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The intense search for topological superconductivity is inspired by the prospect that it hosts
Majorana quasiparticles. We explore in this work the optimal design for producing topological
superconductivity by combining a quantum Hall state with an ordinary superconductor. To this end,
we consider a microscopic model for a topologically trivial two-dimensional p-wave superconductor
exposed to a magnetic field, and find that the interplay of superconductivity and Landau level
physics yields a rich phase diagram of states as a function of µ/t and ∆/t, where µ, t and ∆ are the
chemical potential, hopping strength, and the amplitude of the superconducting gap. In addition
to quantum Hall states and topologically trivial p-wave superconductor, the phase diagram also
accommodates regions of topological superconductivity. Most importantly, we find that application
of a non-uniform, periodic magnetic field produced by a square or a hexagonal lattice of h/e fluxoids
greatly facilitates regions of topological superconductivity in the limit of ∆/t → 0. In contrast, a
uniform magnetic field, a hexagonal Abrikosov lattice of h/2e fluxoids, or a one dimensional lattice
of stripes produces topological superconductivity only for sufficiently large ∆/t.

I. INTRODUCTION

Quasiparticle excitations in certain two dimensional
(2D) condensed matter systems can possess exotic any-
onic statistics that are fundamentally different from the
familiar bosonic and fermionic statistics1,2. One ex-
ample of such quasiparticle excitations is the Majorana
zero mode (MZM)3–5, which obeys non-Abelian statis-
tics and has motivated ideas on topological quantum
computation2,6–8. MZM can appear as a gapless quasi-
particle excitation at the boundary or inside the vortex
core of a topological superconductor (TSC). Intensive ex-
perimental effort has focused on the realization of TSC
and the measurement of MZMs and their non-Abelian
statistics in a variety of systems, including 5/2 fractional
quantum Hall (QH) state9 (which can be viewed as a
TSC of composite fermions), p-wave Sr2RuO4 supercon-
ductors (SCs)10, semiconductor nanowires in proximity
to SCs under magnetic fields11–17, magnetic ion chains
on top of SC substrates18, the surface of (Bi,Sb)2Te3 in
proximity to SCs19–21, the surface of Fe(Se,Te) SCs22–25

and the heterostructure with a quantum anomalous Hall
(QAH) insulator coupled to a SC26–28. In the last case,
the interpretation of a recent report of TSC phase28 is
under debate29–31. Proposals have been made for demon-
strating Majorana braiding and non-Abelian statistics
through coherent transport measurement (interferome-
try) in the QAH-SC hybrid systems32.

There are compelling reasons for pursuing TSC phase
induced by coupling a QH state with a topologically triv-
ial SC. First of all, while QAH has so far been seen by
very few groups and requires stringent experimental con-
ditions, QH effect is routinely observed all over the world
in many different materials, which offers much flexibility
in coupling it to superconductivity; indeed, several pa-
pers have reported supercurrent and Andreev reflection
in this system33–37. Second, the QAH systems are typ-
ically highly disordered with low mobilities due to mag-

netic doping38. In contrast, very high mobilities can be
achieved for QH samples. The resulting long coherence
lengths can be a crucial factor for the success of interfer-
ence measurements that can possibly verify braiding of
emergent anyons. Third, because of higher Landau levels
(LLs), the QH system offers additional structure without
analog in QAH insulators. Finally, it opens the door into
even more exotic particles that appear due to coupling
between fractional QH effect and superconductivity. It
therefore appears surprising that, to our knowledge, no
experiment has made a serious attempt to produce TSC
by coupling QH state with a topologically trivial SC. One
reason is that for coupling between QH state and SC, it
would be necessary for superconductivity to contain a
non-zero p-wave triplet component, and also to survive
to magnetic fields that are sufficiently high to bring the
system into QH regime. This difficulty is currently sur-
mountable, as discussed below. We believe that an im-
portant reason why experimental efforts have not been
made is the absence of realistic proposals. That is the pri-
mary motivation for our study. We find that the most se-
rious conceptual impediment in establishing an effective
coupling between a SC and a QH state is that the latter is
gapped and thus robust to small perturbations, making
it impervious to coupling with weak superconductivity.
A crucial message of our work is that one may circumvent
this problem by considering spatially non-uniform mag-
netic fields, which produces “dispersive” LLs and sup-
ports gapless states for appropriate chemical potentials.
We further find that the feasibility of TSC depends also
on the magnetic flux lattice structure, and identify which
geometries are most hospitable to TSC in the weak cou-
pling limit.

