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The standard spin-transfer torque (STT)—where spin-polarized current drives dynamics of mag-
netization viewed as a classical vector—requires noncollinearity between electron spins carried by
the current and magnetization of a ferromagnetic layer. However, recent experiments [A. Zholud
et al., Phys. Rev. Lett. 119, 257201 (2017)] observing magnetization dynamics in spin valves at
cryogenic temperatures, even when electron spin is collinear to magnetization, point at overlooked
quantum effects in STT which can lead to highly nonclassical magnetization states. Using quantum
many-body treatment, where an electron injected as spin-polarized wave packet interacts with local
spins comprising the anisotropic quantum Heisenberg ferromagnetic chain, we define quantum STT
as any time evolution of local spins due to initial many-body quantum state not being an eigenstate of
electron+local-spins composite system. For time evolution caused by injected spin-↓ electron scatter-
ing off local ↑-spins, entanglement between electron and local spins subsystems takes place leading
to decoherence and, therefore, shrinking of the total magnetization but without rotation from its ini-
tial orientation, which explains the experiments. Furthermore, the same processes—entanglement
and thereby induced true decoherence—are present even in the standard noncollinear geometry,
intertwined with the usual magnetization rotation. This is because STT in quantum many-body
picture is always caused by electron spin-↓ factor state, and the only difference between collinear and
noncollinear geometries is in relative size of the contribution of the initial separable state containing
such factor to superposition of separable many-body quantum states generated by time evolution.

The standard spin-transfer torque (STT)1, predicted
in the seminal works of Slonczewski2 and Berger3, is a
phenomenon where a flux of spin-polarized electrons in-
jected into a ferromagnetic metal (FM) layer drives its
magnetization dynamics. The origin of STT is transfer
of spin angular momentum from electrons to local mag-
netic moments of the FM layer, so it is fundamentally a
nonequilibrium quantum many-body physics effect. Nev-
ertheless, local magnetic moments µSS(r) are typically
treated as classical vectors of fixed length1,4 whose dy-
namics is governed by the Landau-Lifshitz-Gilbert (LLG)
equation5 extended by adding the STT term6–8

T ∝ 〈ŝe〉 × S(r). (1)

Thus, the nonequilibrium spin density 〈ŝe〉 caused by the
flowing electrons must be noncollinear to the direction
of local spin S(r), to drive magnetization dynamics in
such a classical picture. The dynamics can include oscil-
lations or complete reversal, whose conversion into resis-
tance variations has emerged as a key resource for next
generation spintronic technologies, such as nonvolatile
magnetic random access memories, microwave oscillators,
microwave detectors, spin-wave emitters, memristors and
artificial neural networks9–11.

For example, passing current through a spin valve tri-
layer fixed-FM/normal-metal/free-FM, as employed in
early experiments on standard STT12,13, causes first FM
layer with fixed magnetization to spin-polarize the cur-
rent which then impinges onto the second FM layer with
free magnetization that fluctuates in the classical pic-
ture due to a random magnetic field caused by thermal
motion. When impinging spins and fluctuating magne-
tization become noncollinear, standard STT can either

amplify such fluctuations (for fixed-to-free spin current
direction) or reduce them (for free-to-fixed spin current
direction), as predicted theoretically14 and confirmed ex-
perimentally15 at room temperature.

However, this well-established picture cannot explain
very recent experiments16 on collinear spin valves at
cryogenic temperatures . 3 K, where resistance mea-
surements have revealed magnetization dynamics even
though thermal fluctuations that could introduce non-
collinearity between the free and fixed magnetizations are
suppressed. This implies a mechanism where standard
STT is zero, T ≡ 0 in Eq. (1), so that magnetization
does not rotate from the the initial configuration. Never-
theless, it changes its length, thereby signaling generation
of highly nonclassical magnetization states16. However,
the proposed intuitive picture16 where such mechanism
would amplify quantum spin fluctuations, for both fixed-
to-free and free-to-fixed spin current directions, cannot
be rigorously justified. That is, although quantum fluctu-
ations of the local spin operators17 (or, equivalently, zero-
point energy of magnons as bosonic particles to which
spin operators can be mapped) play an important role in
lowering the energy of classical ground states of antiferro-
magnets18 or noncollinear spin textures19, they vanish in
a FM with uniaxial anisotropy because the collinear state
of local magnetic moments is also a ground eigenstate of
the exact Hamiltonian20.

