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Geometrically frustrated systems and topological semimetals have both attracted much interest and been 

studied in various systems in recent years. Here we study the interplay between these two systems. We 

show that a Weyl point can be extended to a chain of degeneracy (a nodal chain) with nonzero charge of 

Berry flux through geometrical frustration. We propose to realize such a charged nodal chain in an 

acoustic metamaterial, based on both tight-binding and full-wave numerical simulations. Moreover, we 

observe a fan-like surface state spectrum, whose dispersion is controlled by the bulk band properties. 

Our work points to a new class of band degeneracy that carries non-zero Berry flux. The resulting 

topological metamaterial may be useful for controlling the flow of sound and light.  

Subject Areas: Acoustics, Metamaterials, Materials Science. 
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I. Introduction 

Geometrically frustrated systems with a large number of nearly degenerate states are of great interest in 

the physics of condensed matter [1-6], cold atoms [7-9] and classical waves [10-14]. In these systems, 

the energy spectrum possesses nondispersive bands and hence interaction becomes important and leads 

to novel phases of matter.[15-21] On the other hand, topological semimetals, where topologically stable 

band degeneracies occur, have also attracted widespread attention[22-53]. Such band degeneracies can 

form a zero-dimensional nodal point[22-39], one-dimensional nodal line[40-49], or two-dimensional 

nodal surface[43,50-53] in the momentum space. Here we study the interplay between geometrical 

frustrated lattices and topological semimetals. Within a tight-binding model, we show that geometrical 

frustration can endow a Weyl point dispersionless directions of the band structure, which then extends 

the Weyl point to a degenerate nodal line or nodal chain. Such an operation preserves the topological 

charge and results in a nodal line/chain carrying a nonzero monopole charge. As geometrically 

frustration is fragile and is usually achieved with fine tuning of the parameters, we propose to realize 

such a nodal chain with an acoustic metamaterial which offers flexibility in tuning the parameters. We 

then demonstrate the existence of charged nodal chain numerically with full wave simulations. We also 

discuss the surface states associated with this system. When the nodal chain is projected onto a single 

line inside the surface Brillouin zone, the link point of the Fermi-arc on the nodal line can change 

depending on the boundary condition. When the nodal chain is projected to a crossing inside the surface 

Brillouin zone, we observe a fan-shaped surface state spectrum instead of the usual drumhead surface 

states[54,55].  

The paper is organized as follows: In Sec. II, we introduce the effective Hamiltonian of a nodal line with 

nonzero Berry charge and further shows how to construct a charged nodal chain. In Sec. III, we show 

how to implement this charged nodal chain in a tight-binding model through geometrical frustration. In 

Sec. IV, we discuss an acoustic metamaterial, which exhibits this charged nodal chain and obtain the 

Berry charge of the nodal chain through numerically calculating the Chern numbers as a function of zk . 

In Sec. V, we continue to discuss the unique surface properties of such a system with a charged nodal 

chain and then conclude in Sec. VI.  
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II. Hamiltonian of a nodal line with nonzero Berry charge and construction of a nodal chain 

We start with a simple Hamiltonian  

 ( ) ( )ˆ
x x z z y yH q q f q qρσ σ σ= + +k , (1) 

where xq , yq  and zq  are the wavevectors along the x, y, and z directions, respectively, 2 2
x zq q qρ = + , 

( )f qρ  is a real function of qρ , and xσ , yσ  and zσ  are the Pauli matrices. When ( ) 1f qρ = , this 

Hamiltonian gives the Weyl Hamiltonian with topological charge 1+ ; when ( ) 0f qρ = , it becomes 

 ( )ˆ
x x z zH q qσ σ= +k . (2) 

This Hamiltonian describes a nodal line along the y-direction. The system in this case exhibits PT  

symmetry (note the absence of yσ  term in Eq. (2), and here P  and T  represent inversion and time 

reversal operators, respectively.), hence the Berry curvature vanishes at every k-point and the nodal line 

is not charged. To create a charged nodal line, we instead consider the case ( ) 0f qρ =  only at 0qρ = , 

and as a special case ( )f q qρ ρ= , i.e.,  

 ( )ˆ
x x z z y yH q q q qρσ σ σ= + +k . (3) 

This Hamiltonian possesses a nodal line along the y-direction as the bands are degenerate at 0qρ =  and 

exhibits linear dispersion when away from this nodal line. The Berry curvature for the Hamiltonian in 

Eq. (3) has the form:  