The topological character of the states of interest to us
will be quantified by the Chern number. The QH state
has Chern number C =integer, which corresponds to the
number of LLs below the chemical potential. We will use
the Bogoliubov-de Gennes (BdG) framework to enable a
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treatment of superconductivity. In the BdG formulation,
we can define another Chern number N , defined below,
which is called SC Chern number. In the zero SC gap
limit, a QH state has N = 2C due to the redundancy of
the BdG Hamiltonian. Therefore, any state with even
N is equivalent to a QH state with C = N/2 and not
of interest to us. We define below the states with odd
integer values of N as the TSC states. Such a state
should possess an odd number of chiral Majorana modes
at the boundary and odd number of MZMs trapped at
the core of a vortex. Non-Abelian statistics for the vortex
is only possible for a state with odd N .

In what follows, we explore a microscopic model of 2D
spinless electron system with nearest-neighbor SC pair-
ing subjected to a magnetic field, and obtain the phase
diagram of various states as a function of the chemical
potential (µ), the hopping strength (t) and magnitude of
the superconducting gap (∆). For a uniform magnetic
field, we find, as expected, that a TSC phase requires
the strength of the superconducting coupling to be en-
hanced beyond a critical value to overcome the QH gap.
We therefore consider non-uniform magnetic fields, which
still produce LLs, but the LLs are dispersive (rather than
flat). The most natural model, that of an Abrikosov lat-
tice of h/2e fluxoids, fails to produce TSC for small ∆/t
(see App. D). In contrast, a square lattice of h/e flux-
oids produces an enormously rich phase diagram with
many regions of TSC with various odd N . Most impor-
tantly, even a weak p-wave superconductor (∆/t → 0)
can turn into a TSC for appropriate chemical potentials.
We have also considered a geometry where the magnetic
field forms stripes; this geometry fails to produce TSC
for small ∆/t. Our calculations thus provide insight into
how best to integrate SC gap with LLs to realize TSC.
We also discuss possible experimental manifestations.

II. MODEL HAMILTONIAN

We have in mind a general flux lattice, which can pos-
sibly be realized through a hybrid of 2D electron gas
with p-wave SC grid on top exposed to an external mag-
netic field [Fig. 1(a)]. (The p-wave SC grid serves a dual
purpose: it induces superconductivity and also produces
a magnetic flux lattice.) We model such a hybrid sys-
tem through spinless fermions on a square lattice in the
presence of nearest-neighbor pairing and a perpendicular
magnetic field. (The lattice represents the continuum in
the limit of vanishing lattice spacing. We have confirmed,
as elaborated in App. C, that the results presented below
provide a good qualitative and semi-quantitative approx-
imation of the continuum limit.) One unit cell consists
of N × N lattice sites with lattice spacing a1, as shown
in Fig. 1(b) and (c). We next show results for a uni-
form magnetic field as well as for several kinds of flux
lattices. In the first configuration, depicted in Fig. 1(b),
single flux quanta (h/e) of a square shape are located in
an M ×M square at the center of each unit cell. Fig-
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FIG. 1. (a) Experimental setup for a hybrid system with two-
dimensional electron gas with p-wave superconducting grid on
top under an external magnetic field. (b-c) Schematic of a
unit cell of N ×N lattice points containing one flux quantum
(b) of a square shape; (c) in stripe geometry. In each unit cell
a flux quantum φ0 penetrates through the yellow shaded zone
of (b) M ×M (c) N ×M lattice points. The figures represent
N = 4 and M = 2. The size of unit cell is a and spacing
between lattice points is a1 = a/N .

ure 1(c) shows single flux quanta in an N ×M rectangle
in each unit cell, producing periodic stripes of magnetic
field. In both configurations M = N gives uniformly
distributed magnetic field. (It is noted that the h/e
flux quantum must have a finite extent to have an ef-
fect; a point flux quantum may be gauged away.) The
lattice periodicity is a = Na1 and the lattice vector is
decomposed as ri=(ix,iy) = Rm=(mx,my) + r̃l=(lx,ly) for
(ix, iy) = (Nmx + lx, Nmy + ly) with 0 ≤ lx/y < N ,
0 ≤ mx/y < L , and La being the linear size of the sys-
tem. Here, Rm represents the position of the reference
point in the mth unit cell and r̃l is the internal position
relative to Rm.

