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Operators in ergodic spin-chains are found to grow according to hydrodynamical equations of
motion. The study of such operator spreading has aided our understanding of many-body quantum
chaos in spin-chains. Here we initiate the study of “operator spreading” in quantum maps on a
torus, systems which do not have a tensor-product Hilbert space or a notion of spatial locality.
Using the perturbed Arnold cat map as an example, we analytically compare and contrast the
evolutions of functions on classical phase space and quantum operator evolutions, and identify
distinct timescales that characterize the dynamics of operators in quantum chaotic maps. Until
an Ehrenfest time, the quantum system exhibits classical chaos, i.e. it mimics the behavior of the
corresponding classical system. After an operator scrambling time, the operator looks “random” in
the initial basis, a characteristic feature of quantum chaos. These timescales can be related to the
quasi-energy spectrum of the unitary via the spectral form factor. Furthermore, we show examples
of “emergent classicality” in quantum problems far away from the classical limit. Finally, we study
operator evolution in non-chaotic and mixed quantum maps using the Chirikov standard map as an
example.

I. INTRODUCTION

The study of chaos and ergodicity in many body sys-
tems has recently acquired a major revival of inter-
est, with the discovery of phenomena such as many-
body localization,1–4 and its connections to several fun-
damental questions regarding black holes, the scrambling
of quantum information and quantum gravity.5–8 This
has led to the many recent explorations of the dynam-
ics of quantum systems by means of diagnostics that
are sensitve to such questions, many of which build on
advances in quantum information theory. For exam-
ple, quantum chaos has been explored both analytically
and numerically in several systems by means of oper-
ator and entanglement growth,9–16 behavior of Out-of-
Time Ordered Correlators (OTOC),5,7,17–22 random ma-
trix theory,6,23–26 and a variety of other methods.27–33

These studies have led to the introduction of new physi-
cal quantities which have shed light on the definition and
meaning of many body quantum chaos. These include
the butterfly and entanglement velocities defined using
operator and entanglement growths, and frame poten-
tials defined using the concept of unitary designs from
random matrix theory.

Of particular interest to this paper is the use of the
Heisenberg picture—in the analysis of operator evolution
and in the calculation of OTOCs. This use of the Heisen-
berg picture, which is standard in the study of quantum
field theory and many body systems, is relatively new
to the analysis of quantum chaos. Here the traditional
approach, which was primarily developed in the study
of single particle systems34 relies, as single particle quan-
tum mechanics does typically, on the Schrödinger picture.
Our overall aim in this paper is to re-examine single par-
ticle quantum chaos in the Heisenberg picture building on
the insights generated in the study of many body quan-
tum chaos.

Before turning to this re-examination we briefly men-

tion some landmarks in the study of single-particle
quantum chaos which is by now a venerable and well-
developed subject. The observation that the differences
in quantizations of classically regular and chaotic sys-
tems is exhibited in the eigenstate level statistics has
been known for long, and it led to the notion of quantum
chaos.35,36 Several examples of quantum chaos including
quantizations of classical billiards, the quantum kicked
rotor, and more generally quantum maps37–46 were sub-
sequently studied. Apart from the study of the eigenstate
level statistics, which is predicted by random matrix the-
ory for chaotic quantum systems, several other diagnos-
tics of quantum chaos were subsequently used (see for
example Ref. [47] for a review). These include certain
semi-classical “trace formulae” that relates classical or-
bits of the classical system to the density of states of
the quantized system,48,49 as well as quantum measures,
for example spectral form factors,40,50 nodal domains,51

as well as the well-known Loschmidt echo.52–54 Several
works have studied quantum chaos in the Schrödinger
picture employing phase-space representations of wave-
functions such as the Wigner and Husimi functions.55–57

Finally, some works have even explored the Heisenberg
picture,42,58 although the time-evolved operators were
not directly studied.

As noted above, in this work, we aim to fill this la-
cuna by studying quantum chaos in single-particle sys-
tems via the Heisenberg evolution of operators. Naively,
the Heisenberg evolution resembles the evolution in phase
space as the operator evolution equations are quantized
versions of the classical dynamical equations. As the so-
lutions of the latter exhibit classical chaos we are led to
ask how we can diagnose chaos in a quantum system from
studying the evolution of operators. The work on many
body systems leads to more specific questions, e.g. is
there a notion of operator spreading in a quantum chaotic
systems that do not have a tensor product Hilbert space
and what does this say about quantum chaos?
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To answer these, we focus on quantum maps on a
toroidal phase space which we review in Sec. II, for exam-
ple the Arnold cat map and its perturbed version, whose
classical limits have been well-studied.59–62 Studying the
evolution of operator coefficients in a fixed basis (anal-
ogous to Pauli strings in spin-chains11,14,15) provides a
natural single-particle parallel to the studies of operator
spreading in many-body quantum systems. We choose
an operator basis that maps on to the Fourier basis of
smooth functions on phase space in the classical limit,
allowing us to compare and contrast quantum operator
evolutions and their classical counterparts, smooth func-
tions on phase space. We introduce the basis and derive
the equations of motion for operators as well as classical
functions in Sec. III. Before we study quantum evolution,
we define the classicality of evolution from an operator
point of view in Sec. IV. There, we distinguish the usual
semi-classical (coherent state) basis and the Fourier basis
in which we study operator evolution, and demonstrate
the existence of a kind of classicality that arises away
from the usual classical limit of the quantum map, which
we call emergent classicality. The evolution of operators
in such systems are analogous to Clifford circuits, where
operators do not spread in a certain basis.

In Sec. V, we study operator evolution in the quantum
chaotic limit (defined by the usual diagnostics of quan-
tum chaos), where we show that the set of non-vanishing
operator coefficients “spread” over the operator basis, di-
agnosed by the growth of Shannon entropy of the set of
operator coefficients. We identify three distinct regimes
of operator evolution: (i) Early-time semi-classical evo-
lution (up to an Ehrenfest time tE), where the opera-
tor evolution in the quantum problem mimics the evo-
lution of smooth functions on classical phase space, (ii)
Intermediate-time evolution, where the operators start
to deviate from the classical behavior and maximally
spread in operator space, and (iii) Late-time evolution
(after an operator scrambling time tscr) where the op-
erator evolution has no classical analogue and exhibits
features of random matrix theory. The regime (i) has
been well-studied in works of classical-quantum corre-
spondence where it is known that the quantum system
behaves classically up to an “Ehrenfest time” that de-
pends on the Lyapunov exponent of the classical sys-
tem and the Planck’s constant.63–65 On the other hand,
regime (iii) has been studied in the context of thermal-
ization of isolated systems, where late-time expectation
values of observables are determined by the “diagonal
ensemble”, the expectation values of observables in the
eigenstates of the time evolution unitary.1,66 We show the
basis-independence of the results in Sec. VI (up to certain
caveats that we discuss), and connect operator evolution
to the spectral form factor, a well-known diagnostic of
quantum chaos. Finally in Sec. VII, we discuss operator
evolution in the Chirikov Standard Map, an example of a
quantum map that is not completely completely quantum
chaotic. There we show that regular and chaotic regions
in phase space can be distinguished using the operator

evolution diagnostics we discuss. In all, we show the ex-
istence of “operator spreading” that occurs in quantum
maps which can be used to characterize various regimes
of quantum operator evolution, and distinguish chaotic
quantum maps from non-chaotic ones.

II. CLASSICAL MAPS AND THEIR
QUANTIZATION

We first review the historical introduction of quantum
maps by “quantizing” maps defined on a classical phase
space. Note that the quantum map thus obtained from
a given classical map is not necessarily unique. In this
work we choose the classical map obtained by a particu-
lar quantization prescription and view the quantum map
as the fundamental system that exhibits a classical de-
scription in a certain limit.

A. Classical Maps

We start with area-preserving discrete-time classical
maps on phase space that has the topology of a torus T2,
defined by coordinates

0 ≤ q < 1, 0 ≤ p < 1. (1)

Under the action of the map, any point on the torus
at time t, (q, p) ≡ (q(t), p(t)) is mapped to another
point on the torus (q′, p′) ≡ (q(t + 1), p(t + 1)), such
that the Jacobian of the transformation is 1. A class
of well-known area-preserving maps are the Arnold Cat
Maps.67,68 These read(

q′

p′

)
=

(
a b
c d

)(
q
p

)
mod 1 (2)

where a, b, c, d are non-negative integers satisfying the
area-preserving condition ad − bc = 1. The Lyapunov
exponent of the cat map of Eq. (2) is given by λ =

log
(
(a+ d+

√
a2 + 4bc− 2ad+ d2)/2

)
. If a + d > 2,

the cat map is chaotic, i.e. it has a non-zero Lyapunov
exponent.59

A family of maps that are related to the cat maps are
the perturbed cat maps,60,69 and their well-known form
reads (

q′

p′

)
=

(
a b
c d

)(
q
p

)
+ κ

2π cos(2πq)

(
b
d

)
mod 1. (3)

