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We study Josephson effect in the multiterminal junction of topological superconductors. We use symmetry-
constrained scattering matrix approach to derive band dispersions of emergent sub-gap Andreev bound states
in a multidimensional parameter space of superconducting phase differences. We find distinct topologically
protected band crossings that serve as monopoles of finite Berry curvature. Particularly, in a four-terminal
junction the admixture of 2π and 4π periodic levels leads to an appearance of a finite energy Majorana-Weyl
nodes. This topological regime in the junction can be characterized by a quantized nonlocal conductance that
measures the Chern number of the corresponding bands. In addition, we calculate current-phase relations,
variance, and cross-correlations of topological supercurrents in multiterminal contacts and discuss universality
of these transport characteristics. At the technical level these results are obtained by integrating over the group
of a circular ensemble that describes the scattering matrix of the junction. We briefly discuss our results in
the context of observed fluctuations of the gate dependence of critical current in topological planar Josephson
junctions and comment on the possibility of parity measurements from the switching current distributions in
multiterminal Majorana junctions.

I. INTRODUCTION

The universality of conductance fluctuations (UCF) is the
hallmark of mesoscopic physics [1–4]. This phenomenon
emerges from the quantum coherence of electron trajectories
and is sensitive to changes in external magnetic field or gate
voltage. At temperatures below the Thouless energy, T < ETh,
which is related to the inverse dwell time for an electron to dif-
fuse across the sample ETh = D/L2, root-mean-square value
of conductance fluctuations saturates to the universal value of
order conductance quantum ∼ e2/h as long as characteristic
sample size L is smaller than dephasing length L < Lφ. Inter-
action effects in normal metals barely change the magnitude
and universality of conductance fluctuations although they are
crucially important in determining temperature dependence of
dephasing effects and in particular Lφ [5]. Robustness of UCF
can be rooted to random matrix theory description of Wigner-
Dyson statistics of electron energy levels in disordered con-
ductors [6]. Indeed, in the Landauer picture of transport across
a mesoscopic sample, conductance is given by e2/h times the
number of single particle levels within the energy strip of the
width of Thouless energy. While the average number of such
levels depends on the dimensionality, random matrix theory
predicts that their fluctuation is universally of the order of one
[7, 8].

When superconductivity is induced at the boundary of the
mesoscopic sample via the proximity effect universality of
fluctuations remains intact [9, 10]. Indeed, the magnitude
of sample-to-sample conductance fluctuations changes only
by a numerical factor of the order of unity whose value de-
pends on the underlying symmetry [11, 12]. Interestingly,
universality of fluctuations extends beyond conductance as it
also manifests in the Josephson current of SNS bridge. In-
deed, extending the original ideas of Altshuler and Spivak
[13], who argued that random shifts of sub-gap energy levels
with superconducting phase difference would alter the current,
Beenakker showed [14] that in short junctions, L � ξ, where
ξ is the superconducting coherence length, root-mean-square

value of critical current fluctuations saturates to a universal
bound ∼ e∆/h determined only by superconducting energy
gap ∆ in the leads. Further a complete characterization of
the supercurrent variance as a function of phase across the
point contact Josephson junction was computed by Chalker
and Macêdo [15]. In long junctions, L � ξ, supercurrent fluc-
tuations cease to be universal and scale with ∼ eETh/h. How-
ever a remarkable property of these fluctuations is that there is
a regime where the entire critical current through the junction
can be determined by the mesoscopic contribution when the
average current is suppressed.

In recent years the interest in Josephson physics has shifted
towards junctions whose elements either include topological
materials [16–24] or where topological properties are enabled
by a specific design of the hybrid-junction with otherwise con-
ventional materials [25–29]. These possibilities and advances
motivate our work to investigate how universal mesoscopic ef-
fects manifest in topological Josephson junctions that in par-
ticular host Majorana states (see review [30] and references
therein). We carry out this analysis in the context of multi-
terminal devices that were brought into the spotlight of recent
theoretical attention with the observation that they can emu-
late topological matter [31–39], which triggered experimental
efforts in realizing these systems in various proximitized cir-
cuits [40–44].