The full Hamiltonian with nearest neighbor pairing on
the lattice is given by

H = −t
∑
j,δ

(eiAj+δ,j c†j+δcj + eiAj,j+δc†jcj+δ)

− µ
∑
i

c†ici −∆
∑
j,δ

(cj+δcj + c†jc
†
j+δ) (1)

where ci (c†i) annihilates (creates) a spinless electron at
ri; δ = (1, 0), (0, 1); Aj,j′ = −Aj′,j ; and∑

P

Aj,j′ =

{
2πf inside a flux

0 otherwise
(2)
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FIG. 2. (a) Energy dispersion in the presence of uniform
magnetic field (M = 8) and non-uniform magnetic fields
(M = 4, 6) for N = 8 and ∆ = 0. (b) Energy dispersion
near the Fermi energy for various values of chemical potential
µ in the presence of uniform magnetic field (M = 8) with
N = 8 and ∆ = 0.1.

with P denoting a directional plaquette sum and
f ≡ 1/NP . Here NP is the number of plaque-
ttes though which fluxes penetrate in one unit cell.
(NP = M2 for square-shape flux and NP = NM for
stripe flux.) With ci = 1

L

∑
k e

ik·Rmck,r̃l , where
|kx| ≤ π/a, |ky| ≤ π/a, we can transform the

Hamiltonian into the BdG form on the basis C†k ≡
(c†k,r̃(0,0) , . . . , c

†
k,r̃(N−1,N−1)

, c−k,r̃(0,0) , . . . , c−k,r̃(N−1,N−1)
).

The detailed matrix elements are given in App. A. The
numerical diagonalization of the BdG Hamiltonian gives
2N2 bands of eigen-energies En,k with the eigenvectors
|n,k〉 with n = 1, 2, . . . , 2N2. The SC Chern number N

can be computed by26,39

N =
1

π

∫
d2k

N2∑
n=1

2N2∑
m( 6=n)

Im〈m,k|(∂kxHk)|n,k〉∗〈m,k|(∂kyHk)|n,k〉
(En,k − Em,k)2

,

(3)

and identifies each topological phase in the phase dia-
gram. The Chern number N changes at the boundaries
of two distinct phases where the energy gap closes at some
momentum. Henceforth, the energy is expressed in units
of t. (Note that we have defined the SC Chern number
with respect to half of the bands, rather than with re-
spect to occupied states below the chemical potential. In
cases where the chemical potential lies inside a gap, the
two definitions coincide. We also find some semi-metallic
regions, shown in App. B, where this is not the case.)

III. TSC PHASE AND PHASE DIAGRAM

The energy dispersion of our model Hamiltonian with-
out superconductivity (∆ = 0) is shown in Fig. 2a for
different magnetic flux sizes M . A uniformly distributed
magnetic field (M = N) yields flat Landau levels (cyan
lines in Fig. 2a). For non-uniform magnetic fields, Lan-
dau levels turn into dispersive ”Landau” bands (blue and
red lines in Fig. 2a). The Chern number C carried by
each band is unchanged since there is no level crossing
between different bands. Due to the dispersive bands,
the Fermi surface can appear and the system becomes
metallic for certain ranges of µ, in contrast to the insu-
lating phase of filled Landau levels obtained for a uniform
magnetic field. A SC gap can be opened by turning on
∆. By varying the Fermi energy, multiple Dirac type of
transitions are found, indicating the existence of topo-
logical phase transitions. In Fig.2b, we plot variation of
energy dispersions for several values of chemical poten-
tial µ with ∆ = 0.1 in the presence of uniform magnetic
fields (N = 8,M = 8). At µ = 0 the system lies in a
topologically trivial phase. As µ increases, we observe
successive gap closings at symmetry points Γ, Y, X, and
M. Each gap closing accompanies a unit change in N ,
and accordingly the system is expected to exhibit two
TSC phases, one between the gap closings at Γ and Y
and the other between those at X and M. The numerical
computation of N reveals that the former corresponds to
N = −1 and the latter to N = 1. After the last gap
closing at M, the SC Chern number is 2, corresponding
to C = 1 QH state.

