the topological phase the putative MZM
wave functions are localized at the two ends of the chain as shown in
the inset. No such near-zero-energy subgap state exists as low energy
solution in the non-topological phase of the Kitaev chain without the
quantum dot.

c1, c2, and sign(q) is introduced considering of the ±λ in
Eq. 13). After applying the boundary conditions φ (0) =
φ (L) = 0, solutions to the eigenvalue equation Eq. 6 can
be found of the form,

φ(x) = c1e
−qF x sin kFx

(
1

−sign (q)

)
+ c2e

qF (x−L) sin (kF (L− x))

(
1

sign (q)

) (19)

where c1 and c2 are normalization coefficients and
sin (kF (L− x)) is taken to satisfy the boundary condition at
x = L. Because kF and qF in Eq. 19 are derived from k and q
to first order in E/µ as seen in Eq. 16, the two terms in φ (x)
will not simultaneously equal to zero at the boundaries x = 0
and x = L, but will when the full expressions for k and q are
used.

Due to the particle-hole symmetry (τ †xH̃BdGτx = −H̃BdG)
of the Hamiltonian in Eq. 6, if φE (x) = (u (x) , v (x))

T is a
solution to the BdG equation with energy E, then φ−E (x) =

(v∗ (x) , u∗ (x))
T is also a solution with energy −E. From

these solutions linear combinations of the form, χA =
1√
2

(φE (x) + φ−E (x)) and χB = i√
2

(φE (x)− φ−E (x)),
are constructed representing a pair of partially overlapping
MBSs. The BdG states φ±E(x) described in Eq. 19 are rep-
resented as a pair of partially overlapping MBSs of the form,

χA = c̃1e
−qF x sin kFx

(
i
−i

)
χB = c̃2e

qF (x−L) sin (kF (L− x))

(
1
1

) (20)

where c̃1, c̃2 are the normalization coefficients. Though the
Majorana wave functions χA, χB defining bound states at the
left and right ends are not exact eigenstates of the BdG Hamil-
tonian for the finite length Kitaev chain, they are useful in de-
scribing the interpolation of a low energy ABS into a pair of
MBSs. Fig. 2 shows analytical results (dotted lines) based on
Eq. 19, 20 in close agreement with numerical results (solid
lines). The left and right MBSs |χA/B |2 are spatially pro-
tected due to exponential decay (black dashed lines) of the
wave functions. Note the boundaries from analytical results
now are modified to be consistent with that from numerical
simulation, where the boundary condition for the first and last
site in TBM is not well defined. We find no near-zero-energy
subgap state as low energy solution in the non-topological
phase of the Kitaev chain without the quantum dot.

IV. FINITE LENGTH KITAEV CHAIN ATTACHED TO A
QUANTUM DOT

The one-dimensional finite length Kitaev chain with a
quantum dot attached at the left end of the wire, schematically
shown in Fig. 3(a), can be modeled with the Hamiltonian,

H̃BdG = −
(
∂2x + µ− V (x)

)
τz − i∆ (x) ∂xτy (21)

for which V (x) = VΘ (x0 − x) in which V can be positive
(representing a potential barrier) or negative (representing a
potential well) and ∆ (x) = ∆Θ (x− x0 + δx) in which x0 is
the length of the QD, and δx is the length of the proximitized
region within the quantum dot (shown in Fig. 3(a)), caused
by the adjacent superconductor. A numerical calculation for
a specific model as schematically illustrated in Fig. 3(a) with
x0 = 30, δx = 20, V = −2.5t0,∆ = t0 is conducted first
before we move to the analytical solutions. The numerical re-
sults are shown in Fig. 3(b), which illustrates the existence of
a robust near-zero-energy state as the lowest energy solution
even in the topologically trivial phase (µ < 0). The square
of the amplitude of the wave functions |χ(x)|2 of the lowest
energy modes at µ = ∓t0 (marked as black dots in Fig. 3 (b))
are the ps-ABS state and the MZM, respectively, shown in (c)
and (d). In particular, the component MBSs of the ps-ABS are
spatially separated by the length of the QD (separation marked
by the black dashed lines in (c) and (d), with the right one at
x = x0 and the left one at x = x0 − δx). Next we will ana-
lytically solve the problem of a Kitaev chain coupled to a QD
to understand the origin of the ps-ABS in the topologically
trivial phase.