The rest of the paper is organized as follows. In Sec. II we
briefly review symmetry-constrained scattering matrix trans-
port formalism in application to Josephson effect in multi-
terminal circuits. In Sec. III we apply these methods to
two-terminal junction as a benchmark, and then extend our
analysis to three- and four-terminal devices where we com-
pute emergent band structure of sub-gap states, investigate
their topology, and derive transport characteristics such as
transconductance and supercurrent. In Sec. IV we focus our
attention on the statistical properties of topological supercur-
rents and obtain analytical results for variance that takes a
universal form and also inherits 4π periodicity of Majorana
Josephson effect.
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II. SCATTERING MATRIX FORMALISM

Consider a Josephson junction (JJ) where n superconduct-
ing (S) terminals are connected through the common normal
(N) region, thus forming a multiterminal SNS contact. To
keep the presentation simple, we assume that each supercon-
ducting lead is coupled by only a single conducting channel
in the normal region and both time-reversal and chiral sym-
metries are broken (unconventional classes D and C [30]).
Formation of the sub-gap bound states in the JJs is the re-
sult of coherent Andreev reflections that describe electron-to-
hole conversion at the superconductor-normal interface. In
n-terminal junctions an elastic scattering event at energy ε is
characterized by a scattering matrix Ŝ (ε) ∈ U(2n) where “2”
denotes the particle-hole degrees of freedom. In what follows
we assume that all leads have the same superconducting gap
∆ and normalize all energies in units of ∆. The particle-hole
(PH) symmetry is represented by

Ŝ (ε) = PŜ (−ε)P−1, (1)

where the antiunitary PH transform P falls into two categories
P2 = ±1. For example, for s-wave paring, P = τ̂1K (P2 =

+1) in spin-nondegenerate case, and P = iτ̂2K (P2 = −1) in
spin-degenerate case, where τ̂1,2,3 are the Pauli matrices act-
ing in particle-hole space and K denotes the complex conju-
gation. The Andreev bound state energies are determined by
the determinant equation [14]

Det[I2n − R̂A(ε, θ̂)Ŝ N(ε)] = 0. (2)

Here Ŝ N(ε) is the scattering matrix of the normal region, and
R̂A(ε, θ̂) is the scattering matrix describing Andreev reflec-
tions, where θα ∈ {θ0, θ1, · · · , θn−1} is the diagonal matrix of
superconducting phases. We set θ0 = 0 owing to global gauge
invariance. Due to the PH symmetry Eq. (1) these scattering
matrices take the block-diagonal forms

Ŝ N(ε) =

[
ŝ(ε) 0
0 ŝ∗(−ε)

]
,

R̂A(ε, θ̂) = e−i arccos ε
[

0 eiθ̂

−P2e−iθ̂ 0

]
, (3)

where ŝ(ε) ∈ U(n). The determinant in Eq. (2) simpli-
fies further to a degree-n characteristic polynomial of γ(ε) ≡
e−2i arccos ε,

Pn(γ; θ̂, ε) ≡ Det
[
In + P2γ(ε)eiθ̂s∗(−ε)e−iθ̂s(ε)

]
. (4)

which is (anti)palindromic P2nγnPn(γ−1) = Pn(γ). Impor-
tantly, from Eq. (4) we observe that, for a fixed normal-region
scattering matrix ŝ, the Andreev bands of P2 = ±1 symmetry
classes are dual via the relation

ε2
P2=+1(θ̂) + ε2

P2=−1(θ̂) = 1. (5)

Previously, we have extensively discussed the P2 = −1
scenario in application to three- and four-terminal junctions
[34, 35]. In this work we primarily focus on the Andreev
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FIG. 1. [Color online] (a) Energy spectrum [Eq. (10)] and (b) Joseph-
son current [Eq. (11)] for P2 = +1 two-terminal topological Joseph-
son junctions. We take T = 0.7 and φ = π. The red (blue) curves are
the results for topologically nontrivial leads P2 = +1 (topologically
trivial leads P2 = −1). In panel (a) the black dashed lines indicate
the continuum edge ε = E/∆ = 1.

spectrum of P2 = +1 junctions that can support zero-energy
Majorana modes. In what follows, we also assume energy-
independent scattering matrices ŝ that corresponds to, for ex-
ample, weak links where length of the junction is small com-
pared to the superconducting coherence length, L � ξ, so that
retardation effects of traveling quasiparticles can be neglected.
We note that the existence of Majorana zero modes does not
depend on this assumption.