While (a, b, c, d) can be arbitrary integers, in this work
we will use a commonly studied example of (a, b, c, d) =
(2, 1, 3, 2). Such a map is known to be fully chaotic for
κ ≤ 0.33.60 Since q and p are the coordinates on a torus,
it is useful to rewrite the map Eq. (2) in terms of analytic
variables on a torus x and z, defined as

z = e2πiq x = e2πip. (4)



3

In these variables, the perturbed cat map of Eq. (3) reads

x′ = x2z3 exp

(
iκ

2
(z + z-1)

)
z′ = xz2 exp

(
iκ

2
(z + z-1)

)
(5)

An alternate way to specify the maps on a torus is in
terms of a generating function S(q′, q), such that

p = −∂S(q′, q)

∂q
p′ =

∂S(q′, q)

∂q′
, (6)

where q and q′ are treated as independent variables. The
generating function will be useful for the quantization of
the map in the next section. For example, the generating
function for the perturbed cat maps defined in Eq. (2)
reads

S(q, q′) =
dq′

2

2b
− qq′

b
+
aq2

2b
+

κ

4π2
sin(2πq). (7)

B. Quantum Maps

Since the perturbed cat maps are area-preserving, one
can quantize the maps on a torus.37,60,70–74 While there
are several approaches to quantization, we follow the one
described in Ref. [60]. We first define a Hilbert space
that is compatible with the topology of a torus. That is,

the wavefunctions ψ(q) and ψ̃(p) satisfy

ψ(q + 1) = ψ(q), ψ̃(p+ 1) = ψ̃(p), (8)

resulting in the quantization of p = j/N and q = k/N
for some j, k ∈ N.60 Alternately, this constraint can be
interpreted as the Planck’s constant being allowed to only
take values ~ = 1

2πN for some N ∈ N. The semi-classical
limit ~→ 0 thus corresponds to N →∞.

This N -dimensional Hilbert space is identical to that
of a single particle moving on a one-dimensional periodic
lattice with N sites. Since position and momentum op-
erators do not commute, the phase space can be viewed
as an N×N grid with each cell depicting the uncertainty
of the position and momentum. However, note that in
contrast to physical particles moving on a periodic lat-
tice, the maps we work with do not have any locality on
the lattice. Alternately, the Hilbert space is that of the
lowest Landau level in a quantum Hall system on a torus
with N flux quanta.75

Since the Hilbert space is finite-dimensional, one can
define a discrete position basis {|qj〉}, where qj = j/N .
In the position basis, the matrix elements of the unitary
UN that describes the quantum map read60

(UN )j′,j ≡ 〈qj′ |UN |qj〉

=
1√
N

∣∣∣∣∂2S(q′, q)

∂q′∂q

∣∣∣∣1/2
qj′ ,qj

exp(2πiNS(qj′ , qj)) (9)

where S(q′, q) is the generating function that satisfies the
properties of Eq. (6). Using Eqs. (7) and (9) for the
perturbed cat maps, UN reads

(UN )j′,j =
1√
Nb

exp

(
2πi

Nb

(
dj′

2

2
− jj′ + aj2

2

)
+
iκN

2π
sin

(
2πj

N

))
(10)

While UN is not guaranteed to be unitary unless it sat-
isfies a certain “Egorov” property,60,76,77 we numerically
find that when b = 1, UN is unitary for several valid val-
ues of (a, c, d). As mentioned before, we view the unitary
of Eq. (10) as a fundamental quantum system that has
the classical limit of Eq. (3) as N →∞.

Chaos in the quantized maps is usually detected by the
eigenvalue spacing statistics.35,60 That is, if λn = eiφn

are the eigenvalues of the unitary UN , the distribu-
tion P (s) of the nearest neighbor level spacings sn =
(φn+1 − φn)N/2π (φN ≡ φ0) differs for a chaotic and
a non-chaotic quantum map. For example, in the per-
turbed cat map for κ ≤ 0.33, the distribution is expected
to exhibit level repulsion, and is described by the Circu-
lar Orthogonal Ensemble (COE), which, in the N → ∞
limit is the same as the Gaussian Orthogonal Ensemble
(GOE).60 While we numerically observe that the nature

of the level statistics fluctuates significantly with N , we
typically find that when N is prime, the perturbed cat
map exhibits GOE level statistics.

III. HEISENBERG PICTURE AND EQUATIONS
OF MOTION

A. Basis

Quantum maps in the semi-classical limit are typically
studied in a basis of coherent states (minimum uncer-
tainty wavepackets) {|q p〉}.78–80 In the ~→ 0 (N →∞)
limit, the dynamics of these coherent states mimic the
dynamics of individual points in phase space. Several ap-
proaches to construct such sets of states for a particle on
a finite-dimensional periodic lattice or for a quantum Hall
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system on a torus are known.81–83 However, it is known to
be impossible to obtain an N -dimensional orthogonal ba-
sis (for finite N) of wavefunctions on a torus that is local
in phase space,84 although orthogonalization of coherent
states can be implemented in the continuum as well as
the N →∞ limit.80,85 This hinders an analytical explo-
ration of the classical (N →∞) and quantum (finite N)
dynamics in the same language in the Schrödinger pic-
ture, although phase-space representations of quantum
mechanics86 such as the Wigner quasi-probability repre-
sentations of wavefunctions (density matrices) have been
employed.55,87,88

However, as we show, operators in the Heisenberg pic-
ture have natural classical analogues that can be stud-
ied analytically. Since the operator Hilbert space in
this system is N2-dimensional, a “local” operator ba-
sis {|q p〉 〈q p|} constructed using the coherent states ex-
ists, and while {|q p〉} is an overcomplete basis of states,
{|q p〉 〈q p|} is a complete basis of operators. While
such an operator basis is not orthogonal in general, we
believe that an N2-dimensional local orthogonal basis
{Pq,p} that resembles the coherent state operator ba-
sis {|q p〉 〈q p| can be constructed. In the semi-classical
limit, each operator basis element Pq0,p0 can be identified
with δ(q−q0, p−p0) that corresponds to a δ-function at a
point (q0, p0) in the phase space of the classical problem.
To obtain a basis that can be studied analytically, we
use a compact “position” operator Z =

∑
ei2πqPq,p and

“momentum” operator X =
∑
ei2πpPq,p to generate an

N2-dimensional “Fourier” basis {XmZn} for any finite
N . The semiclassical limit of each basis element XmZn

is the classical Fourier “basis element” xmzn, where x
and z are defined in Eq. (4). With this identification, we
have obtained a natural analogue of quantum operators
in the classical limit, complex-valued functions on phase
space. While this correspondence has been known for
long,86,89 we study the equations of motion of quantum
maps in such Fourier bases to analytically study classical
and quantum dynamics.

B. Equations of Motion

In an N -dimensional Hilbert space, the natural rep-
resentation of the position and momentum operators Z
and X are the ZN clock operators that obey

XN = ZN = 1 XZ = ωZX, ω ≡ e 2πi
N . (11)

Using the expression for the unitary of the perturbed cat
map in Eq. (10), the Heisenberg equations of motion for
X and Z is derived in App. A. For the perturbed cat map
with (a, b, c, d) = (2, 1, 3, 2), they read (see Eqs. (A16)

and (A17))

X ′ = ω-3X2Z3 exp

(
κN

4π
(ω − ω-1)(ω-1Z + ωZ-1)

)
Z ′ = ω-1XZ2 exp

(
κN

4π
(ω

1
2 − ω- 12 )(ω- 12Z + ω

1
2Z)

)
,

(12)

where X ′ and Z ′ are the time-evolved X and Z operators.
In the limit of N → ∞ (ω → 1), using the fact that
N(ωj − ω-j) → 4πij, Eq. (12) reduces to the evolution
equation of x and z’s in Eq. (5).

Using the Heisenberg equations of motion, we de-
rive the evolution of arbitrary operators written in the
“Fourier” basis. We start with an operator O, defined as

O =
∑
m,n

Qm,nX
mZn. (13)

The operator evolution equation can be written as

O′ =
∑
m,n

Qm,nX
′mZ ′

n ≡
∑
m,n

Q′m,nX
mZn, (14)

where O′ is the time-evolved operator. The relation of
the time-evolved operator coefficients {Q′m,n} to the ini-
tial coefficients {Qm,n} is derived using Eq. (12). As
derived in App. B (see Eq. (B9)), the explicit evolution
equation can be written as a matrix equation:

Q′ = MQQ (15)

where Q (Q′) is the vector of quantum coefficients
{Qm,n} ({Q′m,n}), and MQ is adjoint evolution (super-
)operator with matrix elements (see Eq. (B7))

〈m′, n′|MQ |m,n〉 = ω−3m
2−n2−3mn

N−1∑
s=0

(
δ
(N)
m′,2m+nδ

(N)
n′,3m+2n+s ×

∞∑
p=−∞

is+pNJs+pN
(
κN

π
sin
( π
N

(2m+ n)
))

ω(m+n
2 )(pN−s)

)
,

(16)

where Jν(x) is the ν-th Bessel function of the first kind

and δ
(N)
a,b = 1 if and only if a = b mod N , else 0. Since

MQ is a quantum evolution operator, it is a unitary N2×
N2-dimensional matrix.