Looking for E → 0 eigen-energy solutions for the Hamil-
tonian given in Eq. 21 we consider the eigenvalue equation
given as Eq. 6. Uncoupling the near-zero-energy wave func-
tion solutions gives,(

−∂2x + ∆(x)∂x − µ+ V (x)− E
)
f = 0 (22a)(

−∂2x −∆(x)∂x − µ+ V (x)− E
)
g = 0 (22b)

in which f = u + v and g = u − v, where u(x) and v(x)
are the spinor components of φ(x). The uncoupled equations
in Eq. 22 are equivalently valid to the coupled BdG equation
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(a)

(b)

(c)

(d)

FIG. 3. (Color online) (a) Schematic of a finite length Kitaev chain
in which a fraction of the chain is not covered by the superconductor.
This part of the chain (yellow) with vanishing superconducting pair
potential ∆(x), and an effective electric potential V (x) which may
be induced by tunnel gates, is called a quantum dot. A proximitized
region within the quantum dot (QD) with finite length δx is intro-
duced. We also show the wave functions of the topological MZMs
and the partially separated ABSs (in which the component MBSs are
spatially separated over the length of the quantum dot), which are
the generic lowest energy excitations in the topological and the non-
topological phases of the Kitaev chain, respectively. (b) Numerically
calculated spectrum of a specific finite length kitaev chain with a
potential-well-like QD, where V = −2.5t0,∆ = t0, x0 = 30 , and
δx = 20 as defined in Eq. (21). The spectrum shows a robust near-
zero-energy state even before the bulk gap closes around µ = 0,
which is present due to the potential-well like QD. The square of
the amplitude of the wave functions at zero energy at µ = −t0 and
µ = t0 (marked by black dots in 3(b)) are shown in (c) and (d), re-
spectively. (c) shows the two component MBSs of the ps-ABS in
the topologically trivial phase, while (d) shows the true MZMs in the
topoloically non-trivial state that emerges after the bulk gap closing.
The vertical black dashed lines in (c) and (d) indicate the boundaries
at x = x0 − δx and x = x0 respectively, indicating the spatial sepa-
ration of the component MBSs of the ps-ABS.

given by Eq. 6 in the near-zero-energy limit. In the limit that
the proximitized region within the quantum dot goes to zero
(δx → 0) solutions to Eq. 22 can be written as,

f(x) = f0(x)Θ(x0 − x) + f1(x)Θ(x− x0)

g(x) = g0(x)Θ(x0 − x) + g1(x)Θ(x− x0)
(23)

where f0 and g0 represent the wave functions within the dot
region and f1 and g1 are wave functions within the Kitaev-
chain (the case δx 6= 0 is discussed in Sec. IV B). The Equa-
tions for f(x) and g(x) in Eq. 22 are identical except for a
change in sign of the superconducting term ∆ (x). Thus if
a solution to g (x) is found, the corresponding wavefunction
f (x) can be inferred using the relation f (x) ∝ g (−x+ dx)
in which dx is a constant shift.

Below we first consider the case where the quantum dot has
no proximitized region with non-zero superconducting pair
potential adjacent to the SC interface, followed by the case
where there is a slice of proximitized region within the quan-
tum dot of width δx. From our analytical solutions we find
that, in the absence of a proximitized region within the QD,
there are no robust low energy ABS solutions in the topolog-
ically trivial phase, whereas topological MZMs do appear in
the topological superconducting phase of Kitaev chain. The
low energy partially separated ABSs, on the other hand, are
the generic lowest energy solutions localized in the quantum
dot in the presence of a slice of proximitized region of width
δx adjacent to the SC interface.