To study energy spectra of emergent states in junctions with
P2 = +1 terminals, we introduce the scattering matrix at ε =

0,

Ŝ 0 ≡ R̂A(0, θ̂)Ŝ N = i
[

0 −eiθ̂ ŝ∗

e−iθ̂ ŝ 0

]
, (6)

that belongs to the circular real ensemble since DetŜ 0 =

(−1)n. Via Eq. (2) the zero-energy Majorana modes are deter-
mined by the determinant equation of an antisymmetric matrix
m̂(θ),

Det[m̂(θ̂)] = 0, m̂(θ̂) = e−iθ̂/2 ŝeiθ̂/2 − eiθ̂/2 ŝT e−iθ̂/2. (7)

From here we draw important properties. (i) For n ∈ odd,
Eq. (7) is generally satisfied for any scattering matrices ŝ and
phases θ̂. This implies that Andreev-Majorana zero modes are
present at any phases and robust to elastic scattering and su-
perconducting order parameter nonuniformity. These nondis-
persive flat bands do not contribute to Josephson currents. (ii)
For n ∈ even, the Andreev bands cross at zero energy at phases
determined by the Pfaffian equation

Pfn∈even[m̂(θ̂)] = 0. (8)

Based on our study on two- and four-terminal junctions, we
conjecture that there always exist a pair of Majorana zero-
modes modes on an (n − 2)-dimensional hypersurface in the
θ = (θ1, · · · , θn−1) space described by Eq. (8). Next we reveal
the energy spectrum of the junction for several concrete forms
of the scattering matrix.
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III. MULTITERMINAL JOSEPHSON EFFECT

A. Two-terminal junctions

We first study two-terminal junctions as a benchmark. We
parametrize the 2 × 2 unitary matrix ŝ by four independent
parameters,

s =

[√
1 − Teiϕ00

√
Teiϕ01

√
Teiϕ10 −

√
1 − Tei(ϕ01+ϕ10−ϕ00)

]
, (9)

where T ∈ [0, 1] representing the normal-region transmission
and scattering phases ϕ00,01,10 ∈ [0, 2π]. The sub-gap spec-
trum of excitations is determined by the n = 2 characteristic
polynomial (4) via equation P2(γ) = γ2 +2B2γ+1 = 0, where
the B2-function take the form B2(θ) = 1 − 2T sin2(ϑ/2) with
ϑ ≡ θ−φ+π and φ ≡ ϕ10−ϕ01. The two branches of dispersive
solutions are given by

ε(ϑ) = ±


√

T cos(ϑ/2), P2 = +1,√
1 − T sin2(ϑ/2), P2 = −1,

(10)

where for comparison we remind the results for the conven-
tional P2 = −1 junctions. For finite transmission T , 0,
the n = 2 Pfaffian equation (8) reduces to Pf2(θ) = m01 ∼

cos(ϑ/2) = 0 so that a Majorana crossing occurs at ϑ =

(2k + 1)π with k ∈ Z. The zero-temperature Josephson cur-
rent J(θ) ≡ (2e∆/~)∂θε takes the form

J(ϑ) = ±
e∆

~
×


√

T sin(ϑ/2), P2 = +1,
T sinϑ/4ε(ϑ), P2 = −1.

(11)

Typical energy dispersion and supercurrent-phase relation are
shown in Fig. 1. We note that for φ = π double-degenerate
Majorana states emerge at θ = π and the energy and supercur-
rent exhibit 4π periodicity in θ. In addition, the bound states
are detached from the continuum with a minimal gap 1 −

√
T

at θ = 0 and 2π. Equations (10) and (11) are consistent with
the prior results, e.g. Ref. [45].