Aside from few disparate attempts21–23, a general
framework for describing current-driven quantum dynam-
ics of magnetization is lacking. Note that quantum trans-
port theories, such as the nonequilibrium Green function
formalism7,8,24,25 or the scattering matrix approach26,27,
are routinely used to compute 〈ŝe〉 in Eq. (1) for a given
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FIG. 1. Schematic view of a quantum many-body system
consisting of a FM layer whose N = 5 local spins comprise
the open XXZ quantum Heisenberg ferromagnetic chain with
anisotropic exchange interactions Jz > J , and are attached
to 1D TB chain (composed of Lx = 400 sites) where elec-
tron hops with parameter γ. The spin-polarized electron wave
packet is injected along the TB chain, with its spin pointing
in the −z- or +x-direction which is collinear [a case where
the standard STT of Slonczewski2 and Berger3 in Eq. (1) is
absent] or noncollinear, respectively, to local spins pointing
initially along the +z-direction. The spin of the wave packet
interacts with local spins via s-d exchange interaction Jsd.

single-particle Hamiltonian, but this serves only as an in-
put7,8 for the LLG equation describing classical dynamics
of magnetization. The LLG equation can be justified un-
der the assumptions5 of large spin S →∞, ~→ 0 (while
S × ~ → 1) and in the absence of entanglement. The
latter assumption means that local spins comprising the
total magnetization should remain in a separable quan-
tum state, |S1〉⊗ |S2〉⊗ · · · ⊗ |SN 〉, as exemplified by the
ground state of a FM, |↑〉 ⊗ |↑〉 ⊗ · · · ⊗ |↑〉.

Instead of classical micromagnetics4,14 or quantum-
classical7,8 description of standard-STT-induced magne-
tization dynamics, here we introduce a quantum many-
body picture of both flowing-electron-spin–local-spins in-
teractions and the ensuing time evolution of local spins
at zero temperature. For this purpose, we employ a sys-
tem depicted in Fig. 1 where spin-polarized electron wave
packet, assumed to originate from a fixed FM layer, is
injected along one-dimensional (1D) tight-binding (TB)
chain whose sites in the middle host local spins compris-
ing a quantum Heisenberg ferromagnetic chain modeling
the free FM layer. The states of such composite quantum
system electron+local-spins reside in the Hilbert space

H = Heorb ⊗Hespin ⊗H1
spin · · · ⊗ HNspin, (2)

which is the tensor product of orbital electron subspace
Heorb (of finite dimension equal to the number of sites
Lx of the TB chain); two-dimensional subspace Hespin for
electron spin; andHnspin as two-dimensional subspaces for

n = 1, · · · , N local spins assumed to be spin- 12 as well.
The system Hamiltonian acting in H is

Ĥ = −γ
∑
〈ij〉

|i〉〈j| − Jsd
∑
i

|i〉〈i| ⊗ ŝe · Ŝi(t)

−
∑
〈ij〉

[
J(Ŝxi · Ŝxj + Ŝyi · Ŝ

y
j ) + JzŜ

z
i · Ŝzj

]
, (3)

where |i〉 is electron orbital centered on site i;
γ = 1 eV is hopping between nearest-neighbor sites; and
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FIG. 2. (a) Eigenspectrum of the XXZ quantum Heisenberg
ferromagnetic chain whose N = 5 local spins in Fig. 1 do
not interact with electron spin (Jsd = 0). (b) Eigenspectrum
of many-body Hamiltonian in Eq. (3) whose local spins in-
teract via s-d interaction (Jsd = 0.1 eV) with electron spin
within TB chain of length Lx = 400. (c) Expectation value
of electron spin (first column) and local spins, extracted from
their subsystem density matrices via Eq. (6), in the degener-
ate ground state of the lowest energy in panel (a) [red arrows]
or (b) [blue arrows].