A. No Proximity Coupling Within the QD

We first consider the case for which the length of the prox-
imitized region within the QD is zero (δx = 0). Assuming a
topologically trivial state (µ < 0) within the bulk of the Ki-
taev chain, and a potential well in the QD region (V (x) < 0)
the effective chemical potential in the QD is (µ− V (x)) ' 0.
Under these conditions the solutions to the Eq. 22 for the en-
tire QD-Kitaev chain can be written as

f0(x) = g0(x) = c0 sin(k0x)

g1(x) = c1(e(−λ0+k1)x − e2k1L−(λ0+k1)x)

f1(x) = c′1

(
e(−λ0+k1)(2L−x) − e(k1+λ0)x−2λ0L

) (24)

with k0 ≡
√
|µ− V + E|, k1 ≡

√
(∆/2)

2 − (µ+ E), and
λ0 = qF (defined from Eq. 22). Here the wave vector k1
appearing in the definition of f1 and g1 in Eq. 24 describes
the topologically trivial state within the Kitaev chain, and
thus is not the same as k previously defined for the topo-
logical state in Eq. 12. For a potential barrier within the
QD region (µ− V (x) < 0) as opposed to a quantum well
(µ− V (x) > 0) the sin (k0x) term as defined in Eq. 24 can
be replaced by sinh (k0x). The coefficients c0, c1, and c′1
are found by applying the boundary conditions g0(x)|x0

=
g1(x)|x0

, f0(x)|x0
= f1(x)|x0

, g′0(x)|x0
= g′1(x)|x0

, and
f ′0(x)|x0

= f ′1(x)|x0
resulting in the energy dependent tran-
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scendental equations,

λ0 = −k0 cot k0x− k1 coth k1 (L− x0)

λ0 = k0 cot k0x+ k1 coth k1 (L− x0)
(25)

through which the lowest energy E can be found numerically.
Note two solutions for E could be found from Eq. 25, and
we take the lower one as the eigen energy E (actually these
two solutions for E are giving an approximately equal value
for k0, k1). Once we know eigen energy E, k0, k1 could be
derived, so are the wave functions in Eq. 24. For the case in
which the Kitaev chain is in the topological phase (µ > 0),
wave functions of the form

f0(x) = g0(x) = a0 sin(k0x)

g1(x) = ae−qF (x−x0) sin(kF (x− L))

f1(x) = a′e−qF (L−x) sin(kF (L− x))

(26)

can be found, where a0, a, and a′ are normalization factors.
Note wave functions like Eq. 19 are used for the topologi-
cal chain here. The sin(k0x) term within the dot region can
again be replaced with sinh (k0x) for values of the chemical
potential such that (µ − V ) < 0. The wavefunction within
the Kitaev chain is expected to be of the same format as that
of the pure Kitaev chain in topological phase. Matching the
boundary conditions at x = x0 for g0, g1 and f0, f1 respec-
tively gives

k0 cot(k0x0) = −qF + kF cot(kF (x0 − L))

k0 cot(k0x0) = qF − kF cot(kF (L− x0))
(27)

The above two equations are effectively equivalent for qF �
kF cot (kF (L− x0)). Similarly we can take the lower en-
ergy solution from Eq. 27 as the eigen energy E, and then the
wave functions given in Eq. 26 could be derived. Analytical
solutions for the topologically trivial (Eq. 24) and topological
(Eq. 26) lowest energy wave functions of a finite QD-Kitaev
chian are shown in Fig. 4 (dotted lines) to be in close agree-
ment with numerical results (solid lines). The sinusoidal wave
within the dot region and the exponentially decaying wave
over the Kitaev chain are shown in Fig. 4(b) with the black
dashed line marking the boundary between the QD and the
Kitaev chain. In Fig. 4(a) inset, the constituent MBSs are sit-
ting directly on top of each other, resulting in the absence of a
robust near-zero-energy ABS in the topologically trivial phase
of the Kitaev chain with no proximitized region in the QD
(δx = 0 in Fig. 3).