B. Three-terminal junctions

For n = 3 the spectrum of localized states is determined by
the palindromic polynomial P3(γ) = (γ+1)(γ2 +2B3γ+1) = 0
and composed of three bands,

ε±(θ) = ±

√
1 − B3(θ)

2
, ε0(θ) = 0. (12)

Adopting the same parametrization of the scattering matrix
as in Ref. [34] the B3-function can be found in the closed
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FIG. 2. [Color online] Energy spectrum and Josephson current for
P2 = 1 three-terminal junctions. We take c =

√
1 − b2, a = 0.3,

and ϕ = φ1 = φ2 = π. (a) Chern number as a function of b. (b)-(d)
Andreev spectra at b = 0.5, b0 = 1/

√
2, and 0.8. (e) and (f) Joseph-

son currents J1,2 as functions of θ1,2 at b = b0. Panel (e) shows a
hedgehog-like pattern of the current flow about the Weyl node. Panel
(f) shows J1,2 as a function of θ1 for various values of θ2.

analytical form

B3 =
1
2

[
2a2 − (1 + a2)(b2 + c2 − 2b2c2)

−4abc
√

(1 − b2)(1 − c2) cosϕ
]

+ bc(1 − a2) cosϑ1 + (1 − a2)
√

(1 − b2)(1 − c2) cosϑ2

+
[
bc(1 + a2)

√
(1 − b2)(1 − c2) + a(b2 + c2 − 2b2c2) cosϕ

]
× cos(ϑ1 − ϑ2) + a(b2 − c2) sinϕ sin(ϑ1 − ϑ2). (13)

Consequently, there are only six independent parameters of
the scattering matrix {a, b, c, ϕ, φ1,2} that enter the spectrum of
Andreev bound states (ABS). Furthermore, scattering phases
φ1,2 only shift the phases of the leads ϑ1,2 = θ1,2 − φ1,2.

Depending on the choice of scattering matrix parameters
we find rich behavior of the energy bands. For a special case
c =
√

1 − b2 and φ = π the spectrum exhibits nontrivial topol-
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ogy, as shown in Fig. 2. Zero-energy Weyl points appear at
ϑ1,2 = 0 for b = b0 = 1/

√
2 [Fig. 2(b)-(d)]. As shown in

Fig. 2(a), the Chern number of corresponding band structure
exhibits a sign jump C12 = sgn(b0 − b) for b → b0. We also
note that the other topological phase transitions for b ≈ 0.28
and 0.96 are related to the gap closing/reopening at the An-
dreev band edge ε = 1. Figure 2(e) displays Josephson cur-
rents J1,2 in two terminals when the system is tuned to the
nodal gapless states. In Fig. 2(f) the series of one-dimensional
cuts in either θ1 phase or θ2 show how Josephson currents
change as one tunes to the vicinity of nodal points. We ob-
serve that moving across the node currents exhibit discontin-
uous jumps. Note that the Majorana flat band ε0 = 0 does not
contribute to the Josephson current.

C. Four-terminal junctions

The energy spectrum of four-terminal junctions can host
Majorana zero modes and Weyl nodes simultaneously. The
four Andreev bands determined by the palindromic equation
P4(γ) = γ4 + A4γ

3 + B4γ
2 + A4γ + 1 = 0 are given explicitly

by the following expressions

ε(θ) = ±

√√√
4 − A4 ±

√
A2

4 − 4B4 + 8

8
, (14)

where the A4- and B4-functions are defined by

A4 = A0 + 2
∑
j>0

<[A je−iθ j ] + 2
∑

0< j<k

<[A jke−iθ jk ],

B4 = B0 + 2
∑
j>0

<[B je−iθ j ] + 2
∑

0< j<k

<[B jke−iθ jk ]

+ 2
∑

jkl∈P123

<[B jkle−iθ jkl ]. (15)

Here we have used short-hand notations for phases θ jk ≡

θ j− θk, θ jkl ≡ θ j + θk − θl, permutations P123 ∈ {123, 312, 231},
and<[·] denotes the real part of a complex number. Addition-
ally parameters A and B are functions of the scattering matrix
elements {s jk}. Specifically

A0 =

3∑
j=0

|s j j|
2, A j = s∗0 js j0, A jk = s∗k js jk, (16)

and

B0 =
∑
j<k

|s j j;kk |
2, B j =

∑
k,0, j

s∗0k;k js jk;k0,

B jk =
∑
l, j,k

s∗kl;l js jl;lk, B jkl = s∗0k;l jsk0; jl, (17)

with s jk;lq ≡ s jk slq − s jqslk. The scattering matrix is
parametrized by sixteen real parameters as in Ref. [46], where
{a, b, c, d, h, f } ∈ [0, 1] and ϕ00,11,01,10,02,20,03,30,12,21 ∈ [0, 2π].
An inspection of these expressions reveals that despite the