Jsd = 0.1 eV is the strength of s-d exchange interac-
tion between electron and local spins. The exchange
interaction between the nearest neighbor local spins is
J = 0.1 eV and Jz = 0.1005 eV, which are slightly differ-
ent in order to include the uniaxial anisotropy, quantified
by the parameter ∆ = Jz/J

28,29, with the z-axis as the
easy axis. The third term in Eq. (3) is denoted as the
XXZ quantum Heisenberg ferromagnetic chain with open
boundary conditions (due to first and last spin interact-
ing with only one nearest-neighbor spin)28,29. The spin

operators in Eq. (3) are constructed as ŝe = Î ⊗ σ̂ ⊗ Î ⊗
· · · ⊗ Î for electron spin; Ŝ1 = Î ⊗ Î ⊗ σ̂ ⊗ Î ⊗ · · · ⊗ Î
for first local spins and analogously for all other local
spins, where σ̂ = (σ̂x, σ̂y, σ̂z) is the vector of the Pauli

matrices and Î is the unit operator. The eigenspectrum
of an isolated XXZ chain is shown in Fig. 2(a), while the
eigenspectrum of the whole many-body Hamiltonian in
Eq. (3) is shown in Fig. 2(b). The ground state in the
former (latter) case has degeneracy six (seven), as shown
in Fig. 2(c) and expected for a system of coupled five
(six) spin- 12 angular momenta.

At t = 0, the many-body quantum state is a separable
one

〈x|Ψ(t = 0)〉 = Ceikxx−δk
2
xx

2/4⊗χe⊗χ1⊗· · ·⊗χN . (4)

Its first factor in Heorb is chosen as a Gaussian wave
packet with momentum along the +x-direction and cen-
tered on the left edge of TB chain, as illustrated in Fig. 1,
where C is the normalization constant. To mimic cur-
rent of electrons at the Fermi level which interact with
the ground state of free FM layer within a spin valve, we
use kxa = 0.1 and δkxa = 0.2 (a is the lattice spacing)
which tune wave packet average energy E = −2.36 eV
and its standard deviation δE = 0.054 eV to be close to
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FIG. 3. Time dependence of the expectation value of spin
(in units ~/2) obtained from spin- 1

2
density matrix in Eq. (6)

for: (a) spin of injected electron wave packet in Fig. 1 which
at t = 0 points in the −z-direction that is collinear and an-
tiparallel to local spins pointing in the +z-direction; and (c)
first local spin in Fig. 1 [time dependence of expectation value
of local spins n =2–5 is nearly identical to (c)]. (b) Purity
defined in Eq. (7) of the subsystem composed of electron de-
grees of freedom (orbital and spin) or of the subsystem com-
posed of all local spins. (d) Probability in Eq. (8) to find
electron-spin+local-spins subsystem in many-body quantum
state |σe;σ1σ2σ3σ4σ5〉.

the ground state eigenenergy E0 = −2.43 eV [Fig. 2(b)]
of the Hamiltonian in Eq. (3). In the ground state,
all local spins are aligned with the anisotropy z-axis,

as shown in Fig. 2(c), so we choose χn =

(
1
0

)
for

n = 1, . . . , N . To mimic minority spin electrons im-
pinging onto the free FM layer within a spin valve with
parallel magnetizations, we select initial spin polariza-
tion of the wave packet in the −z-direction, as described

by the spinor χe =

(
0
1

)
. For the standard STT setup

with noncollinear magnetizations of the fixed and free
FM layers, we use spin polarization in the +x-direction,

χe = 1√
2

(
1
1

)
.

For transparency of the discussion, operating with a
small number of excited states of the XXZ chain which
can be analyzed one by one, we employ small number
N = 5 of local spins. The chosen length Lx = 400 of
the TB chain ensures that wave packet does not reflect
from its boundaries within the time frame considered in
Figs. 3 and 4. The numerically exact |Ψ(t)〉, governed

by the Schrödinger equation i~∂|Ψ(t)〉/∂t = Ĥ|Ψ(t)〉, is
obtained by using the Crank-Nicolson algorithm30.

Figure 2(c) shows that degenerate ground state has
electron and local spins parallel to each other due to
s-d interaction between them acting to align them.

FIG. 4. Panels (a)–(d) plot the same information as panels
(a)–(d), respectively, in Fig. 3 but for injected electron wave
packet which at t = 0 is spin-polarized in the +x-direction,
i.e., noncollinear to local spins pointing in the +z-direction.