B. Finite Proximitized Region Within the QD

Now we consider the case in which a finite proximitized
region forms within the quantum dot adjacent to the SC inter-
face (δx > 0). In this case, the solutions to H̃BdGφ (x) =
Eφ (x), associated with Eq. 21 are found by dividing the
QD-Kitaev chain system into three regions as shown in
Fig. 3): a pure quantum dot (∆ = 0, V 6= 0), a finite prox-
imitized region within the QD located near the QD-SC

(a)

(b)

FIG. 4. (Color online) Wave functions for the lowest energy modes of
a QD-Kitaev chain without a proximitized region in the QD (δx = 0
in Fig. 3) (a) corresponding to Eq. 24 for the topologically trivial
regime with µ = −0.5t0, showing a pair of BdG wave functions
φ±ε in which the constituent MBSs are sitting directly on top of each
other (see inset); and (b) corresponding to Eq. 26 for the topological
regime with µ = 3.5t0 in which a pair of MZMs are separated by
the length of the wire (see inset). The insets show the MBSs asso-
ciated with the low energy BdG wave functions. The dotted lines
show the analytical results while the solid lines are from numerical
simulations. Because the constituent MBSs are strongly overlapping
in (a), there is no robust near-zero-energy ABS in the topologically
trivial phase in the absence of a proximitized region (δx = 0) in the
QD. The black dashed lines mark the QD-SC boundary at x = x0.
Parameters used were V = −1.5t0, ∆ = t0 and t = 10t0.

boundary (∆ 6= 0, V 6= 0), and a finite length Kitaev chain
(∆ 6= 0, V = 0). As before we assume that the chemical po-
tential µ within the bulk of the Kitaev chain is µ / 0 such that
the chain is in the topologically trivial phase. We also assume
a potential well (V (x) < 0) within the QD region. It follows
that the effective chemical potential within the proximitized
region of the QD satisfies µ̃ ≡ (µ− V (x)) ' 0. Under these
conditions we will use a sinusoidal wave function g0(x) in
the region covered by the pure QD, the wave function given
in Eq. 19 for the proximitized region within the QD (call it
gp(x), with “p” indicating solution valid in the proximitized
region), and the wave function g1(x) appropriate for topolog-
ically trivial phase within the Kitaev chain,

g(x) =


a0 sin (k0x) , (g0 (x))

ape
−λ0x sin(kpx+ δφ), (gp(x))

a1(e(−λ0+k1)x − e2k1L−(λ0+k1)x), (g1(x))
(28)
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(a)

(b)

(c)

(d)

FIG. 5. (Color online) Wave functions for the lowest energy mode
of a Kitaev chain coupled to a QD where the QD contains a prox-
imitized region of finite length δx (see Fig. 3)). (a) Wave functions
for the lowest energy modes within the bare QD (yellow), the prox-
imitized part of the QD (green), and the bulk Kitaev chian (orange),
plotted using analytical results based on Eq. 28 (dotted lines) and
direct numerical solutions using a tight binding Hamiltonian (solid
lines). Here, the parameters are such that the proximitized region of
the QD satisfies µ − V > 0, with V = −2.5t0, while the Kitaev
chain is topologically trivial with µ = −1.25t0. (b)-(d) Spatial pro-
files of the component pair of MBSs of a partially separated ABS
for the proximitized regions of various lengths δx. (b) shows the
MBSs corresponding to the wave functions in (a). Samples are taken
for values corresponding to the crossed diamonds in Fig. 6(c). The
MBSs are separated on the order of the length of the proximitized re-
gion δx within the QD, marked by the black dotted lines. The figures
illustrate that the ps-ABSs form essentially because the proximitized
region in the QD satisfies the effective chemical potential µ̃ > 0,
partially decoupling the ABS into a pair component MBSs, which
are then spatially separated by the width of the proximitized region.
Here the dot length is x0 = 30, the total length of the QD-Kitaev
chain is L = 100, the hopping energy is t = 2.5t0, and supercon-
ducting pairing potential is ∆ = t0.