HaL

HbL HcL

0 1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

Θ3

C
12

HdL Θ2»3.2853

0 2 4 6 8 10 12

-1.0

-0.5

0.0

0.5

1.0

Θ1

¶

HeL

0 2 4 6 8 10 12

0

2

4

6

8

10

12

Θ1

Θ
2

Θ2»3.2853HfL

0 2 4 6 8 10 12

-0.4

-0.2

0.0

0.2

0.4

Θ1

J 1

FIG. 3. [Color online] Energy spectrum for P2 = 1 time-reversal-
broken four-terminal junctions. The scattering matrix parameters are
defined as in Ref. [34]. We take a = 1/4, b = 1/

√
3, c = 1/5, d =

1/2, f = 1/3, h = 4/5, φ1 = φ2 = π, φ3 = 0, φ4 = φ5 = −π/3, and
φ6 = π/6. (a) Chern number as a function of θ3. At θ∗3 ≈ 0.6990 and
5.7883, finite-energy Weyl nodes form at (θ∗1, θ

∗
2) ≈ (3.7785, 3.2853)

and (3.2046, 3.0051) and the spectrum is shown in panel (b) and (c),
respectively. (d) Traces the spectrum in panel (b) at θ2 = θ∗2. Upper
(blue) and lower (red) Andreev bands exhibit 2π and 4π periodic-
ity, respectively. Panel (e) shows the pattern of Josephson currents
J1,2(θ1, θ2) corresponding to the spectrum (b). The hedgehog-like
singularities are present at the Weyl nodes (θ1, θ2) ≈ (θ∗1 + 2π, θ∗2) and
(θ∗1, θ

∗
2 + 2π). (f) Trace of J1(θ1) at θ2 = θ∗2. The dash lines denote the

contribution of upper (blue) and lower (red) bands.

fact that we need ten independent phases to parametrize the
scattering matrix only six effective angles φ1 ≡ ϕ12 − ϕ21,
φ2 ≡ ϕ13 −ϕ31, φ3 ≡ ϕ14 −ϕ41, φ4 ≡ ϕ22 −ϕ23, φ5 ≡ ϕ22 −ϕ32,
φ6 ≡ ϕ11 + ϕ22 − ϕ12 − ϕ21 affect the Andreev spectrum in
Eq. (14). The zero-energy states are determined by the n = 4
Pfaffian equation (8),

Pf4(θ) =
∑

jkl∈P123

[
s0k;l jeiθ jkl/2 + s jl;k0e−iθ jkl/2] = 0. (18)

Via the unitary condition of ŝ, Eq. (18) implies that∑
jkl∈P123

C jkl cos[(θ jkl − ζ jkl)/2] = 0 where Ci jk and ζi jk are
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FIG. 4. [Color online] Josephson-current statistics of the two-
terminal junctions. (a) Josephson-current variance VarJ as a function
of phase variable ϑ [Eq. (22)]. The inserted panel shows the expecta-
tion value 〈J〉. (b) Probability distribution function P(J) for various
phase variables ϑ [Eq. (23)].

real functions of {s jk}. Most importantly, this determines a
Majorana-crossing surface in θ space given by θ jkl = ζ jkl ±
π
2 (mod 2π).

As a practical example, we study the energy bands of this
model for the choice of incommensurate parameters: a = 1/4,
b = 1/

√
3, c = 1/5, d = 1/2, f = 1/3, h = 4/5,

φ1 = φ2 = π, φ3 = 0, φ4 = φ5 = −π/3, and φ6 = π/6. The
energy spectrum, corresponding Chern number, and Joseph-
son currents are shown in Fig. 3. We observe that the lower
bands exhibit 4π-periodicity due to the Majorana crossings
described by Eq. (18). Moreover, at θ3 = θ∗3 ≈ 0.6990
[Fig. 3(b)] and 5.7883 [Fig. 3(c)] finite-energy Weyl nodes
form at (θ∗1, θ

∗
2) ≈ (3.7785, 3.2853) and (3.2046, 3.0051) re-

spectively between one of the higher and lower bands. The
appearance of these nodal points is signaled by a change of
the Chern number [Fig. 3(a)]. At this point we comment that
it has been recently shown that such Majorana-Weyl cross-
ings occur in a different model of a four-terminal junction
formed between the end-states of one-dimensional topologi-
cal superconductors (TS) of class D [39]. It has been pointed
out that a finite Chern number Ci j in this regime is associated
with a quantized transconductance Gi j = (2e2/h)Ci j. We con-
firm this result in our scattering matrix model and remark that
the extra phase transitions in Fig. 3(a) are related to gap clos-
ing/reopening at the band edge ε = 1 that may not be stable
since the higher bands can strongly hybridize with the contin-
uum ε > 1.