Thus, when an electron with spin-↓ along the −z-
direction is injected, its spin is collinear to local spins
but |Ψ(t = 0)〉 ≡ |G〉 ⊗ |↓e; ↑1 · · · ↑N 〉 (this form is used
below for economy of notation) at t = 0 is not an eigen-
state of the Hamiltonian in Eq. (3). This causes time evo-
lution of the electron-spin+local-spins subsystem, which
rigorously defines quantum STT even in situation where
the standard STT in Eq. (1) is identically zero. In the
course of time evolution, |Ψ(t)〉 becomes an entangled
state due to linear superpositions of separable states be-
ing generated for t > 0. The entanglement entails that
each subsystem must be described using the appropriate
reduced density matrix31

ρ̂sub = Trother|Ψ(t)〉〈Ψ(t)|, (5)

obtained via partial trace applied to the pure state den-
sity matrix |Ψ(t)〉〈Ψ(t)|. For example, tracing over the
states in the subspace Heorb ⊗Hespin ⊗H2

spin · · · ⊗ HNspin
yields the density matrix of first local spin

ρ̂1(t) =
1

2

[
Î + S1(t) · σ̂

]
, (6)

where S1(t) = Tr[ρ̂1(t)σ̂] is the spin expectation value (in
units of ~/2), also denoted as the polarization (or Bloch)
vector31. Pure (or fully coherent) quantum states of spin-
1
2 are characterized by |S1| = 1, while 0 < |S1| < 1 sig-

nifies their decoherence31,32 toward mixed (or partially
coherent34) states. Figure 3(c) shows that first local spin
has Sz1 < 1, Sx1 = Sy1 ≡ 0 and, therefore, |S1| < 1.
The electron spin also exhibits decoherence, |se| < 1,
in Fig. 3(a). Virtually the same time-dependences as
in Fig. 3(c) are obtained for other local spins i = 2, . . . 5,
and, therefore, for total magnetization as the sum of local
spins. Thus, this is precisely the highly nonclassical state
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of magnetization conjectured from the measurement of
the spin valve resistance16, which increases ∝ 1 − Mz

due to magnetization Mz = gµB
∑
i S

z
i shrinking with-

out rotation (i.e., Mx = My = 0) away from its initial
orientation.

To explain the origin of magnetization decoherence,
or, equivalently, of the subsystem comprised of all lo-
cal spins, we view multipartite [due to N + 2 factors in
Eq. (2)] total system as a bipartite one, i.e., as being
composed of the electron subsystem whose states reside
in Heorb⊗Hespin and the subsystem of all local spins. The

purity of the latter is defined as31,32

P local
spins(t) = Tr

{
[ρ̂localspins(t)]

2
}
, (7)

where density matrix ρ̂localspins(t) is obtained via Eq. (5)
by tracing over the states in the subspace Heorb ⊗Hespin.

The decay of P local
spins(t) below one in Fig. 3(b) quantifies

true decoherence32,33 (i.e., the decoherence which cannot
be attributed to any classical fluctuations) of initially
pure state |↑〉 ⊗ |↑〉 ⊗ · · · ⊗ |↑〉 as the decay31,32 of the
off-diagonal elements of ρ̂localspins(t) caused by entanglement
with the electron subsystem. The purity of decohered
electron subsystem in Fig. 3(b) is identical to that of the
local spin subsystem, as expected for entanglement in
bipartite quantum systems31,32.

To understand the states of electron-spin+local-spins
subsystem which are excited during time evolution initi-
ated by injection of a single spin-polarized electron, we
compute the density matrix ρ̂e+local

spins (t) of this subsystem

obtained by partial trace in Eq. (5) performed over the
states in Heorb. The probability to find this subsystem in
state |σe;σ1 . . . σN 〉 at time t

probe+local
spins (t) = 〈σe;σ1 . . . σN |ρ̂e+local

spins (t)|σe;σ1 . . . σN 〉,
(8)

is shown in Fig. 3(d) for electron injected with spin along
the −z-direction. The subspace of H whose states can
generate nonzero probe+local

spins (t) is restricted by the en-

ergy bands in Fig. 2(b) [caused by anisotropy and bound-
aries28,29] and symmetries, such as that total spin in
the z-direction has to be conserved due to its opera-
tor, Ŝztot = ŝz + Ŝz1 + . . . + ŜzN , commuting with the