  ( )
2 2

2 2

1 2 2 1
ˆ

2 2 2 1
z z z

z z z

q q q
q

q q q q
ρ

ρ

±

+ − +
=

+ − +
B m , (4) 

where q̂ρ  represents the radial direction, and the subscripts “+” and “ − ” correspond to the upper and 

lower bands, respectively. In Fig. 1(a), we show the Berry flux density distribution (arrows) around this 

nodal line (red line) and the quantized charge carried by the nodal line is +1, which is obtained by 

integrating the total Berry flux through a cylindrical surface enclosing this nodal line.  
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Comparing Eqs. (2) and (3), we see the Hamiltonian in Eq. (2), which only supports a non-charged 

nodal line, has no yσ  term for every xq  and zq . In contrast, the coefficient before yσ  of the 

Hamiltonian in Eq. (3), which supports a charged nodal line, vanishes only at 0qρ = . Meanwhile, the 

charged nodal line in Eq. (3) exhibits non-dispersive band along the y direction at 0qρ =  which is 

reminiscent of the geometric frustration that can be utilized to create non-dispersive band along special 

directions. [1-14] Therefore, it is natural to consider the use of geometric frustration to realize a charged 

nodal line.  

 

For any nodal line, the charge of Berry flux is quantized due to gauge invariance. In a periodic system, 

nodal lines can extend across the Brillouin zone with ends meeting at the zone boundary, or form closed 

loops inside the Brillouin zone and these loops can be either isolated [40-42], linked [44-47] or 

connected into a chain [47-49]. For example, we consider the special case in which two nodal lines 

intersect with each other and both extend across the entire Brillouin zone. A schematic picture is shown 

in Fig. 1(b), where two nodal lines (represented by the red cylinders) are assumed to be on the zk π=  

plane one at 0xk =  and the other at 0yk = . Here ( ), ,x y zk k k  denotes the position in the reciprocal space. 

Considering the fact that the Brillouin zone is periodic, this configuration in Fig. 1(b) is topologically 

equivalent to the two nodal rings chained together as shown in Fig. 1(c). For the discussion below, we 

also call the connection of two nodal rings as shown in Fig. 1(c) nodal chain for simplicity. Indeed, our 

case can be regarded as a simplified version (only two rings chained together) of the nodal chains 

discussed in Refs. [47-49] wherein there are more nodal rings chained together. Here the positions of 

nodal lines are not limited to be on the zk π=  plane. As we will show later, a nodal chain of this form 

with non-zero charge can exist in geometrically frustrated lattices.  

 

III. Tight-binding model with flat nodal chain 

To achieve a charged nodal line using the concept of geometric frustration, we consider a tight-binding 

model as shown in Fig. 2(a). This model has no spin degree of freedom. Each unit cell consists of four 

inequivalent sublattices represented by spheres with different colors and all sublattices share the same 

onsite energy. This structure consists of layers equally spaced along the z direction, with each sublattice 
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on each layer forming a square lattice with a lattice constant a . The second, third and fourth layers are 

translated by ( )0, / 2a , ( )/ 2, / 2a a  and ( )/ 2,0a  in the xy-plane respectively, with respect to the first 

layer. Coupling occurs only between layers. There are two types of couplings denoted as black and 

yellow bonds in Fig. 2(a), respectively. The black bond occurs between adjacent layers with strength 0t . 

The yellow bond occurs between next adjacent layers. The hopping strength of such bonds varies 

depending on the projected locations in the x-y plane as shown in Fig. 2(b), and has strength of either 

( )1 1 ct tδ= + , ( )2 1 ct tδ= −  with δ  being a small number. Our system is assumed to preserve time 

reversal symmetry, and hence the hopping constants are all real. The explicit form of this Hamiltonian 

can be found in Appendix A. Figure 2(c) shows the reciprocal space of this tight-binding model and 

some high symmetric points are also labeled.  

 

Figure 3(a) shows the band structure of this tight-binding model along some high symmetric directions 

with 0 2 2t = − , 1ct = −  and 0.1δ = . There are in total four bands and we label them respectively as 

band 1 (black), 2 (red), 3 (blue), and 4 (magenta) from low energy to high energy. There are a few band 

degeneracy points between these bands, which are either Weyl points or degeneracy points without 

charge. The degeneracy point between band 1 and band 2 at Z does not exhibit any topological charge. 

The degeneracy point at S between band 2 and band 3 is a charge 2−  Weyl point, and the degeneracy on 

ΓZ  at 0.34zk h π=  is a charge 1+  Weyl point. Due to time reversal symmetry, there is another Weyl 

point with the same charge at 0.34zk h π= −  with charge 1+ . The degeneracy point at Γ  between band 3 

and band 4 is another Weyl point with charge 2+ . There is no other band degeneracy point. Meanwhile, 

the values of 0t  and ct  are chosen to satisfy the condition 0 2 2 ct t=  such that the charge +2 Weyl point 

at Γ  and the charge 2−  Weyl point at Z between band 3 and band 4 are at the same energy. (See 

detailed discussion in Appendix A)  

 

In Fig. 3(b), we show the band structure with 0δ =  while keep the other parameters unchanged. The 

band structures are quite similar like each other except one distinct difference: Band 1 (3) and band 2 (4) 

are degenerate along the ZU and ZT directions. Band 2 and band 3 are degenerate along the SX and SY 

directions. These nodal lines are also highlighted in Fig. 2(c) in red. Hence this tight-binding model 
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possesses three nodal chains. In contrast with the symmetry-protected nodal lines as discussed in Ref. 