The one-dimensional cut of the spectrum in Fig. 3(b) along
θ1 at θ2 = θ∗2 ≈ 3.2853 is shown in Fig. 3(d). The Josephson
currents J1,2 as functions of θ1,2 corresponding to the spec-
trum in Fig. 3(b) are shown in Fig. 3(e), where the hedgehog-
like singularities are present at the Weyl nodes (θ∗1 + 2π, θ∗2)
and (θ∗1, θ

∗
2 + 2π). We note that the other two nodal points at

(θ∗1, θ
∗
2) and (θ∗1 + 2π, θ∗2 + 2π) do not induce current singu-

larities since the higher- and lower-band contributions cancel
each other. This is can be observed in Fig. 3(f) which displays
J1(θ1) along the cut at θ2 = θ∗2.

IV. FLUCTUATIONS IN TOPOLOGICAL JUNCTIONS

In the previous section we studied Josephson current for
the given realization of the scattering matrix. As alluded in
the introduction, this current is expected to display repro-
ducible sample-to-sample fluctuations and it is thus of inter-
est to study its statistical properties. We primarily focus on
its variance and also on the cross-correlation function that
can be experimentally accessed in the multiterminal devices.
As is known from quantum transport theoretical approaches,
statistical transport properties of phase-coherent mesoscopic
systems can be conveniently computed by means of averag-
ing over a random-matrix that describes the system. In open
systems, the averaging is done over the scattering matrix and
one typically considers two models of junctions: chaotic cav-
ities or disordered contacts. The former case is more suit-
able for the model considered in this work. We thus follow
classical works by Baranger and Mello [47], and Jalabert,
Pichard, and Beenakker [48] who studied conduction through
a chaotic cavity on the assumption that the scattering matrix
is uniformly distributed in the unitary group, restricted only
by symmetry. This is the circular ensemble, introduced by
Dyson, and shown to apply to a chaotic cavity by Blumel and
Smilansky [49]. In other words we consider SNS junction
where normal region is a chaotic quantum dot [50].

The probability density ρ(~x), an invariant Haar measure, of
the ŝ-matrix parameters ~x is given by

ρ(~x) ≡
√
|DetM̂(~x)|, Mµν ≡

∑
i, j

∂si j

∂xµ

∂s∗i j

∂xν
. (19)

The distribution function of an observable Q(~x), defined as
P(Q) ≡

∫
d~xρ(~x)δ(Q − Q(~x)), is in practice calculated by the

characteristic function

p(λ) = 〈eiλQ(~x)〉, P(Q) =
1

2π

∫
dλe−iλQ p(λ), (20)

where 〈· · · 〉 ≡
∫

d~xρ(~x)(· · · ) denoting the CUE ensemble av-
erage.

For benchmark we first study the statistics of the Josephson
current J(ϑ) in the two-terminal junctions and take 2∆/~ as the
units of J in the following discussion. From Eqs. (9) and (19)
we obtain a constant invariant measure ρ(T ) = 1. We remind
that this simplicity is specific to unitary case, for instance in
orthogonal symmetry probability density is not flat in T even
for a single channel limit. All the moments as well as the
distribution function of the Josephson current can be obtained
analytically. The m-moment is given by the expression

〈Jm〉 =
2

m + 2
sinm

(
ϑ

2

)
, P2 = +1, (21a)

〈Jm〉 =
1

m + 1

(
sinϑ

4

)m

× 2F1

[
m
2
,m + 1; m + 2; sin2

(
ϑ

2

)]
, P2 = −1,

(21b)



6

FIG. 5. [Color online] Josephson current statistics of three-terminal
junctions. Panels (a, b, c) and (a’, b’, c’) display the results for P2 =

+1 and P2 = −1 junctions, respectively. (a) and (a’) Expectation of
J1 as a function of ϑ1,2. (b) and (b’) Variance of J1 as a function of
ϑ1,2. (c) and (c’) Covariance of J1,2 as a function of of ϑ1,2.