Hamiltonian in Eq. (3), [Ĥ, Ŝztot] = 0. Because of the
latter requirement, all states |σe;σ1 . . . σN 〉 participating
in time evolution must have the same number of ↑-spins,
so that one finds in Fig. 3(d) progressive excitation of
states with flipped spin of an electron and one flipped
local spin with a total transfer of angular momentum of
1 × ~. However, the initial state |↓; ↑ . . . ↑〉 maintains
its probability close to one, and other states with flipped
electron spin and one flipped local spin have much smaller
and nonuniform probability (note that increased proba-
bility to find | ↑; ↑↑↑↑↓〉 state is a consequence of XXZ
chain being open which brings this state and |↑; ↓↑↑↑↑〉
state into resonance28,29). Such peculiar quantum su-
perposition of separable many-body states, with large
contribution from the initial state, leads to local spins

maintaining their direction along the z-axis in Fig. 3(c).
This can be contrasted with näıve (i.e., not taking into
account superpositions) intuition22,35 where spin-↓ elec-
tron simply flips first local spin—the flip then propagates
to displace transversally other local spins away from the
anisotropy axis, eventually exciting white spectrum22 of
lowest-energy magnons28,29.

The same effects—entanglement of electron state and
quantum state of all local spins [Fig. 4(b)]; thereby in-
duced true decoherence32,33 of electron spin [Fig. 4(a)]
and local spins [Fig. 4(c)]; and high probability [Fig. 4(d)]
to find initial state of electron-spin+local-spins subsys-
tem in the course of time evolution—are present also in
the standard STT geometry with noncollinearity between
spin of the injected electron and local spins. However, in
the standard STT geometry we also find the usual mag-
netization rotation, i.e., Sx1 6= 0 and Sy1 6= 0 in Fig. 4(c).

The probabilities probe+local
spins (t) in Fig. 4(d) to excite

states of the type |↑; ↑ . . . ↓ . . . ↑〉 are simply half of those
obtained for collinear geometry in Fig. 3(d) since spin of
the injected electron along the +x-direction used in Fig. 4
means |→e〉 = 1√

2
(|↑e〉+ |↓e〉) where only 1√

2
| ↓e〉 term,

entering as a factor of the initial separable many-body
state |Ψ(t = 0)〉 ≡ |G〉 ⊗ 1√

2
(|↑e〉+ |↓e〉)⊗ |↑1 . . . ↑N 〉, in-

duces time evolution of local spins and transfer of angu-
lar momentum. On the other hand, 1√

2
|↑e〉 ⊗ |↑1 . . . ↑N 〉

term in the initial many-body state is an eigenstate
[Fig. 2(c)] of electron-spin+local-spins subsystem and,

therefore, has time-independent probe+local
spins (t) = 1/2 in

Fig. 4(d). Thus, identical profile of curves in Figs. 3(d)
and 4(d) reveal that in fully quantum many-body pic-
ture there is no difference between the standard STT
and quantum STT—both originate from |↓e〉 factor state
brought into the initial many-body state by either minor-
ity spin electrons35 in spin valves with parallel magneti-
zations16, or by |↓e〉 term in the quantum superposition
of electron spin states generated by polarizing effect of
the fixed magnetization that is noncollinear to free mag-
netization.

We note that increasing the total number of local spins
from N = 5 considered here to realistic large values
does not change these findings due to Schmidt decom-
position36 which makes it possible to re-write any en-
tangled state of spin- 12 as the sum of just two terms,

a|↗〉⊗|Σ1〉+b|↙〉⊗|Σ2〉, where |Σ1,2〉 ∈ H1
spin · · ·⊗HNspin.

Thus, the Schmidt decomposition state looks the same as
the entangled state of spin- 12 with just a single macrospin.
We provide counterparts of Figs. 3 and 4 in the Appendix
where a single local spin- 52 is employed as the macrospin.