As discussed earlier, the classical analogue of Heisen-
berg evolution is the evolution of L∞ functions on phase
space,

F =
∑
m,n

Cm,nx
mzn. (17)

The evolution of the classical coefficients can then be
computed using Eq. (5)

F ′ =
∑
m,n

Cm,nx
′mz′

n
=
∑
m,n

C ′m,nx
mzn, (18)



5

where F ′ is the time-evolved function. The set of time-
evolved coefficients {C ′m,n} is related to the initial coeffi-
cients {Cm,n} using a matrix evolution equation similar
to Eq. (15) (see Eq. (B3)),

C′ = MCC, (19)

where C (C′) is the (infinite-dimensional) vector of clas-
sical coefficients {Cm,n} ({C ′m,n}) and MC is the evolu-
tion operator with matrix elements (see Eq. (B2))

〈m′, n′|MC |m,n〉 =

∞∑
s=−∞

[isJs(κ(2m+ n))

×δm′,2m+nδn′,3m+2n+s] . (20)

In Eq. (20), one might recognize that MC is the classi-
cal Koopman operator written in the Fourier basis.59,90

Thus, as noted in previous works,90,91 the quantum ana-
logue of the Koopman operator MC is the adjoint evo-
lution operator MQ. The classical-quantum correspon-
dence is established by studying the evolution of quantum
coefficients in a ZN ×ZN “phase space” to the evolution
of classical coefficients in a Z×Z space. Moreover, since
the total weights of the coefficients (

∑
m,n |Qm,n|2 and∑

m,n |Cm,n|2) are conserved (by virtue of unitary evo-

lution), one can view this problem as the evolution of
weights in the Fourier phase space.

IV. CLASSICAL EVOLUTION AND
EMERGENT CLASSICALITY

In this section, we provide an operator interpretation
of the classicality of evolution and show that classicality
can arise in quantum problems even away from the usual
classical limit. In the classical map, every point (q, p) on
phase space is mapped onto one other point (q′, p′) on
phase space. In the classical limit of the quantum map,
this property can be interpreted as the evolution of a ba-
sis element Pq,p ∼ |q p〉 〈q p| into a different basis element
Pq′,p′ ∼ |q′ p′〉 〈q′ p′|. The existence of such a “special”
basis in which time-evolution is merely a shuffling of ba-
sis elements (without any phases) is interpreted as the
classicality of an evolution. That set of basis elements is
in one-to-one correspondence with the “phase space” of
the system. For example, in the usual classical limit, the
phase space is the infinite set {Pq,p}, or equivalently the
set of all points {(q, p)} on a torus. Properties of classical
evolution require the definition of a metric or a measure
over this phase space. For example, in classical maps, the
set of basis elements is {Pq,p} and the associated metric
is the Euclidean distance on the usual phase space. No-
tions of ergodicity, classical chaos, mixing or exactness
correspond to various behaviors of shuffling of these basis
elements. For example, classical chaos is the exponential
separation of two nearby basis elements (with respect to
the defined metric on phase space). Similarly, a classical
system is said to be ergodic when the evolution of a single

basis goes through all or almost all basis elements over a
long time.

While such a “special” basis does not exist for typ-
ical quantum systems, certain quantum systems exhibit
“emergent” classicality, as we now show for the quantized
unperturbed Arnold cat map. We focus on the evolution
of coefficients in the unperturbed cat map (κ = 0) of
Eq. (2) with (a, b, c, d) = (2, 1, 3, 2). In this limit, the
classical and quantum coefficient evolution matrix ele-
ments Eqs. (16) and (20) reduce to

〈m′, n′|MQ |m,n〉 = ω−3m
2−n2−3mnδ

(N)
m′,2m+nδ

(N)
n′,3m+2n

〈m′, n′|MC |m,n〉 = δm′,2m+nδn′,3m+2n. (21)

In terms of coefficient evolution, Eq. (21) reduces to

C ′2m+n,3m+2n = Cm,n,

Q′(2m+n,3m+2n) mod N = ω−3m
2−n2−3mnQm,n. (22)

In Eq. (22), each coefficient evolves into one other coeffi-
cient (or equivalently, each basis element evolves into one
other basis element). This is an example of classicality
in the Fourier basis {xmzn}. The quantum operator co-
efficients behave similarly up to a phase that is picked up
at each step of the evolution. However, since the phase is
commensurate (i.e. of the form e2πip/q, where p, q ∈ Z),
the quantum evolution exhibits emergent classicality on
timescales of O(N) or lesser. As a consequence, notions
of classical ergodicity and classical chaos can be applied
to these systems. Note that for generic finite-dimensional
quantum systems, even though there always exists an
eigenstate basis in which the operator evolution is merely
a multiplication by a phase, the phases that the basis el-
ements acquire are incommensurate, i.e. they are of the
form e2πir, where r is irrational. Thus such cases do not
qualify as emergent classicality.

Quantum systems that exhibit emergent classicality
and have finitely-many degrees of freedom have a finite
recurrence time, and thus the spectrum of the unitary
is entirely composed of roots of unity. For example the
quantized Arnold cat map with anN -dimensional Hilbert
space, the recurrence time is known to be CN ,92 where
C is an O(1) constant. Indeed, such systems typically do
not exhibit any of the usual signs of quantum chaos such
as level repulsion or Wigner-Dyson statistics, as noted
for the quantized cat map at κ = 0.70,92,93 Another set
of well-known examples of quantum systems that exhibit
emergent classicality are Clifford circuits,94–96 where, in
spite of absence of level repulsion, alternate notions of
chaos and ergodicity apply in certain cases.11 It is not
clear whether these emergent classical systems are quan-
tum integrable, since usual definitions of integrability in
quantum mechanics hold only in systems with an infinite-
dimensional Hilbert space (i.e. the thermodynamic limit
in spin chains or the semi-classical limit for quantum
maps), or for a continuous family of systems with a finite-
dimensional Hilbert space.97–100

To summarize, the perturbed cat map exhibits classi-
cality in three different limits. First, in N → ∞ limit
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when κ 6= 0, where the {Pq,p} basis is the only basis in
which the operator evolution is classical. Second, when
κ = 0 for finite N , where the operator evolution is clas-
sical only in the {XmZn} basis. Third, in the N → ∞
limit, when κ = 0, where the operator evolution is clas-
sical in both the {Pq,p} and {XmZn} bases.

Before moving on to quantum systems, two comments
on the behavior of classically chaotic maps in the Fourier
({xmzn}) basis are in order, which we illustrate these
using the evolution of classical coefficients in the κ = 0
limit. Following Eq. (22), an initial set of coefficients

{C(0)
m,n} evolve into coefficients {C(t)

m,n} that do not vanish
for larger m and n, and at time t� 1 the initial and final
coefficients are related by

C(0)
m,n ≈ C

(t)

eλt([m/2+n/(2
√
3)],[(

√
3/2)m+n/2])

, (23)

where λ = log (2 +
√

3), the classical Lyapunov expo-
nent of the unperturbed cat map and [ ] denotes the
integer part. Firstly, according to Eq. (23), any ini-
tial smooth function on phase space thus evolves into
a “rough” function on phase space at late times. The ex-
ponential growth of “roughness” is classical chaos, and
its rate is characterized by the Lyapunov exponent λ.
Secondly, the statement of classical ergodicity says that
in an ergodic map, the only eigenfunction of the evolu-
tion operator MC (Koopman operator) is the uniform
(constant) function.101 In the Fourier basis, the time-
evolution of coefficients in an ergodic classical map sat-
isfy

C
(0)
0,0 = C

(t)
0,0, (24)

which is consistent with Eq. (23).

V. REGIMES OF QUANTUM EVOLUTION

In a chaotic quantum system, we do not expect any
special basis in which classicality emerges. That is, in
general the operator coefficients spread in any basis. We
illustrate the nature of the evolution of coefficients in a
chaotic quantum map. Useful quantities to study the
time-evolution of the coefficients are the classical and
quantum entropies SC(t) and SQ(t) defined as

SC(t) ≡ −
∑
m,n

|C(t)
m,n|2 log |C(t)

m,n|2

SQ(t) ≡ −
∑
m,n

|Q(t)
m,n|2 log |Q(t)

m,n|2, (25)

where {C(t)
m,n} and {Q(t)

m,n} are the sets of classical and
quantum coefficients at time t. The coefficients are nor-
malized such that∑

m,n

|C(t)
m,n|2 = 1,

∑
m,n

|Q(t)
m,n|2 = 1. (26)

To establish a classical-quantum correspondence, we
choose the initial classical functions and quantum opera-

tors such that the set of coefficients {C(0)
m,n} and {Q(0)

m,n}
are the same and they satisfy the property

Q(0)
m,n = C(0)

m,n = 0 if m > m0 or n > n0, m0, n0 � N.
(27)

The property of Eq. (27) ensures the smoothness of the
initial function on the classical phase space and, as we
will see, enables the estimation of an Ehrenfest time for
simple operators.