where m ∈ N and 2F1(a, b; c; z) is the hypergeometric func-
tion. Therefore, the variance for P2 = +1 reads

Var J =
1

18
sin2

(
ϑ

2

)
, (22a)

whereas for the non-topological case P2 = −1 is has a differ-
ent look

Var J =
sin2 ϑ

192

[
1 + sin2

(
ϑ

2

)
+

113
120

sin4
(
ϑ

2

)
+ · · ·

]
, (22b)

as depicted in Fig. 4(a). In the topological regime vari-
ance inherits 4π periodicity and has remarkably simple form.
In the non-topological regime, our result is similar to that
of Chalker-Macêdo [15] albeit the different numerical coef-
ficients as they considered multi-mode disordered junction
model where averaging is done over the Dorokhov distribution
of transmission eigenvalues. Finally the Josephson-current

distribution function takes the form for P2 = +1

P(J;ϑ) =
2J

J+
c |J+

c |
Θ

(
|J+

c | −
∣∣∣2J − J+

c

∣∣∣) , (23a)

and for P2 = −1

P(J;ϑ) =
8 Θ

(
|J−c | −

∣∣∣2J − J−c
∣∣∣)

|sinϑ|K
(
J tan ϑ

2

) [
1 + K2

(
J tan ϑ

2

)] , (23b)

where J+
c (ϑ) = sin(ϑ/2) and J−c (ϑ) =

sin(ϑ/2) sgn[cos(ϑ/2)]/2 being the critical currents,
Θ(x) is the Heaviside step function, and the function
K(x) = |x| +

√
1 + x2. As shown in Fig. 4(b), in both P2 = ±1

classes the relation P(J;−ϑ) = P(−J;ϑ) is satisfied. (i) For
P2 = +1, P(J) is a linear function of J for which P(0) = 0 and
the slope is defined by the phase ϑ. In particular P(J) = δ(J)
for ϑ = 2kπ with k ∈ Z. (ii) For P2 = −1, P(J) is smaller
for larger current amplitude and P(J) = δ(J) for ϑ = kπ with
k ∈ Z.

We proceed to study the Josephson-current statistics of the
three-terminal junctions. From Eq. (19) we obtain the proba-
bility density of the effective parameters ~x = (a, b, c, ϕ),

ρ(~x) = Nab

√
(2 − a2)[(1 − a2)(2 − b2) + a2b2 sin2 ϕ]

(1 − a2)(1 − b2)(1 − c2)
, (24)

where N ≈ 1.7671 × 10−2 is the normalization constant. The
numerical results of the expectation value, variance, and co-
variance of J1,2(ϑ1,2) are shown in Fig. 5, where the covari-
ance is defined as CovJ1,2 ≡ 〈J1J2〉 − 〈J1〉〈J2〉. The general
relations 〈Jm

1 (ϑ1, ϑ2)〉 = 〈Jm
2 (ϑ2, ϑ1)〉 and CovJ1,2(ϑ1, ϑ2) =

CovJ1,2(ϑ2, ϑ1) are satisfied. We observe that the variances
and covariances distinguish the P2 = ±1 junctions.

For P2 = +1 three-terminal junctions, by integrating 1 and
2 terminal we can construct an effective two-terminal S-TS
junction [51] which supports a single channel on one lead
(topological), with phase θ0 = 0, and two channels on the
other (conventional), with phase θ = θ1 = θ2. Defining ϑ = ϑ1
and φ = φ2−φ1 in Eqs. (12) and (13), we obtain the Josephson
current through the two leads

J(~x′;ϑ) =
e∆

~

∂θB3(ϑ, ϑ)
4ε±(ϑ, ϑ)

, (25)

that depends on five independent parameters ~x′ =

(a, b, c, ϕ, φ). We present the numerical results of the statis-
tical properties of J(ϑ) for such a configuration in Fig. 6. The
expectation and variance of J as functions of ϑ are shown in
Fig. 6(a). The characteristic function p(λ;ϑ) for various ϑ is
shown in Fig. 6(b). We observe that, for λ � 1, p(λ) ∝ λ−α

with the exponent α being ϑ-independent. We calculate the ϑ-
averaged characteristic function p̄(λ) ≡ 1