We emphasize that piecewise-linear increase of differ-
ential resistance with the bias voltage observed in Ref.16

and our explanation of its origin cannot be accounted
by inelastic electron-magnon scattering37 often observed
in magnetic tunnel junctions which actually leads to op-
posite effect where differential resistance of the junction
with collinear magnetizations (parallel or antiparallel)
decreases38,39 with the bias voltage due to opening of



5

additional conduction channels37.

Our model in Fig. 1 can be viewed as an addition to the
atlas of toy models considered in Ref.26 to explain con-
ventional STT of Slonczewski2 and Berger3 due to a sin-
gle injected spin-polarized electron in plane wave orbital
state which is treated quantum-mechanically, while the
magnetization receiving the torque is treated as a classi-
cal vector of fixed length. In contrast, in our toy model
of Fig. 1 both the singe injected spin-polarized electron,
in wave packet orbital state, and localized spins receiv-
ing the torque are treated as a single quantum many-
body system. However, to explain conventional STT
in realistic junctions requires to also sum over incoming
momenta of all Fermi surface electrons26,27, which re-
duces the transverse component of the transmitted and
reflected spin currents to nearly zero due to substantial
phase cancellation26,27, so that conventional STT is very
nearly proportional to the transverse piece of the inci-
dent spin current. While such effect is not considered in
our strictly one-dimensional system (in three-dimensional
spin valves, one sums different incident transverse wave
vectors that are parallel to junction interfaces26,27), we
do effectively include averaging over different momenta of
plane waves comprising the wave packet. We relegate to
future studies investigation of nonclassical state of mag-
netization interacting with a a flux of electrons with dif-
ferent momenta arising from different parts of the Fermi
surface.

Finally, during the completion of this work we be-
came aware of two studies40,41 where magnetization dy-
namics in collinear spin valves at cryogenic tempera-
tures is treated quantum-mechanically to find quantum
STT on a single macrospin signified by 〈Sz〉 6= 0 while
〈Sx〉 = 〈Sy〉 = 0. However, these studies do not in-
voke entanglement-induced true decoherence mechanism
we discuss (for the case of macrospin in Appendix A).
Instead, Ref.40 invokes equilibrium quantum spin fluc-
tuations40 [which is incorrect, i.e., 1/2 contribution in
Eq. (1) of Ref.40, due to “vacuum fluctuations” or zero-
point energy, is forbidden in the ground state of ferro-
magnets18–20] combined with random magnetic field42

by the nonequilibrium spin shot noise40. On the other
hand, Ref.41 invokes inelastic electron-magnon scatter-
ing to find differential resistance of a magnetic tunnel
junction with parallel collinear magnetizations which in-
creases with the bias voltage at low temperatures, in con-
trast to prior experiments38,39 where such resistance de-
creases with the bias voltage at low temperatures.
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FIG. 5. Time dependence of the expectation value of spin (in
units ~/2) obtained from respective density matrices for: (a)
spin of injected electron wave packet which at t = 0 points in
the −z-direction that is collinear and antiparallel to a single
local spin- 5

2
pointing in the +z-direction; and (c) local spin-

5
2
. (b) Purity defined in Eq. (7) for the subsystem composed

of electron degrees of freedom (orbital and spin) or of the
subsystem composed of all local spins. (d) Probability in
Eq. (8) to find electron-spin+local-spin subsystem in many-
body quantum state |σe;Sz〉

Appendix A: Quantum description of spin-transfer
torque and the ensuing dynamics of single macrospin

In this Appendix, we provide additional Figs. 5 and
6, as the counterparts of Figs. 3 and 4, respectively, for
injected spin-polarized electron wave packet whose spin
interacts via s-d exchange interaction with a macrospin
representing the active ferromagnetic layer that receives
spin-transfer torque (STT). Note that this Appendix can
also be viewed as a rigorous analysis of heuristic argu-
ments provided in Section III.B of the Supplemental Ma-
terial of Ref.16.

The macrospin is modeled using a single (i.e., N = 1
in Fig. 1) local spin- 52 . Since we assume absence of
spin-orbit coupling, the orbital state of the wave packet,
|G〉, and the state of electron-spin+local-spins subsys-
tem, |spins〉, remain uncorrelated31 in the course of time
evolution, |Ψ(t)〉 = |G〉 ⊗ |spins〉.