As discussed in the previous section, in the κ = 0
problem, every coefficient is mapped on to one other
coefficient. Thus the initial set of coefficients do not
spread in Fourier space. Consequently, the classical and
quantum entropies defined in Eq. (25) are conserved
(SC(t) = SC(0), SQ(t) = SQ(0) ∀t). However, when
κ 6= 0, the quantum coefficients (and entropy) behave dif-
ferently, and their evolution can be classified into three
distinct regimes. Note that in this section we will only
be concerned about the scaling of the timescales with N
and κ, not quantitatively accurate estimates.

A. Early Times

At early times in the perturbed cat map for small κ, we
expect a qualitative behavior similar to the unperturbed
cat map. For very small κ, each Fourier coefficient follows
the mapping of Eq. (23), along with a small “spreading”
since for any κ > 0, i.e. a single basis element evolves
into a superposition of several basis elements. This is
evident by writing down the matrix elements of Eq. (20)
in a more suggestive form

〈2m+ n, 3m+ 2n+ s|MC |m,n〉 = isJs (κ (2m+ n)).
(28)

As shown in Eq. (C5) in App. C, |Jν(x)| can be consid-
ered to vanish when |ν| > |x| and |x| � 1. The typical
spreading ξ in the n-direction of a coefficient (m,n) in
Eq. (28) is thus

ξ ≈ κ(2m+ n). (29)

If the set of classical coefficients has an “area” (number of
non-zero coefficients) AC , the approximate width in the
m-direction is

√
AC , and hence the change in the area at

every step is given by

∆AC(t) ≈ 2ξ
√
AC(t− 1) = 2κ(2m+ n)

√
AC(t− 1)

≈ 2c0κe
λt
√
AC(t− 1),

(30)

where c0 is a constant that depends on the initial choice
of coefficients. In Eq. (30) we have used the fact that m
and n for the set of non-vanishing coefficients grows ex-
ponentially with the Lyapunov exponent λ (see Eq. (23)).
Consequently, we can estimate the area and the entropy
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FIG. 1. (Color online) Operator coefficient evolution of an initial operator XZ for κ = 0.1 and N = 503 at various times. Note
that the Fourier phase space has periodic boundary conditions. (a) t = 0: Initial operator (b) t = 4, Early times: For t < tE
the operator coefficients are localized in the Fourier phase space. (c) t = 8, Intermediate times: For tE < t < tscr the localized
set of operator coefficients spread enough to wrap around the Fourier phase space. (d) t = 14, Late times: For t > tscr, the
coefficients are essentially uniformly spread throughout the Fourier phase space.

of the coefficients to be

AC(t) ≈ AC(0) +
c20κ

2

λ2
e2λt

=⇒ SC(t) ≈ logAC(t) ≈ log

(
AC(0) +

c20κ
2

λ2
e2λt

)
∼ 2λt+ constant (31)

We compare the classical and quantum evolutions by
choosing a classical function on phase space and a quan-

tum operator whose coefficients {C(0)
m,n} and {Q(0)

m,n} re-
spectively are the same and they satisfy the property of
Eq. (27). For small m0, n0 and large N , the quantum
coefficients mimic the classical coefficients since Eq. (16)
reduces to Eq. (20) in this limit. Since Eqs. (16) and
(20) differ only when m,n ∼ O(N), the evolution of the

quantum and classical coefficients differ only when the

magnitudes of coefficients Q
(t)
m,n and C

(t)
m,n are significant

for m,n ∼ O(N). For a small κ, since all the coefficients
evolve roughly according to Eq. (23) (up to small spread-
ing), this timescale (Ehrenfest time tE) can be estimated
to be

eλtEmax (m0, n0) ∼ N =⇒ tE ∼
1

λ
logN, (32)

where we have assumed max (m0, n0)� N . This behav-
ior of the classical and quantum entropies is shown in
Fig. 2. The area and the entropy of the coefficients at
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FIG. 2. (Color online) The classical (C) and quantum (Q) co-
efficient entropies of the early-time evolution of an initial oper-
ator XZ in the perturbed cat map with κ = 0.01. The dashed
line shows SC(t) of Eq. (31) with c0 ≈ 5.88 and AC(0) = 1.
Note that the classical and quantum entropies deviate after
an Ehrenfest time that can be estimated (using Eq. (32)) to
be tE ≈ 5.24 for N = 1001.

the Ehrenfest time are

AQ(tE) ≈ AC(tE) ≈ c20κ
2N2

λ2
,

SQ(tE) ≈ SC(tE) ≈ 2 log

(
c0κN

λ

)
. (33)

Since the quantum and classical coefficients are similar
for t < tE , classicality (as discussed in the previous sec-
tion) approximately holds for the quantum problem in
the Pq,p basis. That is, a given basis element Pq,p ap-
proximately evolves into Pq′,p′ .

B. Intermediate Times

Once the evolution of quantum coefficients deviates
from the classical evolution, there is a timescale un-
til which the quantum operator undergoes Hamming
spreading over the Fourier basis until the operator co-
efficients look random in this basis. We call this the
operator scrambling time, the time at which the operator
has a roughly uniform weight on each of the Fourier basis
elements. To estimate this time-scale, we note that for
κ� 1, Eq. (16) can be approximated to be

〈2m+ n, 3m+ 2n+ s|MQ |m,n〉

≈ isJs
(
κN

π
sin
( π
N

(2m+ n)
))

ω−s(m+n
2 ). (34)

Similar to the early-time case, the we assume a typical
spreading ξ in the n-direction. Since the approximation
for the Bessel function Jν(x) depends on whether |x| �
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FIG. 3. (Color online) The quantum coefficient entropies of
the evolution of an initial operator XZ at intermediate and
late times. Note that the entropy saturates at an operator
scrambling time that obeys Eq. (39).

1 or |x| � 1 (see App. C)) the typical spreading s in
Eq. (34) can be estimated to be (see Eqs. (C2) and (C6))

ξ ∼

{
1

log( 1
κN )

if κN � 1

κN if κN � 1
. (35)

Similar to Eq. (30), the area of the coefficients obey

∆AQ(t) ≈ 2ξ
√
AQ(t− 1). (36)

The area AQ(t) quantum coefficients thus grows quadrat-
ically, √

AQ(t)−
√
AQ(tE) ≈ ξ(t− tE)

=⇒ AQ(t) ≈
(
c0κN
λ − ξ logN

λ + ξt
)2
, (37)

and the entropy SQ(t) grows logarithmically.

SQ(t) ≈ logAQ(t) ≈ 2 log

(
c0κN

λ
− ξ logN

λ
+ ξt

)
(38)

This behavior continues until the area of the coefficients
is O(N2). Thus, the operator scrambling time can be
estimated to be

tscr ∼ tE +
CN

ξ
, (39)

where C is a constant and tE is the Ehrenfest time of
Eq. (32). Substituting Eqs. (35) and (32) in Eq. (39), we
obtain

tscr ∼
logN

λ
+

{
N log

(
1
κN

)
if κN � 1

1
κ if κN � 1

. (40)
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Thus, we expect a crossover between the two behaviors
when κN ∼ O(1). The κN � 1 regime in Eq. (40) resem-
bles the “emergent classical” behavior of the κ = 0 limit
of the perturbed cat map discussed in Sec. IV and is not
representative of generic chaotic quantum systems. Note
that a slightly different form of the operator scrambling
time was conjectured in Ref. [102].

C. Late Times

After an operator scrambling time, a small set of initial
operator coefficients evolves into one that has an equal
weight on all of the basis elements of the semi-classical
basis. That is, the quantum entropy SQ(t) nearly satu-
rates the bound

SQ ≤ 2 logN. (41)

This is a characteristic feature of quantum chaos, and
this entropy saturation holds for most initial operators
after the operator scrambling time. In particular, one
can choose any initial operator Ppq ∼ |q p〉 〈q p| (for any q
and p) and expect the operator coefficients of U†PpqU to
be uniformly spread in operator space after an operator
scrambling time. That is,

Tr
((
U†
)t |q p〉 〈q p|U tX) ∼ Tr

((
U†
)t |q′ p′〉 〈q′ p′|U tX)

=⇒ 〈q p|U tX
(
U†
)t |q p〉 ∼ 〈q′ p′|U tX (U†)t |q′ p′〉 , (42)

which shows that expectation values of X (or any basis
element) equilibriate to the same value at late times ir-
respective of the initial a coherent state |q p〉. Thus the
operator scrambling time is the same as the state scram-
bling time, the time at which any initial coherent state
wavepacket centered at (q, p) on phase space uniformly
spreads throughout the system.

It is important to reconcile certain aspects of the late-
time classical evolution discussed in Sec. IV and late-time
quantum evolution. The classical and quantum late-time
behaviors are both governed by the eigenstates of MC

and MQ that have an eigenvalue of unit magnitude. The
outcomes differ in these cases. MQ has N2 eigenstates
with eigenvalue of magnitude 1. If {|φm〉} are eigenstates
of the quantum unitary U with eigenvalues {exp(iφm)},
{|φm〉 〈φn|} are the eigenstates of MQ with eigenvalues
{exp(i(φm−φn))}. As discussed in Sec. IV, MC for clas-
sically chaotic systems has a single eigenfunction, which
is the constant function on phase space. Thus, most
(N2− 1) quantum eigenstates do not have a clear mean-
ing in the N →∞ limit and it has to be the case that all
except one of the quantum eigenstates map onto singular
functions on the classical phase space.
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FIG. 4. (Color online) The quantum coefficient entropies of
the evolution of an initial operator with a low entropy in the
perturbed cat map with κ = 0.01 in the bases {XmZn} and
{RXmZnR†}, where R is a randomly chosen unitary. We find
that for several choices of R, the operator scrambling time is
of the order of tscr computed analytically for the {XmZn}
basis.