[40-49] which all exhibit dispersion along the line. Here we note that the nodal chains in our system are 

dispersionless which is in sharp contrast with the nodal lines protected by spatial symmetries. This is 

reminiscent of the geometrically frustrated lattices where perfect flat bands are also found. 

Geometrically frustrated systems with a large degeneracy of states has been explored in model systems 

such as Dice lattice [15], Lieb’ s lattice [17], Kagome lattice [18-20] and Tasaki’ s decorated square 

lattice [21]. Recently, the mechanism and associated phenomena are also intensely investigated in the 

context of condensed matter physics [1-6], cold atoms [7-9], and photonic crystals [10-14]. The essential 

idea is to design a lattice whose inter unit cell couplings vanish under certain circumstance. In our 

system, the inter unit cell coupling is controlled solely by the yellow bonds in Fig. 2(b), and has the form 

of (see Appendix A for more details) 

 2 2 2 2 2 2
13 24

ˆ ˆ 4 cos cos cos sin sin sin
2 2 2 2 2 2

y yx xz z
c

k kk kk kH H t
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
, (5) 

where 13Ĥ  and 24Ĥ  refer to the coupling between sublattices 1 and 3, and between sublattices 2 and 4, 

respectively. At 0ik =  and jk π= , where { }, , ,i j x y z∈  and i j≠ , both 13Ĥ  and 24Ĥ  vanish. Along 

these special directions, the inter unit cell couplings in the x-y plane vanish in this tight-binding model. 

Hence one can conclude that all the bands become nondispersive along the highlighted directions in Fig. 

2(c), i.e., zk π=  and 0xk =  or 0yk = , and 0zk =  and xk π=  or yk π= . These highlighted directions 

are the only directions along which the bands are dispersionless as ensured by the geometric frustration. 

Under the condition that the coupling introduced by the yellow bonds vanishes, the remaining system 

exhibits four-fold screw symmetry 4C%  along the z direction. 4C%  symmetry requires that band 2 and band 

3 are degenerate at Γ , band 1 and band 2 are degenerate at Z , and band 3 and band 4 are also 

degenerate at Z. Combining with the fact that the bands are dispersionless along the highlighted 

directions in Fig. 2(c), we can now conclude that the system exhibits perfectly-flat nodal lines along 

those highlighted directions. Note here the nodal lines are not necessarily dispersionless even in 

geometrically frustrated systems; they are flat only along the special directions where geometric 

frustration condition is satisfied.  

 



7 
 

As another evidence of geometric frustration, we show the amplitude of the eigenstates on the flat nodal 

line at xk π=  or yk π=  in the inset of Fig. 3(b). There are two degenerate states on this nodal line. One 

has nonzero opposite amplitude only on sublattices 1 and 3, and the other has nonzero opposite 

amplitude only on sublattices 2 and 4. We note that all the eigenstates on these two flat bands are the 

same except for a global phase factor. The amplitude distribution is consistent with those of the flat 

bands in other geometrically frustrated systems [11-13]. Geometric frustration in Fig. 3(b) extends the 

degeneracies at S and Z in Fig. 3(a) along the x-axis and y-axis and form dispersionless nodal chain. As 

this process does not change the topological charge, whether the nodal chain formed carries a 

topological charge or not only depends on the topological charge of the original degeneracy. Combined 

with the charge analysis before, we can conclude that the nodal chain between band 1 and band 2 are not 

charged, while the other two nodal chains carry a topological charge 2− . The consequence of geometric 

frustration can also be seen from the Berry flux density distribution near the charged objects as shown in 

Figs. 3(c) and 3(d). Here we choose band 4 as an example and fix 0.999zk h π= . When 0.1δ = , the 

Berry flux concentrates around 0x yk k= =  as all the Berry flux originates from the Weyl point at Z 

point. While for 0δ = , the Berry flux spreads out around the nodal lines along 0xk =  and 0yk =  

directions due to the geometric frustration.  