In the case of |G〉 ⊗ |↑〉 injected electron wave packet,
with electron spin pointing in the +z-direction, and local
spin- 52 being collinear to it in the state |Sz = 5/2〉, there
is no any STT or entanglement since |Ψ(t)〉 = |G〉 ⊗
|↑〉 ⊗ |5/2〉 is a separable eigenstate of the many-body
Hamiltonian and, therefore, does not change with time.

In the case of |G〉 ⊗ |↓〉 injected electron wave packet,
with electron spin pointing in the −z-direction and local
spin- 52 being collinear in state |Sz = 5/2〉, initial and final
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FIG. 6. Panels (a)–(d) plot the same information as panels
(a)–(d), respectively, in Fig. 5 but for injected electron wave
packet which at t = 0 is spin-polarized in the +x-direction,
i.e., noncollinear to local spin- 5

2
pointing in the +z-direction.

states are given by

|Ψ(t = 0)〉 = |G〉 ⊗ |↓〉 ⊗ |5/2〉, (A.1a)

|Ψ(t > 0)〉 = a(t)|G〉 ⊗ |↓〉 ⊗ |5/2〉
+b(t)|G〉 ⊗ |↑〉 ⊗ |3/2〉, (A.1b)

where time-evolution of probabilities in Fig. 5(d) is given

by |a(t)|2 (red dotted line) and |b(t)|2 (blue solid line).
The total spin in the z-direction remains conserved dur-
ing time evolution. In the course of time evolution, local
spin- 52 in Fig. 5(c) does not rotate away from the z-axis,
but it is shrinking due to true decoherence caused by
entanglement in Eq. (A.1b).

In the case of |G〉⊗ 1√
2
(|↑〉+ |↓〉) injected electron wave

packet, with electron spin pointing in the +x-direction
and local spin- 52 pointing in the +z-direction in the state
|Sz = 5/2〉, initial and final states are given by

|Ψ(t = 0)〉 = |G〉 ⊗ 1√
2

(|↑〉+ |↓〉)⊗ |5/2〉, (A.2a)

|Ψ(t > 0)〉 =
1√
2
|G〉 ⊗ |↑〉 ⊗ |5/2〉+

a(t)√
2
|G〉 ⊗ |↓〉 ⊗ |5/2〉

+
b(t)√

2
|G〉 ⊗ |↑〉 ⊗ |3/2〉, (A.2b)

where time evolution of probabilities in Fig. 6(d) is given
by 1/2 (red solid line), |a(t)|2/2 (red dotted line) and
|b(t)|2/2 (blue solid line). The latter two are just half
of the probabilities is Fig. 5(d). In the course of time
evolution, this change leads to local spin-52 in Fig. 6(c)
both rotating away from the z-axis, as in the standard
STT of Slonczewski2 and Berger3, and shrinking due to
true decoherence caused by entanglement in Eq. (A.2b).
The former effect is the same as the only consequence of
quantum STT in Fig. 5(c).

∗ bnikolic@udel.edu
1 D. Ralph and M. Stiles, Spin transfer torques, J. Magn.

Magn. Mater. 320, 1190 (2008).
2 J. C. Slonczewski, Current-driven excitation of magnetic

multilayers, J. Magn. Magn. Mater. 159, L1 1996.
3 L. Berger, Emission of spin waves by a magnetic multilayer

traversed by a current, Phys. Rev. B 54, 9353 (1996).
4 D. V. Berkov and J. Miltat, Spin-torque driven magnetiza-

tion dynamics: Micromagnetic modeling, J. Magn. Magn.
Mater. 320, 1238 (2008).

5 R. Wieser, Description of a dissipative quantum spin dy-
namics with a Landau-Lifshitz-Gilbert like damping and
complete derivation of the classical Landau-Lifshitz equa-
tion, Euro. Phys. J. B 88, 77 (2015).

6 A. Manchon, N. Ryzhanova, A. Vedyayev, M. Chschiev,
and B. Dieny, Description of current-driven torques in
magnetic tunnel junctions, J. Phys.: Condens. Matter 20,
145208 (2008).
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25 B. K. Nikolić, K. Dolui, M. Petrovi, P. Plecháč,
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