VI. BASIS-INDEPENDENCE AND THE
SPECTRAL FORM FACTOR

One might worry that the study of operator evolu-
tion with a different choice of basis in Sec. V (instead
of {XmZn}) might lead to a different behavior of the
operator coefficients. In a fully quantum chaotic system,
we find that for any generic choice of basis {RXmZnR†},
where R is a random unitary, the entropy of the operator
coefficients SQ(t) does not equilibriate until a timescale
of the operator scrambling time of Eq. (39), as shown
in Fig. 4. However, the growth of SQ(t) is not mono-
tonic in the {RXmZnR†} basis, and even though SQ(t)
reaches its maximum value at early times, its shows re-
currences to low values at early times. We thus believe
that quantum chaos is characterized by the late-time sat-
uration of entropy SQ(t) for most initial operators and
most choices of operator bases. An important caveat for
finite-dimensional quantum systems is that one can al-
ways choose the operator basis {|φm〉 〈φn|} formed by the
eigenstates of the time-evolution unitary U in which op-
erator coefficients do not spread irrespective of whether
the system is quantum chaotic or integrable. The ex-
istence of this special basis is related to the difficulty
of defining integrability and chaos in finite-dimensional
systems.97–99

Of course, in order to observe a classical-quantum cor-
respondence and an Ehrenfest time in the evolution of
operator coefficients, the choice of an operator basis is
more restrictive. A quantum map is formally said to
have a classical limit if it satisfies the Egorov condition,
a strong version of which loosely states that in the semi-
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FIG. 5. The smoothened spectral form factor K(t) for the
perturbed cat map with κ = 0.1 and N = 503. Typically the
dip time tdip appears to be of the order of operator scrambling
time tscr and the plateau time tplat of the order of Ntscr.

classical (N → ∞) limit of the quantum map, the time-
evolution of smooth functions on phase space and quan-
tum operators commute (see Eq. (13) of Ref. [60]). Due
to the restriction of the Egorov condition to the behavior
of smooth functions on phase space, in order to establish
a classical-quantum correspondence, it is natural to use a
quantum basis that limits to a basis of smooth functions
on phase space as a classical basis. Other choices of quan-
tum bases do not have a clear meaning in the classical
limit, at least from the perspective of the Egorov condi-
tion. Thus, by imposing the condition that the quantum
basis maps on to a basis of smooth functions in the clas-
sical limit, we rule out most choices of bases, for example
the operator basis formed by eigenstates of the unitary
(as discussed in Sec. V C not all of them can map on
to smooth functions in the classical limit). Clearly the
quantum basis {XmZn} and the classical Fourier basis
{xmzn} itself satisfy the required properties. We believe
the behavior of the coefficients and entropy should re-
main qualitatively the same with any other choice ba-
sis that satisfies the required properties, although it is
not clear how to construct an analytical example that is
different from {XmZn}. However, we note that weaker
versions of the Egorov condition (see Ref. [103] for an
example) could lead to alternate sensible choices of bases
in both the quantum and classical limits, an interesting
avenue for future work.

We now relate the operator evolution described in
Sec. V to the spectral form factor, a widely used diag-
nostic of quantum chaos, further elucidating the basis-
independence of our results. The spectral form factor
K(t) is defined as6,50,104

K(t) ≡ |Tr(U t)|2 =
∑
m,n

ei(φm−φn)t, (43)

where {φm} are the quasi-energies of the unitary matrix
of the quantum map. In generic non-integrable systems,
K(t) is believed to show three distinct features: a dip,
a ramp and a plateau.6,27 These features can be seen
numerically for several systems6 and also in cases where
K(t) can be analytically computed.27,105 When U is an
N ×N CUE random matrix, K(t) assumes the following
values106

K(t) =

 N2 if t = 0
|t| if 0 < |t| ≤ N
N if |t| ≥ N

. (44)

To relate operator evolution to the spectral form factor,
we note that after an operator basis transformation K(t)
of Eq. (43) can be written as

K(t) =

N2∑
i=1

Tr
(
Ôi(0)†

(
U†
)t
Ôi(0)U t

)

=

N2∑
i=1

Tr
(
Ô†i (0)Ôi(t)

)
, (45)

where {Ôi(0)} is a complete orthonormal basis of oper-

ators at t = 0 and {Ôi(t)} are the time-evolved basis

operators. If Ôi(t) is expressed in the basis of {Ôi(0)} as

Ôi(t) =

N2∑
i=1

gij(t)Ôj(0), (46)

then

K(t) =

N2∑
i=1

gii(t). (47)

In the previous section, we studied the evolution for
the operator coefficients in the Fourier basis {XmZn}.
Choosing {Oi(0)} to be the Fourier basis in Eq. (46), we
obtain

K(t) =

N∑
m,n=1

gm,n;m,n(t), (48)

where

gm,n;m,n(t) ≡ 1

N
Tr
(
Z−nX−mX(t)mZ(t)n

)
, (49)

the operator coefficient of X(t)mZ(t)n corresponding to
the basis element XmZn.

The behavior of gm,n;m,n(t) of Eq. (49) can be deduced
using the evolution of operator coefficients of the ini-
tial operator XmZn, and its overlap with XmZn. At
t = 0, K(t) = N2 since gm,n;m,n(0) = 1. At early-
times, gm,n;m,n(t) decreases as the operator coefficients
of X(t)mZ(t)n move away from (m,n), as illustrated in
Fig. 1b. In Eq. (48), if gm,n;m,n(t) has a magnitude of
1/N and a random phase, we obtain K(t) as a sum of N2



11

terms with random phases and magnitudes of O(1/N),
thus K(t) ∼ O(1). This time, when K(t) ∼ O(1) is
known as the dip-time in literature.6,27 In the perturbed
cat map, gm,n;m,n(t) has a magnitude of 1/N first when
t ∼ tscr, when all of the operator coefficients have a mag-
nitude O(1/N) since the operator entropy SQ(t) satu-
rates to SQ(t) ≈ 2 logN . Thus we expect

tdip ∼ tscr, (50)

which we also observe numerically, e.g. in Fig. 5. It
is thus reasonable to assume that evolution by U tscr is
equivalent to evolution by a single time-step with a Haar
random matrix.

At times greater than the dip time, K(t) exhibits a
linear increase on average, characteristic of evolution by
a random matrix.24 Furthermore, at timescales much
larger than the inverse smallest spacing of the quasi-
energy spectrum, any ei(φm−φn)t is a random phase, and
hence K(t) ∼ O(N) due to the N2 random phases in
Eq. (43). Thus, in the operator language, the phases of
the N2 terms in Eq. (48) are correlated at late times,
although they have a magnitude of O(1/N). In the per-
turbed cat map, since the evolution by U tscr is equivalent
to random matrix evolution by one time step, the plateau
time can be estimated to be N107 in units of the operator
scrambiling time,

tplat ∼ Ntscr. (51)

This timescale is also observed in Fig. 5. We believe
that Eq. (51) is the correct scaling of the plateau time
as opposed to N (the inverse of the naive estimate of
the smallest spacing) because we numerically find that
tplat →∞ as κ→ 0 (tscr →∞).

Note that while we observe the timescales of Eqs. (50)
and (51) to typically hold numerically in smoothened
plots of K(t) (e.g. Fig. 5), their precise physical in-
terpretation is unclear. Firstly, since the spectral form-
factor is not self-averaging,108 and we have a single uni-
tary U , rigorous definitions of the dip and plateau times
are not clear. Furthermore, since we have a single uni-
tary U corresponding to a cat map, how does one define
the randomness of U t? Moreover, even within random
matrix theory, notions of randomness for N × N ran-
dom matrices are defined in the N → ∞ limit. In the
perturbed cat map, this limit corresponds to the semi-
classical limit, further clouding the definition of random-
ness in the quantum problem.

We note that our analysis in Secs. V and VI has some
overlap with the recent work of Ref. [102], where the
perturbed cat map was numerically studied using sev-
eral diagnostics. Furthermore, the Ehrenfest time and
the operator scrambling time we have obtained are re-
lated to timescales that appear in the early time decay
and long time saturation of OTOCs in the perturbed cat
map studied in Ref. [109]. Thus, as shown in Ref. [109],
the operator scrambling time tscr can perhaps be related
to Ruelle-Pollicott resonances,47 determined by the spec-
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FIG. 6. (Color online) The quantum entropies of the evolution
of a “coherent operator” |q p〉 〈q p| in a Chirikov Standard
map for κ = 3.0 and N = 50. The entropy for a coherent
operator in a regular region oscillates around a lower entropy
than the one in a chaotic region.

trum of the Koopman operator MC (see Eqs. (19) and
(20)).