We numerically evaluate the SC Chern number to-
gether with the gap closing momenta in a wide region of
(∆, µ). The resulting phase diagram of SC Chern num-
ber as a function of the Fermi energy µ and SC gap ∆
is shown in Fig. 3 for N = M (uniform B) as well as
N 6= M (non-uniform B). The regions of even N , in-
dicated by hashes, are adiabatically connected, and thus
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FIG. 3. Phase diagram of states for various geometries. Each
phase is characterized by its Chern number N , with different
Chern numbers shown in different colors. The gray hashed
region is an insulator; the colored hashed regions represent
even integer N , which correspond to QH effect; and the solid
colors depict the topological superconductor phase with odd
Chern numbers. The different panels show: (a) a uniform
magnetic field (N = 8,M = 8), (b) a non-uniform periodic
magnetic field of a square shape (N = 8,M = 6), and (c) a
non-uniform magnetic field in stripe geometry (N = 8,M =
6).

equivalent, to conventional QH states with filling factor
C = N

2 . The regions with solid colors depict SC states
with odd integer values of N , i.e. the TSC phase. We
also find narrow regions of semi-metallic phase near the
phase boundaries where N changes by 2. These regions
are discussed in App. B, but suppressed in Fig. 3 to avoid
clutter.

It is evident that the phase diagram is very sensitive
to how the magnetic field penetrates the superconductor.
For a uniform magnetic field (Fig. 3a), only even values
of N appear in the limit of weak SC gap ∆/t → 0, al-
though TSC phases with an odd N can occur when ∆ is
sufficiently large. The same is true of the stripe geome-
try (Fig. 3c). As discussed in App. D, a hexagonal lattice
of h/2e fluxoids is also not effective in producing TSC.
In striking contrast, for the non-uniform magnetic field
produced by a square lattice of h/e fluxoids, TSC phases
can emerge even in the limit ∆/t → 0, as shown by the
blue, red and dark green areas in Fig. 3b. This property
is also shared by a hexagonal lattice of h/e fluxoids (see
App. E). We thus conclude that a square or a hexagonal
lattice of h/e fluxoids is the best geometry for generating
TSC. In App. F we also discuss coupling to px supercon-
ductivity and find that many of the above conclusions
remain valid.

IV. DISCUSSION AND CONCLUSION

Mong et al.40 considered stripes of QH states with their
oppositely moving chiral edge states coupled by SC cou-
pling or tunneling, and demonstrated emergence of TSC
for certain parameters. While our work is in a topological
sense similar, our model does not have edge states, and
both QH effect and superconductivity coexist through-
out the entire sample. Our study also allows high filling
factors, thereby producing a rich phase diagram. Our
model suggests that TSC phases can generally exist in
QH-SC hybrid, without requiring fine-tuning of the pa-
rameters, provided the magnetic field has periodic spatial
variation.

While a concrete calculation is needed to determine the
most favorable geometries, it is possible to gain some in-
tuitive insight into this question by noting that the TSC
often occurs after a single Dirac type of transition that
changes the SC Chern number by 1. For quasi-1D stripe
geometry, such transitions are rare because the band is
still flat along one direction. For fractional fluxoids, de-
generacy can exist in the magnetic Brillouin zone and, in
general, multiple Dirac transitions occur simultaneously,
thus complicating the matter.

Before ending the article, it would be appropriate to
mention important experimental recent progress in cou-
pling the QH and SC phases. Supercurrent and Joseph-
son coupling in QH regime at graphene-superconductor
interface have been demonstrated at relatively low mag-
netic field (∼ 2T)33–35. In another work, superconduct-
ing niobium nitride (NbN) electrode with very high crit-
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ical magnetic field has been used to induce supercon-
ducting correlations in the QH edge states of graphene
to see evidence of crossed Andreev reflection on a QH
plateau36. In yet another work, inter-Landau level An-
dreev reflection has been observed in graphene coupled
to an NbSe2 superconductor37. While the superconduc-
tor contains spin singlet Cooper pairs, it is in principle
possible to induce spin triplet superconductivity by ex-
ploiting spin-orbit coupling or inhomogeneous magneti-
zation at the interface. Such phenomena have been stud-
ied in a variety of hybrid systems with SC and magnetic
or strong spin-orbit coupled materials41–44. The feasibil-
ity to implement such mechanism in QH-SC hybrid will
be addressed in a future work. It should be possible to
construct a variety of QH-TSC planar junctions27,32,45,46

where the chemical potential may be controlled through
local gates. One advantage is the possibility of achieving
the TSC phase with N > 1 in junction structures, which
has theoretically been proposed to give rise to unique
transport signature45 that can unambiguously establish
chiral Majorana transport.