in which a0, ap, and a1 are normalization factors,
k0, k1, and λ0 are as defined earlier, and kp =√

(µ+ E − V )− (∆/2)
2. A phase factor δφ is introduced

for gp(x) because there are no fixed boundary values for the
region x ∈ [(x0 − δx) , x0]. Matching the boundary condi-
tions at x = x0 − δx for g0(x) and gp(x) and at x = x0
for gp(x) and g1(x) will result in a pair of energy dependent
transcendental equations given as Eq.29 which can be solved
numerically for E and δφ.

λ0 + k0 cot(k0(x0 − δx)) = kp cot(kp(x0 − δx) + δφ)

kp cot(kpx0 + δφ) = −k1 coth (k1(L− x0))

(29)

Once the eigen energy E is know, wave vectors k0, kp, k1
could be derived as well. The coefficients (a0, ap, a1) for the
wave functions in Eq. 28 are then found by substituting the
values E, δφ back into the boundary value equations. The
term e−λ0x sin(kpx + δφ) for the proximitized region will
show a pair of spatially separated MBSs which are separated
by the length of the proximitized region forming inside the
QD.

The lowest energy BdG wave functions based on Eq. 28,
shown in Fig. 5(a), illustrate the critical importance of the
proximitized region within the QD. When the effective chem-
ical potential within the proximitized region µ̃ ' 0, the solu-
tion given in Eq. 19 is used, implying the formation of a pair
of MBSs at the boundaries of the proximitized region. One of
this pair of component Majorana bound states can “leak” into
the normal part of the QD, while the other bound state remains
localized within the QD, effectively separating the MBSs.58,59

When the MBSs are separated on the order of the character-
istic energy decay length ζ ∝ q−1F (as defined in Eq. 18) they
form a ps-ABS50,51 as shown in Fig. 5(b)–(d) (where only the
first 60 sites of the QD-chain is shown). We now define the
overlap between the pair of component MBSs in terms of spa-
tial integral of the product of the absolute values of the wave
functions, 〈φL|φR〉 =

∫
dx|φL||φR|. Plotting this overlap

〈φL|φR〉 as a function of the length of the proximitized region
δx as in Fig. 6 shows that if δx = 0, as shown in Fig. 6(a),
there is a strong overlap (in red) throughout the topologically
trivial region (µ < 0), signaling the presence of an ABS com-
prised of a pair of strongly overlapping MBS. On the other
hand a proximitized region of finite length δx ' 5 within the
QD allows for the formation of a robust low overlap (in blue)
region, even in the topologically trivial regime, signaling the
presence of a ps-ABS. As the length of the proximitized re-
gion δx increases, the overlap between the left and right MBSs
comprising a ps-ABS decreases exponentially (Fig. 6(c)) even
when the bulk of the Kitaev chain is in the topologically trivial
regime.

For a partially proximitized QD of length x0 = 30 attached
to a Kitaev chain of length δL, in which the effective potential
within the proximitized region of the dot is µ̃ ' 0 and the Ki-
taev chain is topologically trivial, the overlap between the left
and right MBSs 〈φL|φR〉 decreases with increasing length of
the Kitaev chain δL, due to a portion of one of the component
MBS leaking into the Kitaev chain. Fig. 7 shows results for a
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(a) (b)

(c)