VII. REGULAR SYSTEMS AND MIXED PHASE
SPACES

To illustrate some difference with non-chaotic systems,
we now study a map very similar to the one of Eq. (3).
Commonly known as the Chirikov standard map,110 the
classical map reads(

q′

p′

)
=

(
1 1
0 1

)(
q
p

)
+ κ

2π sin(2πq)

(
1
1

)
mod 1 (52)

This map has a zero Lyapunov exponent at κ = 0 and is
known to be non-chaotic for small κ < κc ≈ 1.60,110,111

An interesting feature of the Chirikov standard map is
that for a certain range of κ the phase space is mixed,
i.e. it has both regular and chaotic regions that co-exist
in different parts of phase space.60,112 In terms of the
natural variables on a torus (see Eq. (4)), the standard
map reads

z′ = xz exp
(
−κ

2
(z − z-1)

)
x′ = x exp

(
−κ

2
(z − z-1)

)
(53)

Similar to the Arnold Cat map, the classical and quan-
tum evolutions of this map can be compared in the
Heisenberg picture via the Fourier and operator coeffi-
cients.
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FIG. 7. (Color online) (a) Positive real part of the classical Lyapunov exponents at various points in phase space for the
classical Chirikov Standard Map at κ = 3.0. The blue regions indicate the existence of regular islands. (b) Quantum operator
entropy for N = 50, κ = 3.0 for the quantized Chirikov Standard Map.

In contrast to the perturbed cat map,the classical en-
tropy in the Chirikov standard map does not show a lin-
ear growth for small κ. This is consistent with the fact
that the standard map is not chaotic at small κ and un-
like the cat map (see Eq. (23)), Fourier coefficients for
small m,n do not evolve into ones with exponentially
large m,n. Indeed, in the Chirikov Standard Map with

κ = 0, using Eq. (B10) the coefficients {C(t)
m,n} after a

time t can be related to the initial set of coefficients
{C(0)

m,n} according to

C(0)
m,n = C

(t)
m+nt,n. (54)

While the standard map does have an Ehrenfest time
for small κ, estimates such as the ones in Eq. (32) are
no longer accurate, presumably due to the presence of
“hidden” (almost) conserved quantities that need not
have simple forms in the Fourier basis. Such quantities
cause recurrences in the quantum entropies over small
timescales, and their existence is indicated by the fact
that the Standard map does not exhibit any level re-
pulsion even when κ > 0. Furthermore, the quantum
entropy SQ(t) (defined in Eq. (25)) never appears to
saturate to its maximum value of 2 logN for any N .
Such non-chaotic maps have an operator scrambling time
tscr → ∞, due to the existence of conserved or almost-
conserved quantities.

In certain classical maps on a torus, chaotic and regu-
lar regions can coexist on the phase space.60,113, form-
ing a so-called mixed phase space. Such behavior is
known to exist for large values of κ for the perturbed
Cat maps and the Chirikov standard map. For example,
for the Chirikov standard map at κ = 3.0, the Lyapunov
exponent at various points in phase space is shown in
Fig. 7a. A similar phenomenon occurs for the perturbed

cat map at κ = 6.5.60 In the quantized maps, this fea-
ture manifests as atypical eigenstates of the time evo-
lution operator. Indeed, the atypical eigenstates cause
the level statistics of the unitary to deviate from both
the chaotic and the Poisson distributions.114 These can
be detected by studying the phase space representations
(e.g. Husimi functions Hn(q, p) ≡ | 〈q p |ψ〉n |2) of the
eigenstates {|ψ〉n}, which look different for the atypi-
cal eigenstates.60 The effect of these regular regions in
the classical map also show up as features of the density
of states of the quantized system, leading to so-called
“quantum scars”.115–117 Several works have studied the
fate of these regular islands in quantized versions of these
torus maps. For example, it is known that in the long-
time limit any localized wavepacket that originates in the
ergodic region of the phase space eventually “floods” the
regular regions.112,118,119

Here we propose a Heisenberg picture interpretation
of regular (non-chaotic) islands that appear in the phase
portraits of classical maps on T2. Similar to the previous
sections, we study the evolution of operator coefficients
of an initial “coherent-state” operator |q p〉 〈q p| where
(q, p) is the location of the regular islands in the classical
phase space. Interestingly, we find in Fig. 6, the entropy
of the operator coefficients for a coherent state does not
saturate to the maximum value of 2 logN at late-times.
This is indicative of the fact that even at long-times the
operator in the regular region does not look resemble a
matrix that looks random in the Fourier basis. In con-
trast, a coherent state in the chaotic region does saturate
to its maximum value in the long-time limit, showing that
operator entropy can be used as a diagnostic to detect
scars in the spectrum of quantized maps.
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VIII. CONCLUSIONS

In this work, we have explored classical and quantum
chaos in quantum maps in the Heisenberg picture. We
observed that the evolution of operator coefficients in a
fixed basis of operators show signatures of quantum chaos
in the system. We compared the behavior of operator co-
efficients to the behavior of classical Fourier coefficients
of functions on phase space, illustrating the differences
between the classical equations of motion and the Heisen-
berg equations of motions. We obtained a sharp defini-
tion of classicality of a system and provided examples
in which classicality arises away from the usual classical
limit. We then identified three regimes in the system that
show the transition from the early-time classical chaos to
late-time quantum chaos, and they are characterized by
the natures of evolution of the operator coefficient en-
tropy SQ(t), defined in Eq. (25). We found that up to an
Ehrenfest time tE , the quantum system mimicks the be-
havior of the classical system and formed the early-time
or semiclassical regime. Furthermore, after an operator
scrambling time tscr, the information of the initial opera-
tor is scrambled into all the N2 Fourier coefficients, after
which the evolution of the coefficients looks random in
the Fourier basis. This operator scrambling time is the
same as the scrambling time for a coherent-state wave-
function to evolve into a wavefunction that is uniformly
spread across the system. Finally, we used the operator
coefficient diagnostics to obtain an operator interpreta-
tion of regular islands in torus maps whose classical limits

have a mixed phase space.
Our approach characterizes chaos in quantum maps

in the Heisenberg picture, which complements previous
approaches using wavefunctions (see Ref. [60] and the
references therein). While we have used the perturbed
cat map as an illustrative example, we believe that sev-
eral aspects of operator evolution in chaotic maps are
universal, e.g. the linear and logarithmic growths of
the coefficient entropy. Since the Heisenberg picture is
the natural language to explore many-body quantum
chaos and operator spreading in many-body quantum
systems6,9–11,14,15,120 and quantum field theories,5,12,13

our results extend the notions therein to quantum maps
on a torus. An important open question is to explore
if there is a version of “operator hydrodynamics” for
single-particle quantum chaotic systems.11 Furthermore,
the analytic tractability of the Heisenberg equations of
motion for these maps could further explore connections
to information-theoretic concepts such as unitary designs
and the complexity growth of states.27,28 On a differ-
ent note, the results in Sec. VII suggest that it would
be interesting to study operator evolution in quantum
many-body systems that are thought to exhibit many-
body quantum scars.121–125
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Appendix A: Heisenberg Equations of Motion

In this section, we derive the Heisenberg equations of motion for the perturbed Cat map and the Chirikov standar
map. For now, we assume a general map of the form of Eq. (3), and we will restrict ourselves to special values of
a, b, c and d when required.

We first represent the X and Z operators (defined in Eq. (11)) as N ×N matrices whose elements read (the indices

are represented using z ≡ ωj and z′ ≡ ωj′)

Zz′,z = zδz′,z, Xz′,z = δz′,zω-1 (A1)

In terms of z and z′, by using the substitutions j = N
2πi log z, j′ = N

2πi log z′, the unitary of Eq. (10) can be written as

(UN )z′,z = 1√
Nb

exp
(−iN

4πb

(
d(log z)2 − 2 log z log z′ + a(log z′)2

)
+κN

4π

(
z − z-1

))
(A2)

UN can then be written as a product of two matrices,

(UN )z′,z =
∑
z′′

U
(1)
z′,z′′U

(2)
z′′,z (A3)

where U (1) and U (2) read

U
(1)
z′,z′′ ≡

1√
Nb

exp

(
−iN
4πb

(
d(log z)2 − 2 log z log z′ + a(log z′)2

))
U

(2)
z′′,z ≡ exp

(
κN

4π

(
z − z-1

))
δz′′,z (A4)
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In Eq. (A4), the U (1) corresponds to the unitary for the unperturbed cat map and U (2) corresponds to the perturbation.
We first expand U (1) in an orthonormal operator basis {XmZn} as

U (1) =

N−1∑
m,n=0

um,nX
mZn. (A5)

Since the basis is orthonormal, um,n reads

um,n =
1

N
Tr [Z−nX−mU (1)] (A6)

Thus, we obtain

um,n =
1

N
√
Nb

∑
z′′,z′′′

(
δz,z′′δz′′,z′′′ωm(z′′)−n × exp

(
N

4πib

(
d(log z′′′)2 − 2 log z′′′ log z + a(log z)2

)))

=
1

N
√
Nb

∑
z

(
z−n × exp

(
N

4πib

(
d(log z −m logω)2 − 2(log z −m logω) log z + a(log z)2

)))