In summary, we have identified optimal conditions for
producing a topological superconductor by studying cou-
pling between QH effect and superconductivity in a mi-
croscopic model. We find that a non-uniform magnetic
field produced by a square or a hexagonal lattice of h/e
fluxoids is likely the best geometry for this purpose.
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Appendix A: Matrix Elements of BdG Hamiltonian

We give here the detailed form of the BdG Hamilto-
nian for a 2D electron gas in a magnetic field. With the
Fourier transform ci = 1

L

∑
k e

ik·Rick,r̃i , where |kx| ≤
π/a, |ky| ≤ π/a, we obtain the Hamiltonian in the BdG
form

H =
∑
k

C†kHkCk,

Hk =

(
Tk ∆†k
∆k −T †−k

)
(A1)

where C†k = (c†k,r̃1 , . . . , c−k,r̃1 , . . .). The nonzero diago-
nal and off-diagonal terms in the above BdG Hamiltonian

are

(Tk)r̃,r̃′ =


−µ for r̃′ = r̃
−teiAr̃,r̃′ for r̃′ = r̃ + a1x̂, r̃ + a1ŷ

−tei(Ar̃,r̃′+kxa) for r̃′ = r̃ − (N − 1)a1x̂

−tei(Ar̃,r̃′+kya) for r̃′ = r̃ − (N − 1)a1ŷ

(A2)

(∆k)r̃,r̃′ =

 −∆ for r̃′ = r̃ + a1x̂ or r̃ + a1ŷ
−∆eikxa for r̃′ = r̃ − (N − 1)a1x̂
−∆eikya for r̃′ = r̃ − (N − 1)a1ŷ

(A3)

and their transposed elements given by (Tk)r̃′,r̃ =
(Tk)∗r̃,r̃′ and (∆k)r̃′,r̃ = −(∆k)∗r̃,r̃′ .

Appendix B: Certain general properties of the phase
diagrams

In our calculated phase diagrams, the SC Chern num-
ber N generally decreases, going through successive tran-
sitions, as ∆ is increased. Thus, conventional quantum
Hall states with high N , which exist for small ∆, are
transformed to a trivial superconductor with N = 0,
which is expected to occur at extremely large ∆.

Whether N changes by one or two depends on whether
the gap closes at one of the symmetry points or not. N
changes by one when an energy gap closes at one of the
symmetry points. Otherwise, N changes by two because
the gap closes simultaneously at two different momenta
ko and −ko, where ko lies away from any high symmetry
momentum. Figure 4(a) shows an example of gap closing
at momenta that do not lie at symmetry points for µ =
0.38 and ∆ = 0.243 with N = M = 8. On this boundary
the system undergoes a transition from N = 3 to N = 1.

When the SC Chern number N changes by one at
high symmetry momentum, the gap closing always oc-
curs at the chemical potential. However, when the SC
Chern number N changes by two, the energy gap does
not close exactly at the Fermi level, due to the absence of
both time reversal and inversion symmetries in our model
Hamiltonian. As shown in Fig. 4(b), the gap closes at an
energy slightly higher than the Fermi level (E > 0) at
one momentum ko while slightly below the Fermi energy
(E < 0) at the opposite momentum −ko. This indicates
that there exists, in some parameter regions on either
side of the phase boundary, a semi-metallic phase with
hole and electron pockets at two opposite momenta, al-
though two bands close to the Fermi level do not touch
each other. (As noted in the main text, we have de-
fined the SC Chern number with respect to half of the
bands in the BdG formalism, rather than with respect to
occupied states below the chemical potential. The two
definitions are identical when the chemical potential lies
inside a gap, but not when the chemical potential crosses
a band. In the semi-metallic region, while we find an
integer value for N with our definition, this value does
not correspond to a physically measurable transport co-
efficient.) The semi-metallic regions are often small and
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FIG. 4. (a) When a gap closes at a momentum ko that
does not lie at a symmetry point, the energy dispersion at
−ko also undergoes simultaneous gap closing. Consequently,
Chern number changes by two on the phase boundary. The
two red solid circles indicate the two momenta ko and −ko

where the electron and the hole bands touch simultaneously
for µ = 0.38 and ∆ = 0.243 with N = M = 8. (b) The energy
dispersions along the blue dashed line in (a) for ∆ = 0.243 and
several values of µ with N = M = 8. The semi-metal phase
with electron and hole pockets occurs at µ = 0.38 (which is
the phase boundary where N changes by 2) and µ = 0.36.