FIG. 6. (Color online) Overlap between the left and right MBSs
〈φL|φR〉 of a partially separated ABS, as a function of the width
of the proximitized region δx within the QD, and chemical potential
µ, for a potential well (a) and a potential barrier (b) in the QD re-
gion. Since the mechanism for the formation of the ps-ABS involves
the effective chemical potential (µ̃ = µ − V ) in the proximitized
part of the QD being in the topological regime, the potential well
in the QD region (V < 0) works for the bare µ < 0, while the
potential barrier in the QD region works for the bare µ > 4t. As
the length of the proximitized region δx within the QD approaches
zero, the overlap between the left and right MBSs dramatically in-
creases (red). For finite values of the length of the proximitized re-
gion δx ≥ 5 minimal overlap between the left and right MBSs (blue)
can be seen within the topologically trivial regime, µ ∈ {−2.5t0, 0}
(a) and µ ∈ {10t0, 12.5t0} (b) supporting the presence of ps-ABSs.
Here δx = 30, L = 100, and t = |V | = 2.5t0. (c) Overlap between
the left and right MBSs as a function of the length of the proximitized
region within the dot. The red line corresponds with vertical line cuts
taken from (a)(dotted red) and (b)(solid red), and the blue line rep-
resents identical values with decreased hopping energy t. The cyan
diamonds and the magenta circles represent the analytical results.
The wave modes for the three black crossed diamonds are given in
Fig. 5

partially proximitized (0 < δx < x0) QD of length x0 = 30
attached to a Kitaev chain of length δL, in which the effective
potential within the proximitized region of the dot is µ̃ ' 0
and the Kitaev chain is topologically trivial (µ < 0). As
shown in Fig. 7(a), the overlap 〈φL|φR〉 decreases with in-
creasing length of the Kitaev chain δL, owing to the fact that
one of the component MBS of the ps-ABS can relax into the
topologically trivial Kitaev chain. In Fig. 7(a) three different
δL for t = 5t0 and x0 = 30 are analyzed, showing a re-
duction in overlap between the left and right MBSs compris-
ing a ps-ABS with increasing length of δL. The oscillation

(a)

(b)

(c)

FIG. 7. (Color online)(a) Overlap of the left and right MBSs
〈φL|φR〉 of a partially separated ABS as a function of chemical po-
tential µ for a Kitaev chain of varying length δL coupled to a QD
which with a finite proximitized region of length δx = 5. Increas-
ing the length of the Kitaev chain δL decreases the overlap between
the left and right modes. The overlap value 0.1748 is significantly
reduced to 0.06 for µ marked by the black dashed line. (b)-(c) Ma-
jorana wave functions for the lowest energy modes of a QD-Kitaev
chain associated with red diamonds in (a) for numerical simulation
(b) and analytical results based on Eq. 26 (c). Significant portions of
the mode distribution leak into the Kitaev chain region δL, reducing
the overlap between the left and right modes, increasing the robust-
ness of the ps-ABS. Here t = 5t0, x0 = 30,∆ = t0, V = −2.5t0
were used.

of 〈φL|φR〉 with µ can be attributed to the oscillation of the
wave functions (∼ sin(kFx)) when the boundary conditions
are matched at x = (x0 − δx) and x = x0. The reduction
in overlap between the left and right MBSs is less prevalent
between δL = 5 and δL = 10 than between δL = 0 and
δL = 5, signaling that only the part of the Kitaev chain adja-
cent to the QD-Kitaev chain interface controls the relaxation
of the MBS, and the progressive decrease of the wave function
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overlap in the ps-ABS, as expected. Analytical results for the
square of the absolute values of the MBSs associated with the
red diamonds in Fig. 7(a) are shown and compared to numeri-
cal simulation in Fig. 7(b)–(c), where a significant fraction of
the probability density is shown to leak into the superconduct-
ing region of the Kitaev chain. This leads to a lower overlap
between the left and right MBSs, decreasing the amplitudes
of the splitting oscillations in ps-ABS compared to those for
topological MZMs for an equivalent bare (without the quan-
tum dot) Kitaev chain of length x0, as shown in Fig. 8.