=
1

N
√
Nb

N−1∑
k=0

(
ω−kn exp

(
iπ

Nb

(
(a+ d− 2)k2 − 2m(d− 1)k +m2d

)))

=
1

N
√
Nb

N−1∑
k=0

ω

(
a+d−2

2b k2−(m(d−1)
b +n)k+m2d

2b

)
(A7)

1. Perturbed cat maps

We first consider a conventional choice of coefficients for the perturbed cat maps where (a, b, c, d) = (2, 1, 3, 2). The
expression for um,n in Eq. (A7) reduces to

um,n =
1

N
√
N
ωm

2
N−1∑
k=0

ωk
2−(m+n)k (A8)

One might recognize the sum in Eq. (A8) to be a generalized quadratic Gauss sum G(1,−(m+ n), N), where

G(a, b, c) ≡
c−1∑
k=0

e2πi
an2+bn

c (A9)

Using standard methods for Gaussian sums,126 the exact expression for U (1) reads70,92

U (1) =
1 + i

2N

∑
m,n

(
ω

(3m+n)(m−n)
4

(
1 + (−i)N+2(m+n)

)
XmZn

)
(A10)

Using Eqs. (A4) and the matrix elements (A1), U (2) can directly be written as

U (2) = exp

(
κN

4π

(
Z − Z-1

))
(A11)

We now proceed to the derivation of the Heisenberg equations of motion. By definition, the Heisenberg equations
of motion read

Z ′ = U (2)†U (1)†ZU (1)U (2)

X ′ = U (2)†U (1)†XU (1)U (2). (A12)

We first focus on computing

Z(1) ≡ U (1)†ZU (1). (A13)
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Using the expression for U (1) in Eq. (A10), we obtain

Z(1) =
1

2N2

∑
m,m′,n,n′

(
ω−

(3m+n)(m−n)
4 (1 + iN+2(m+n))(1 + (−i)N+2(m′+n′))ω

(3m′+n′)(m′−n′)
4 Z−nX−mZXm′Zn

′
)

=
1

2N2

∑
m,k,n,l

(
ω

1
4 (3k

2−(l−1)2−2k(l+1)ω
3k−l−1

2 mω
k−l+1

2 n(1 + iN (−1)m+n + (−i)N (−1)m+k+n+l−1 + (−1)k+l−1)XkZl
)

=
1

2N2

∑
k,l

(
ω

1
4 (3k

2−(l−1)2−2k(l+1)(1 + iN + (−i)N (−1)k+l−1 + (−1)k+l−1)Nδ3k−l−1,0Nδk−l+1,0

)
XkZl

= ω-1XZ2 (A14)

where in the second line we have defined k ≡ m′ −m and l ≡ n′ − n+ 1 and in the third line we have evaluated the
sums over m and n. Similarly, the expression for X(1) can be written as

X(1) =
1

2N2

∑
m,m′,n,n′

(
ω−

(3m+n)(m−n)
4 (1 + iN+2(m+n))(1 + (−i)N+2(m′+n′))ω

(3m′+n′)(m′−n′)
4 Z−nX−mXXm′Zn

′
)

=
1

2N2

∑
m,k,n,l

(
ω

1
4 (k−l−1)(3k+l−3)ω

3k−l−3
2 mω

k−l+1
2 n(1 + iN (−1)m+n + (−i)N (−1)m+k+n+l−1 + (−1)k+l−1)XkZl

)
=

1

2N2

∑
k,l

(
ω

1
4 (k−l−1)(3k+l−3)(1 + iN + (−i)N (−1)k+l−1 + (−1)k+l−1)Nδ3k−l+3,0Nδk−l+1,0

)
XkZl

= ω-3X2Z3 (A15)

where in the second line we have defined k ≡ m′ − m + 1 and l ≡ n′ − n. Using Eqs. (A14), (A12) and operator
commutation relations of Eq. (11), we obtain Z ′ to be (since Z is unitary)

Z ′ = e−
κN
4π (Z−Z-1)ω-1XZ2e

κN
4π (Z−Z-1)

= ω-1XZ2 exp

(
κN

4π

[
(1− ω-1)Z − (1− ω)Z-1

])
= ω-1XZ2 exp

(
κN

4π
(ω

1
2 − ω- 12 )(ω- 12Z + ω

1
2Z)

)
.

(A16)

Similarly, using Eqs. (A15) and (A12), we obtain X ′ to be

X ′ = e−
κN
4π (Z−Z-1)ω-3X2Z3e

κN
4π (Z−Z-1)

= ω-X2Z3 exp

(
κN

4π

[
(1− ω-2)Z − (1− ω2)Z-1

])
= ω-3X2Z3 exp

(
κN

4π
(ω − ω-1)(ω-1Z + ωZ-1)

)
(A17)

Thus, Eqs. (A16) and (A17) are the Heisenberg equations of motion for the quantization of the perturbed cat map
Eq. (3) with (a, b, c, d) = (2, 1, 3, 2).

2. Chirikov standard map

Similar to Eq. (A3), the unitary for the standard map can be decomposed into an unperturbed part U (1) and a
perturbed part U (2). Since the unperturbed part of the standard map has the same form as the unperturbed part of
the cat map, the expression of U (1) is given by Eqs. (A10) and (A7) with (a, b, c, d) = (1, 1, 0, 1). Thus, we obtain

U (1) =
1√
N

N−1∑
m=0

ωm
2/2Xm. (A18)
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The perturbed part U (2) is diagonal in the position basis and is given by

U (2) = exp

(
iκN

4π
(Z + Z-1)

)
. (A19)

Consequently, the expression for Z ′ reads

Z ′ = ω−
1
2XZ exp

(
iκN

4π
(ω

1
2 − ω− 1

2 )(ω−
1
2Z − ω 1

2Z-1)

)
. (A20)

Similarly, the expression for X ′ reads

X ′ = X exp

(
iκN

4π
(ω

1
2 − ω− 1

2 )(ω−
1
2Z − ω 1

2Z-1)

)
. (A21)

Appendix B: Evolution of operator coefficients

In this section, we derive the evolution equations of the classical Fourier and quantum operator coefficients. In
particular, we derive an expression for the matrix elements 〈m′, n′|MC |m,n〉 and 〈m′, n′|MQ |m,n〉 where the
classical and quantum coefficients evolve according to

C ′m,n =

∞∑
m,n=−∞

〈m′, n′|MC |m,n〉Cm,n

Q′m,n =

N−1∑
m,n=0

〈m′, n′|MQ |m,n〉Qm,n (B1)

respectively.

1. Perturbed cat maps

We start with the evolution of classical Fourier coefficients. Using the classical evolution of Eq. (5), the evolution
of Fourier components is defined using Eq. (18). Substituting Eq. (5) into Eq. (18), we obtain

∞∑
m,n=−∞

Cm,nx
′mz′

n
=
∑
m,n

Cm,nx
2m+nz3m+2n exp

(
iκ

2
(z + z-1) (2m+ n)

)

=

∞∑
m,n=−∞

∞∑
j=0

j∑
r=0

Cm,n
(iκ)j

r!(j − r)!

(
m+

n

2

)j
x2m+nz3m+2n+2r−j

≡
∞∑

m′,n′=−∞
C ′m′,n′x

m′zn
′

=

∞∑
m′,n′,m,n=−∞

〈m′, n′|MC |m,n〉Cm,nxm
′
zn
′

(B2)

The matrix elements in Eq. (B2) read

〈m′, n′|MC |m,n〉 =

∞∑
j=0

j∑
r=0

[
(iκ)j

r!(j − r)!

(
m+

n

2

)j
δm′,2m+nδn′,3m+2n+2r−j

]

=

∞∑
s=−∞

∞∑
j=|s|

[
(iκ)j(

j+s
2

)
!
(
j−s
2

)
!

(
m+

n

2

)j
δm′,2m+nδn′,3m+2n+sδs+j,even

]

=

∞∑
s=−∞

∞∑
l=0

[
(iκ)2l+|s|

(l + |s|)! l!

(
m+

n

2

)2l+|s|
δm′,2m+nδn′,3m+2n+s

]

=

∞∑
s=−∞

[
i|s|J|s| (κ(2m+ n)) δm′,2m+nδn′,3m+2n+s

]
=

∞∑
s=−∞

[isJs(κ(2m+ n))δm′,2m+nδn′,3m+2n+s],

(B3)
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where Jν(x) is the ν-th order Bessel function of the first kind. In deriving Eq. (B3), we have used

Jν(x) =

∞∑
l=0

(−1)m

m!(m+ ν)!