were omitted in the phase diagrams shown in the main
text to avoid distraction from the physics of TSC. For
completeness, in Figs. 5 (a) and (b), the semi-metallic
regions are demonstrated by the black thick closed lines.

Appendix C: Continuum Limit

We discuss the effects of a finite number N of lattice
in a unit cell. The number of lattice points in a unit cell
is N2, which produces N2 bands in the finite energy win-
dows 4t. We fix the magnetic flux in one unit-cell to be
one flux quantum while varying N . The correct contin-
uum limit is expected to maintain the constant spacing
between Landau levels in the scaled energy of N2E. Fig-
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FIG. 5. Phase diagram under (a) uniform magnetic field (N =
8,M = 8); (b) non-uniform magnetic field (N = 8,M = 6).
On the boundary when Chern number changes by two, we
observe a semi-metallic phase on the finite region, which is
displayed by black thick solid lines.

ure 6(a) demonstrates that the scaled energy measured
from the minimum of the lowest band almost the same
Landau level spacing for different N . The first few lowest
levels exhibit essentially the same scaled energy even for
N = 8. Although some quantitative deviation occurs for
higher levels, they also saturate as N is increased.

In the presence of a nonuniform magnetic field, the
scaled energies display similar saturations with the in-
crease ofN . In particular, the system withN = 8 already
captures the essential features of the dispersive bands of
the continuum limit.

One may suspect that the phase boundaries are also
close to the thermodynamic limit. To explicitly demon-
strate that, in Fig. 7 we plot the boundaries for the topo-
logical phases for N = 8, 16, 32. It turns out that when
plotted as a function of N∆ as well as N2E, we obtain a
collapse of the phase boundaries for small ∆, which is the
region of maximum interest to us. As ∆ is increased, the
phase boundaries for different N begin to deviate, but
still capture the thermodynamic phase diagram qualita-
tively and semiquantitatively.
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FIG. 6. Scaled energy dispersion N2E for N = 8, 16, 32 un-
der (a) uniform magnetic field (N = M); (b) non-uniform
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FIG. 7. Phase diagram in the plane of scaled chemical po-
tential N2µ and scaled SC pairing parameter N∆ for N =
8, 16, 32 under non-uniform magnetic field (M/N = 3/4).

Appendix D: periodic h/2e fluxoids of a hexagonal
shape in triangular lattice

We have also performed numerical calculations to ob-
tain the phase diagram for a hexagonal Abrikosov lat-
tice of h/2e fluxoids. We use the same form of full

Hamiltonian as in the main text. The lattice points
are arranged on the triangular lattice as shown in
Fig. 8(a), and the nearest-neighbor vectors δ1,2,3 =

(1, 0), (1/2,
√

3/2), (−1/2,
√

3/2) and the primitive lat-
tice vectors can be chosen as a1 = δ1 = (1, 0) and

a2 = δ2 = (1/2,
√

3/2) on the cartesian coordinate. In
an Abrikosov lattice of h/2e fluxoids, one (magnetic) unit
cell contains two h/2e fluxoids (see Fig. 8(a)). Similar to
square lattice, the lattice site in this triangular lattice
can be labelled as ri=(i1,i2) = Rm=(m1,m2) + r̃l=(l1,l2)

for (i1, i2) = (Nm1 + l1, 2Nm2 + l2) with 0 ≤ l1 < N ,
0 ≤ l2 < 2N , 0 ≤ m1/2 < L, and La and 2La be-
ing the linear dimensions of the system along the a1

and a2 directions, respectively. On the basis of a1

and a2, the lattice vector ri=(ix,iy) can be expressed as
ri=(i1,i2) = i1a1 + i2a2.