V. DISCUSSION AND CONCLUSION

In this paper, we have analytically solved the problem
of a finite-length Kitaev chain coupled to a quantum dot.
This problem, in addition to being a valuable extension of
the classic Kitaev chain problem, is an effective represen-
tation of a system investigated in recent Majorana exper-
iments: a spin-orbit coupled quandum dot-semiconductor-
superconductor hybrid nanowire in the presence of a Zeeman
field. Here, the quantum dot is defined by a portion of the SM
wire not covered by the epitaxial SC, which can be under an
electric potential controlled using external gates. In this pa-
per we take the QD potential as a step-like potential well, as
shown in Fig. 3(a). The assumption of a step-like potential
well in the quantum dot region produces an effective potential
profile that is manifestly different from the smooth confine-
ment potential at the end of the SM-SC system as considered
in Ref. [32]. Specifically, while the pair of component MBSs
that constitute a robust near-zero-energy ABS in the presence
of smooth confinement potential32 originate from two differ-
ent spin channels of a confinement-induced sub-band53, in
the case of a potential well in the QD region, the compo-
nent MBSs originate from the same spin channel as shown
in Fig. 9(c). The simulation results based on the experimen-
tal QD-SM-SC heterostructure with a potential-well like QD
are shown in Fig. 9. The spectrum shows a robust near-zero-
energy state in the topologically trivial phase for values of the
magnetic field smaller than the critical field Bc required for
a topological quantum phase transition (Bc =

√
µ2 + ∆2

0,
with µ = −4t0,∆0 = t0). The square of the amplitude
of the wave functions of the component MBSs correspond-
ing to this topologically trivial state for B = 3.4t0 (marked
as a black dot in Fig. 9 (a)) are plotted in Fig. 9 (b). The
spin polarization profile of a BdG state could be defined as
〈sν(x)〉 = 1

2

∑
s,s′ u

∗
s(x)[σν ]ss′u(x)s′ , where u(x) is the

electron component in the BdG basis, ν is the x, y, z spin
component, σν is the corresponding Pauli matrix53,54. The
spin polarizations 〈sx〉 of the component MBSs of the ABS
for B = 3.4t0 are shown in Fig. 9(c). It is clear that the two
MBS components of a ps-ABS nucleated in a step-like po-
tential well have the same spin polarization, i.e., the QD-SM-
SC hybrid structure with a potential-well like QD supports a
ps-ABS state coming from the same spin channel. Conse-
quently, while the topological properties of the QD-SM-SC
hybrid structure with local step-like dot potential well can
be understood using an effective representation in terms of

(a)

(b)

(c)

(d)

FIG. 8. (Color online) Lowest energy eigenvalues plotted with ef-
fective chemical potential for a Kitaev chain with QD in the topo-
logically trivial phase (solid blue) and bare Kitaev chain of length
equal to the QD in the topological phase (dashed red) with different
parameters t,∆, and the length of the proximitized region δx. The
parameters x0 = 30, L = 100 indicate a dot-chain system with a
total length of 100 sites attached to a QD with 30 sites with the ef-
fective chemical potential in the QD µ̃ = µ − V . The parameters
x0 = 0, L = 30 indicate a bare Kitaev chain of length 30 sites (and
no QD), with the effective chemical potential µ̃ = µ (V = 0 in the
bare chain). We fix µ = −0.05t0 for the dot-chain system and vary
the dot potential V in a range such as µ̃ > 0 within the QD, which
varies within the same range as that for the bare Kitaev chain. The
lowest energy in the topologically trivial (µ < 0) dot-chain system
(i.e., the ps-ABS) shows a significantly suppressed energy splitting
as compared to that of the topological (µ̃ = µ > 0) Kitaev chain
of length x0. We have length of the proximitized region δx = 10 in
(a)-(c), and δx = 30 in (d). Parameters t,∆ are as given.

a Kitaev chain (which has a single spin channel) coupled to a
QD, as discussed in the present work, the SM-SC heterostruc-
ture with a smooth confinement potential32 cannot be analyzed
within such a representation.