(x
2

)2m+ν

(B4)

and the property

J−ν(x) = (−1)νJν(x). (B5)

The derivation in the quantum case is similar, using the Heisenberg equations of motion instead of the classical
evolution equations. Using Heisenberg equations of Eqs. (12) and the properties of Eq. (11), we first obtain

X ′
m

= ω−3m
2

X2mZ3m exp

(
κN

4π
(ωm − ω-m)(ω-mZ + ωmZ-1)

)
Z ′
n

= ω−n
2

XnZ2n exp

(
κN

4π

(
ω
n
2 − ω−n2

) (
ω-n2 Z + ω

n
2 Z-1

))
. (B6)

Consequently, using Eqs. (B6) and (14), we can write

N−1∑
m,n=0

Qm,nX
′mZ ′

n
=

N−1∑
m,n=0

Qm,nω
−3m2−n2−3mnX2m+nZ3m+2n exp

(
κN

4π

(
ω(m+n

2 ) − ω−(m+n
2 )
)(

ω−(m+n
2 )Z + ω(m+n

2 )Z-1
))

=

N−1∑
m,n=0

Qm,nω
−3m2−n2−3mn

∞∑
j=0

j∑
r=0

ω(m+n
2 )(j−2r) (iκN)j

(2π)jr!(j − r)!
sinj

( π
N

(2m+ n)
)
X2m+nZ3m+2n+2r−j ,

≡
N−1∑

m′,n′=0

Q′m′,n′X
m′Zn

′
=

N−1∑
m′,n′,m,n=0

〈m′, n′|MQ |m,n〉Qm,nXm′Zn
′

(B7)

where we have used the properties of Eq. (11). To write out the matrix elements in Eq. (B7) explicitly, it is useful to
define

δ
(N)
a,b =

{
1 if a = b mod N
0 otherwise

. (B8)

The matrix elements then read

〈m′, n′|MQ |m,n〉 = ω−3m
2−n2−3mn

∞∑
j=0

j∑
r=0

[
κjω(m+n

2 )(j−2r)

r!(j − r)!

(
iN

2π
sin
( π
N

(2m+ n)
))j

δ
(N)
m′,2m+nδ

(N)
n′,3m+2n+2r−j

]

= ω−3m
2−n2−3mn

N−1∑
s=0

∞∑
j=0

j∑
r=0

[
(iκ)jω(m+n

2 )(j−2r)

r!(j − r)!

(
N

2π
sin
( π
N

(2m+ n)
))j

δ
(N)
m′,2m+nδ

(N)
n′,3m+2n+sδ

(N)
2r−j,s

]

= ω−3m
2−n2−3mn

∞∑
p=−∞

N−1∑
s=0

∞∑
j=0

j∑
r=0

[
(iκ)j

r!(j − r)!

(
N

2π
sin
( π
N

(2m+ n)
))j

ω(m+n
2 )(j−2r)δ

(N)
m′,2m+nδ

(N)
n′,3m+2n+sδ2r−j+pN,s

]

= ω−3m
2−n2−3mn

∞∑
p=−∞

N−1∑
s=0

∞∑
j=|p+pN |

 (iκ)jω(m+n
2 )(pN−s)(

j+s+pN
2

)
!
(
j−s−pN

2

)
!

(
N

2π
sin
( π
N

(2m+ n)
))j

δj+s+pN,evenδ
(N)
m′,2m+nδ

(N)
n′,3m+2n+s


= ω−3m

2−n2−3mn
∞∑

p=−∞

N−1∑
s=0

∞∑
l=0

[
(iκ)2l+|s+pN |ω(m+n

2 )(pN−s)

(l + |s+ pN |)! l!

(
N

2π
sin
( π
N

(2m+ n)
))2l+|s+pN |

δ
(N)
m′,2m+nδ

(N)
n′,3m+2n+s

]

= ω−3m
2−n2−3mn

∞∑
p=−∞

N−1∑
s=0

[
i|s+pN |J|s+pN |

(
κN

π
sin
( π
N

(2m+ n)
))

ω(m+n
2 )(pN−s)δ

(N)
m′,2m+nδ

(N)
n′,3m+2n+s

]

= ω−3m
2−n2−3mn

∞∑
p=−∞

N−1∑
s=0

[
is+pNJs+pN

(
κN

π
sin
( π
N

(2m+ n)
))

ω(m+n
2 )(pN−s)δ

(N)
m′,2m+nδ

(N)
n′,3m+2n+s

]
, (B9)

where we have used Eqs. (B4) and (B5). Note that in the limit N →∞, Eq. (B9) reduces to Eq. (B3).
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2. Chirikov standard map

To obtain the operator coefficient evolution for the Standard map, we follow the same procedure as for the perturbed
cat map. The classical coefficient evolution matrix elements are obtained using Eqs. (18) and (53). The result reads

〈m′, n′|MC |m,n〉 =

∞∑
j=0

j∑
r=0

[
(−1)r

κj

r!(j − r)!

(
m+ n

2

)j
δm′,m+nδn′,n+2r−j

]

=

∞∑
s=−∞

[
(−1)sJ|s|(κ(m+ n))δm′,m+nδn′,n+s

]
. (B10)

Similarly, to determine the quantum evolution equation, using the Heisenberg equations of motion in Eqs. (A20) and
(A21), and the properties of Eq. (11) we first obtain

X ′
m

= Xm exp

(
iκN

4π

(
ω
m
2 − ω-m2

) (
ω-

(m−1)
2 Z + ω

(m−1)
2 Z-1

))
Z ′
n

= ω−
n2

2 XnZn exp

(
iκN

4π

(
ω
n
2 − ω−n2

) (
ω-n2 Z + ω

n
2 Z-1

))
. (B11)

Consequently, the quantum evolution matrix elements for the Standard map read

〈m′, n′|MQ |m,n〉 = ω−
n2

2

∞∑
j=0

j∑
r=0

[
(−1)r

κjω(m+n
2 )(j−2r)

r!(j − r)!

(
N

2π
sin
( π
N

(m+ n)
))j

δm′,m+nδn′,n+2j−r

]

= ω−
n2

2

N−1∑
s=0

∞∑
p=−∞

[
(−1)s+pNJ|s+pN |

(
κN

π
sin
( π
N

(m+ n)
))

ω(m+n
2 )(pN−s)δm′,m+nδn′,n+s

]
.

(B12)

In the limit N →∞, Eq. (B12) reduces to Eq. (B10).

Appendix C: Bessel Function Approximations

In this section, we estimate a “decay length” ν0 such that the magnitude of the Bessel function |Jν(x)| can be
considered to vanish for |ν| > ν0. We consider the |x| � 1 and |x| � 1 cases separately:

1. When |x| � 1, we use the usual expansion of the Bessel functions as

|Jν(x)| =
∞∑
s=0

(−1)s

Γ(s+ 1)Γ(ν − s+ 1)

(
|x|
2

)n+2s

≈ 1

Γ(ν + 1)

(
|x|
2

)ν
+O(|x|)

≈ 1

Γ (ν + 1)
exp(ν log(|x|/2)) (C1)

Consequently, |Jν(x)| can be considered to vanish for |ν| ' ν0, where

ν0 =
1

log(2/|x|)
. (C2)

2. When |x| � 1, we expect ν0 � 1, and hence we can use the two forms of Debye expansions for Bessel functions127:

|Jν (ν sechα) | ≈ exp (−ν(α− tanhα))√
2πν tanhα

(
1 +O

(
1

ν

))
, ν →∞, α > 0 (C3)

|Jν (ν secβ) | ≈
√

2

πν tanβ

(
cos
(
ν (tanβ − β)− π

4

)
+O

(
1

ν

))
, ν →∞, β > 0 (C4)
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Substituting x = ν sechα and x = ν secβ in Eqs. (C3) and (C4) respectively, and using tanh (arcsech y) =√
1− y2 and tan (arcsec y) =

√
y2 − 1, we obtain

|Jν (x) | ≈


exp(−ν arcsech( xν )+

√
ν2−x2)√

2π
√
ν2−x2

(
1 +O

(
1
ν

))
if |ν| > |x|√

2
π
√
x2−ν2

(
cos
(√
x2 − ν2 − ν arcsec

(
x
ν

)
− π

4

)
+O

(
1
ν

))
if |ν| < |x|

. (C5)

Thus, using Eq. (C5) we see that |Jν(x)| oscillates for |ν| < |x| and decays for |ν| > |x|. Thus, the “decay
length” for |x| � 1 can be defined as

ν0 = [|x|], (C6)

where [x] is the integer part of x.
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96 J. Gütschow, S. Uphoff, R. F. Werner, and Z. Zimborás,

Journal of Mathematical Physics 51, 015203 (2010).
97 E. A. Yuzbashyan and B. S. Shastry, Journal of Statistical

Physics 150, 704 (2013).
98 E. A. Yuzbashyan, B. S. Shastry, and J. A. Scaramazza,

Physical Review E 93, 052114 (2016).
99 J. A. Scaramazza, B. S. Shastry, and E. A. Yuzbashyan,

Physical Review E 94, 032106 (2016).
100 V. Gritsev and A. Polkovnikov, SciPost Physics 2, 021

(2017).
101 P. Gaspard, Chaos, scattering and statistical mechanics,

Vol. 9 (Cambridge University Press, 2005).
102 X. Chen and T. Zhou, arXiv preprint arXiv:1804.08655

(2018).
103 S. D. Bievre and M. D. Esposti, in Annales de l’Institut

Henri Poincare-A Physique Theorique, Vol. 69 (Paris:
Gauthier-Villars, c1983-c1999., 1998) pp. 1–30.
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118 A. Bäcker, R. Ketzmerick, and A. G. Monastra, Physical
Review Letters 94, 054102 (2005).
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