The resulting phase diagram in Fig. 8(b) reveals that
there is no topological superconductor in the limit of
∆ → 0. The TSC shows up for rather large ∆ in the
limited region. As in the square lattice, the TSC and
normal superconductors are separated by the gap closing
at the symmetry points, and two-fold gap-closing bound-
aries are also existing.

The absence of TSC phase in the ∆ → 0 limit origi-
nates from an additional fundamental symmetry of h/2e
fluxoid lattice, which we analyze below. The Hamilto-
nian H still takes the form of Eq. (1) in the main text,
but with j, δ defined on the triangle lattice. For conve-
nience, we separateH into two parts,H = H0+H∆ where
H0 includes the terms with the hopping parameter t and
the chemical potential µ and H∆ includes the terms with
pairing parameter ∆. We first focus on the single-particle
Hamiltonian H0 and note that there are three terms in
H0, which describes the hopping in three directions, de-
scribed by δ1 = (1, 0), δ2 = (0, 1) and δ3 = (−1, 1) on
the basis of a1 and a2. This is different from the square
lattice, which only has hopping along two directions. The
HamiltonianH0 is invariant under the following magnetic
translation operators

T̂1 =
∑
j

c†j+τ1cje
i
∑
l1
χj+l1+δ1,j+l1 ,

T̂2 =
∑
j

c†j+τ2cje
i
∑
l2
χj+l2+δ2,j+l2 , (D1)

where j = (j1, j2) with the integers j1, j2, τ1 = (N, 0),
τ2 = (0, N), δ1 = (1, 0), δ2 = (0, 1), l1 = (l1, 0) with the
integer 0 ≤ l1 < N − 1, and l2 = (0, l2) with 0 ≤ l2 <
N − 1. Here all the vectors are defined on the basis of a1

and a2. It should be noted that τ1 is the translation of
one magnetic unit cell along the a1 direction while τ2 is
the translation over half magnetic unit cell along the a2

direction (see Fig. 8(a)) The phase factor field χj+δ,j is
defined on each bond of the lattice and can be determined
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FIG. 8. (a) Schematic of a unit cell, and (b) phase diagram for a triangular lattice of h/2e fluxoids of hexagonal shape
(N = 8,M = 6). One unit cell is composed of N×2N lattice points and two h/2e fluxoids in hexagonally shaped yellow-shaded
regions. The figure in (a) is an example of N = 4 and M = 2.
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FIG. 9. (a) Schematic of a unit cell and (b) phase diagram under periodic h/e fluxoids of hexagonal shape (N = 8,M = 6) in
triangular lattice. One unit cell is composed of N ×N lattice points and a yellow-shaded zone of hexagon shape with 3M2/2
triangles contain h/e fluxoids. The figure in (a) is an example of N = 4 and M = 2.

by the vector potential field Aj+δ,j as

∇1χj+δ1,j = ∇1Aj+δ1,j , (D2)

∇2χj+δ1,j = ∇1Aj+δ2,j = ∇2Aj+δ1,j + 2πφj , (D3)

∇2χj+δ2,j = ∇2Aj+δ2,j , (D4)

∇1χj+δ2,j = ∇2Aj+δ1,j = ∇1Aj+δ2,j − 2πφj . (D5)

Here the discrete differential operator ∇ is defined as
∇afj+δb,j = fj+δb+δa,j+δa − fj+δb,j with a, b = 1, 2

and f = χ,A, and 2πφj = ∇1Aj+δ2,j − ∇2Aj+δ1,j =
Aj+δ2+δ1,j+δ1 − Aj+δ2,j − Aj+δ1+δ2,j+δ2 + Aj+δ1,j la-
bels the flux in the plaquette of the rhomboid formed
by four sites j, j + δ1, j + δ2 and j + δ1 + δ2. Here
the flux φj satisfies the periodic conditions φj = φj+τa
with a = 1, 2 and

∑
j φj = 1/2 where the summation

over j = (j1, j2) is within the range 0 ≤ j1,2 < N . The
phase factor χj+δ1,j (χj+δ2,j) determined by D2 and D3
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(D4 and D5) will make the operator T̂1 (T̂2) commutate
with the hopping terms along the δ1 and δ2 directions in
H0, which is similar to the case of a square lattice under
magnetic fields47. For the hopping along the δ3 direc-
tion, one can still show its commutation with T̂a due
to the periodic condition φj = φj+τa after some length

derivation. Therefore, T̂a defines the magnetic transla-
tion ([T̂a,H0] = 0, a = 1, 2) for our system. In addition,
since the rhomboid formed by two vectors τ1 and τ2 en-
closes half flux quantum for our h/2e fluxoid lattice, we

find the anti-commutation relation {T̂1, T̂2} = 0 within
the single-particle Hilbert space. These commutation or
anti-commutation relations within the operation sets of
T̂1, T̂2 and H0 determine the energy spectrum of the
Abrikosov lattice system.