2π

∫ 2π
0 dϑp(λ;ϑ) and

fix the exponent α ∼ 0.55. In particular, this analysis enables
us to extract the asymptotic behavior of the full distribution
function P(J) which is found to exhibit a universal power-law
scaling P(J) ∝ J−(1−α) in the limit J � 1.
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FIG. 6. [Color online] Josephson current statistics of S-TS junctions.
(a) Variance of J as a function of ϑ. We present the P2 = −1 results
for comparison. The insert panel show the expectation value as a
function of ϑ. (b) Characteristic function p(λ) for various values of ϑ.
The solid (dash) lines are the real (imaginary) part of p(λ). The insert
panel is the log-log plot for λ � 1. (c) ϑ-averaged characteristic
function p̄(λ). The right insert is the log-log plot for λ � 1.

V. DISCUSSION AND OUTLOOK

In this work we applied methods of scattering matrix the-
ory to study transport properties of multiterminal Josephson
junctions of topological superconductors. We have exam-
ined spectrum of sub-gap states in two-, three-, and four-
terminal configurations and determined that texture of result-
ing Andreev bands in the multidimendisonal parameter space
of superconducting phases can produce nonvanishing fluxes
of Berry curvature. These properties translate into the quan-
tized nonlocal conductances of these devices. We have also
studied current-phase relationships and interaction of super-
currents, as well as their mesoscopic statistical properties. In
particular, we discussed universal regime of current fluctua-
tions and computed supercurrent variance as well as current
cross-correlation function in the topological regime. We close
this work with few comments in relation to existing and future
possible experiments where fundamental physics of multiter-
minal Josephsonic devices could be further explored.

Recently Josephson supercurrent and conductance were
measured as a function of geometry, temperature, and gate
voltage in proximitized planar junction devices comprised of
superconductors and surface states of topological insulator (S-
TI-S junctions) in order to determine the nature of the elec-
tronic transport in these systems. The supercurrent was found
to exhibit a sharp drop as a function of gate voltage, see Figs.
(2) and (6) of Ref. [21], superimposed with reproducible noise
whose magnitude was a fraction of the critical current. The
systematic trend in the critical current dependence was ex-
plained by a mechanism related to the relocation of the topo-
logical surface state with respect to trivial conducting two-
dimensional states formed by band-banding near the surface.
In real space, a negative gating potential pushes the trivial
state below the topological surface states, exposing the topo-
logical state to the disordered surface of the TI. As a result,

the magnitude of the supercurrent changes sharply. The noise
was attributed to the percolation effects as near the voltage
threshold it is likely that local charge fluctuations cause the
path of the supercurrent to be highly meandering. We wish
to point out that there is possibly for an alternative picture as
this noise could be of mesoscopic origin. This evidence is
further supported by observed similar reproducible noise fea-
tures in Fraunhofer magneto-oscillations of the critical cur-
rent. While our model is not directly applicable to S-TI-S
junctions we draw an observation that the magnitude of cur-
rent fluctuations is consistent with the expectations that disor-
der scattering causes observed mesoscopic effects.

In addition, we wish to comment that related statistical
properties of supercurrents can be also studied by measur-
ing switching current distributions. In particular, for topo-
logical Josephson devices, the critical current measurements
can potentially enable determining the parity state of a Majo-
rana fermion (pair) in a junction since supercurrent acquires
an anomalous fractional component due to Majorana modes,
± sin(ϑ/2), where the sign encodes the parity. The typical
switching measurement is performed by ramping the bias cur-
rent through the junction to detect the current value at which
the junction jumps to the finite voltage state. By repeating
this protocol many times and accumulating statistics of ran-
dom supercurrent switching events (as previously successfully
implemented in various mesoscopic proximity circuits, e.g.
nanowires and graphene layers [52, 53]), one expects to re-
veal a bimodal distribution indicating the two parity states.
If the separation of the two peaks in this distribution is wide
enough, one can detect (with some fidelity) the parity state.
Mutiterminal devices considered in this work can provide an
actual hardware platform to conduct such experiments and our
transport theory will be useful in modeling future measure-
ments. In particular, knowledge of current-phase relationship
is needed for determining the energy barrier of a phase slip
that triggers the switching. Furthermore, these developments
are also inspired by the potential application of multiterminal
devices in design of protected superconducting qubits.
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