Our key analytical result for the Kitaev chain coupled to
a QD is demonstrating the existence of a robust near-zero-
energy ABS (localized in the QD region) in the topologically
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(a)

(b)

(c)

FIG. 9. (Color online) (a) Energy spectrum for an experimental SM-
SC heterostructure attached to a potential well-like QD (V (x) ≤ 0)
where the QD potential and SC pairing potential are given schemati-
cally in the top panel in(b) with potential depth |V (x)min| = 5.5t0,
and µ = −4t0,∆0 = t0. For these parameters the critical phase
transition point is Bc ∼ |µ| = 4t0, where the bulk gap closes sig-
nifying a topological transition. As can be seen, in the presence of
the QD, a robust near-zero-energy state is also present in the topo-
logically trivial phase, i.e., for B < Bc. The spatial profile for the
amplitude of the square of the wave function at µ = 3.4t0 is shown
in the bottom panel in (b), where we have the two MBS components
of a ps-ABS state, separated by the QD size x0 ∼ 50. The spin
density profile 〈sx〉 for the ps-ABS state is plotted in (c), where we
see that the two MBS components are characterized by the same spin
polarization, i.e., the spin polarizations are mainly in the negative sx
direction in both cases. Here length L=200 sites.

trivial phase (µ < 0) of the Kitaev chain. By contrast, topo-
logical near-zero-energy MZMs separated by the chain length
L are the lowest energy excitations in the topological super-
conducting phase (µ > 0) of the Kitaev chain. Our analysis
reveals the crucial importance of a slice of the QD being prox-

imitized, which may correspond in the experiments to the po-
tential barrier slightly penetrating into the region covered by
the SC. We show that only in the presence of such a slice
of proximitized region in the QD, the eigenvalue equation
and the boundary conditions admit a robust, near-zero-energy,
subgap ABS in the topologically trivial phase of the Kitaev
chain. Furthermore, the component pair of MBSs of this topo-
logically trivial ABS are spatially separated by the width of
the proximitized part of the QD, leading to the so-called par-
tially separated ABSs (ps-ABS) and the resultant robustness
to local perturbations of the zero bias conductance peaks in
tunneling measurements,51 as seen in the experiments.25 For
a meaningful comparison with experiment, the properties of
the proximitized region (namely, its width and the position-
dependence of the induced gap) should be determined by a
self-consistent solution of a spinful interacting model of the
semiconductor-superconductor nanowire heterostructure cou-
pled to a quantum dot, which is left for future work. On the
other hand, performing such a study in the context of the ef-
fective model consisting of a spinless Kitaev chain coupled
to a quantum dot is not expected to generate experimentally-
significant results and is beyond the scope of the present work.

The analytical calculations also reveal that the ps-ABSs ap-
pear whenever the effective chemical potential in the proxim-
itized part of the QD µ̃ = µ − V ' 0, allowing the partial
decoupling of the component MBSs and nucleating a ps-ABS
in the QD, even though the bulk of the Kitaev chain may be
in the trivial phase µ < 0. In the present case, this requires a
potential well V < 0 in the QD near the Kitaev chain TQPT at
µ = 0. Near the Kitaev chain TQPT at µ = 4t, the conditions
µ̃ = µ − V / 4t and µ > 4t in the bulk of the chain require
the presence of a potential barrier (V > 0) at the QD. In the
analogous spin-full problem of the QD-SM-SC heterostruc-
ture the nucleation of a ps-ABS in the proximitized part of the
QD can take place in the presence of either a potential well
(V < 0), or a potential barrier (V > 0), but the separation of
the component MBSs (hence, the robustness of the ps-ABS)
is typically stronger for V > 0.50,51. Finally, we also find the
important result that the energy splittings in the ps-ABS are
significantly suppressed than the energy splittings expected in
a bare topological segment of equivalent length (typically, the
size of the QD), because the component MBS of a ps-ABS
localized near the QD-SC interface can relax into the adjacent
Kitaev chain which is in the topologically trivial phase.
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