The eigenstate |k〉 of the Hamiltonian H0 can be cho-

sen as H0|k〉 = E(k)|k〉, T̂1|k〉 = eik1 |k〉 and T̂ 2
1 |k〉 =

ei2k2 |k〉 with k = (k1, k2) sinceH0, T̂1 and T̂ 2
2 all commu-

tate with each other. Here k1 and k2 are continuous vari-
ables in the range −π ≤ k1 < π and −π/2 ≤ k2 < π/2.

Let us consider two eigenstates |k〉 and T̂2|k〉 and it is
clear that these two eigenstates share the same eigenen-
ergy since [H0, T̂2] = 0. Due to the anti-commutation

between T̂1 and T̂2, we find T̂1T̂2|k〉 = −T̂2T̂1|k〉 =

−eik1 T̂2|k〉 = ei(k1+π)T̂2|k〉. This suggests that T̂2|k〉 ∼
|k + (π, 0)〉 and all the eigenstates at k and k + (π, 0)
share the same energy spectrum. Based on this conclu-
sion, one can see that Dirac type of topological phase
transition must occur in pairs at k and k + (π, 0) in the
entire Brillouin zone and thus the SC Chern number al-
ways changes by ±2 in the ∆ → 0 limit. This implies
absence of TSC phase in this limit. This argument is
not valid for a finite ∆, because the p-wave pairing term
H∆ used in our calculations is not gauge invariant under
magnetic translations T̂1,2. Therefore, the TSC phase
can be present at a finite ∆.

Appendix E: periodic h/e fluxoids of a hexagonal
shape in triangular lattice

We finally show the phase diagram for topologi-
cal superconductors in the presence of a hexagonal
lattice of h/e fluxoids. The lattice points are ar-
ranged on a triangular lattice as shown in Fig. 9(a),
with the nearest-neighbor vectors given by δ =
(1, 0), (1/2,

√
3/2), (−1/2,

√
3/2). Each unit cell contains

a single h/e fluxoid. This geometry also produces topo-
logical superconductors in the limit of ∆→ 0, as demon-
strated in Fig. 9(b). The TSC phases intervene between
the adjacent normal quantum Hall phases, as was the
case for periodic square fluxes.

Compared to the periodic h/2e fluxoid lattice, the
magnetic translation symmetry and the lattice transla-
tion in the periodic h/e fluxoid lattice coincide and thus
do not produce any additional symmetry leading to de-
generacy. As a result, the TSC phase is allowed in the

limit ∆→ 0.

Appendix F: Coupling to px or py superconductivity

In this section we ask how the phase diagram is modi-
fied if the p-wave superconductivity has px or py symme-
try. The phase diagrams are shown in Fig. 10 for three
cases. Two cases (a) and (b) correspond to when the
magnetic field forms stripes along the x-direction and the
superconductivity is either px or py. We find that topo-
logical superconductivity is strongly suppressed in the
former case shown in (a), because the gap always closes
in pairs of symmetry related points, but regions of topo-
logical superconductivity appear in the latter (b). For
the third case, where the magnetic flux forms a lattice,
coupling to px superconductivity again produces topo-
logical superconductivity for certain parameter range as
seen in panel (c).

This study shows that the qualitative results of our
study are not sensitive to the nature of the p-wave super-
conductivity. More detailed predictions can be deduced
once the specific experimental geometry is known.
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FIG. 10. The top panel (a) shows the phase diagram for a
superconductor with px-wave pairing and the middle panel (b)
with py-wave pairing, with the magnetic field configuration
having stripes along the x direction (N = 8,M = 6). The
bottom panel (c) shows the phase diagram for a square lattice
of φ0 flux (N = 8,M = 6) with px-wave pairing.
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