 

IV. Acoustic metamaterial realization 

The geometrically frustrated lattice proposed above can be realized with acoustic metamaterials. The 

side view and top view of a unit cell of such an acoustic metamaterial is shown in Figs. 4(a) and 4(b), 

respectively. Here blue and yellow represent the surfaces where hard boundary and periodic boundary 

conditions are applied, respectively. The basic idea for this design is to replace the lattice sites with 

resonance cavities that are formed within the hard boundaries. Between the cavities, tubes are added in 

to connect sites and introduce hopping. The hopping strength is proportional to the cross section of these 

connecting tubes. The merit of this metamaterial is to allow one to specifically design the desired 

hopping configurations, and this acoustic metamaterial platform has been previously used 

experimentally to demonstrate various topological concepts[56-58]. The band dispersion along several 

high symmetric directions is shown in Fig. 4(c). The band formed from the the lowest order mode of the 

resonance cavities is linear in the low frequency limit. Except for that, other features of the band 
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structures in Figs. 3(b) and 4(c) are quite similar. In particular, we have flat nodal chains as predicted by 

the tight-binding model in Fig. 2.  

 

Berry charge of nodal chain 

Now we proceed to show that some of these flat nodal chains possess nonzero charge of Berry flux with 

full wave simulations. The analysis of the Berry charges of the tight-binding model can be found in 

Appendix A. In such a system with time reversal symmetry, the charge of Berry flux can only be carried 

by band degeneracies, at either points, lines or surfaces. Besides the nodal line degeneracies discussed 

before, there are point band degeneracy at Γ  between band 3 and band 4, and on ZΓ  at 0.18 /zk hπ=  

between band 2 and band 3, which together complete the set of band degeneracies in this system. This 

conclusion is consistent with the tight-binding model, which provides a good description of the acoustic 

metamaterial.  

 

To obtain the charge of Berry flux for these band degenerate points, we calculate the Chern number for 

two-dimensional bands with fixed zk  as shown in Fig. 5, where Figs. 5(a-d) show the Chern numbers of 

bands 1-4, respectively. (More details can be found in Appendix B.) In Fig. 5(a), we see that the Chern 

number is zero for all the zk . Hence we can conclude that the Berry charge of the nodal chain between 

band 1 and band 2 is zero, which is marked in gray on the left panel of Fig. 5(a). In Fig. 5(b), the Chern 

number increases by 1 at 0.18 /zk hπ= ± , and hence the band structure possesses two charge +1 Weyl 

points at 0.18 /zk hπ= ±  on ZΓ  as represented by the yellow sphere in Fig. 5(b). Meanwhile, the Chern 

number decreases by 2 across the nodal chain at 0zk = , which then indicates that the Berry charge of 

the nodal chain between band 2 and band 3 is 2−  as marked by the cyan lines on the left panel of Fig. 

5(b). In Fig. 5(c), the Chern number is 1−  for 0.18 / 1zk h π< < , and hence the nodal chain between 

band 3 and band 4 is 2−  as highlighted by cyan line on the left panel of Fig. 5(c). Meanwhile, the Chern 

number increases by 4 at 0zk = . This comes from two parts: the nodal chain between band 2 and band 3, 

and the Weyl point at Γ . Hence the charge of this Weyl point is +2  and we use a red sphere on the left 

panel of Fig. 5(c) to denote it. According to the analysis before, we know the Berry charge of the nodal 

chain and Weyl point as shown on the left panel of Fig. 5(d), which are respectively 2−  and 2+ . 
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Considering the fact that the Chern number is opposite for opposite zk , we know the Chern number of 

band 4 should be +1 for 0zk >  and 1−  for 0zk < . This above conclusion is consistent with the results 

from numerical simulations as shown on the right panel of Fig. 5(d).  

 

V. Fermi-arcs and fan-like surface states 

The nonzero Chern numbers associated with the charged nodal chains indicate the existence of chiral 

edge states. In Fig. 6(a), we show the projected band structure at 0.5zk h π=  using a ribbon structure as 

shown in Fig. 6(b). This ribbon is periodic along the y and z directions, and finite along the x direction. 

The number of unit cell along the x direction is chosen to be large enough such that the dispersions of 

the edge states converge as we further increase the number of unit cell. The gray area in Fig. 6(a) shows 

the projection of bulk bands and the gray curves represent the dispersion of the trivial edge states. There 

are two chiral edge states in the band gap between band 3 and band 4, where the red and cyan curves 

represent the edge states localized on the right and left edges of the ribbon, respectively. The existence 

of these chiral edge states is consistent with the Chern numbers calculated in Fig. 5. In Fig. 6(b), we also 

show the absolute value of the eigenpressure field of the edge state at 0.1yk a π=  and 200.9 Hz, where 

red and blue correspond to maximum value and zero, respectively. The field is well localized on the 

boundary. 

 

The equal frequency cut of these chiral edge states defines the “Fermi arcs”. The Fermi arcs in this 

system connect the projections of the Weyl points and the charge nodal chains. Comparing the band 

structures from tight-binding model in Fig. 3(b) and full wave simulation in Fig. 4, we see that the tight-

binding model can describe the metamaterial quite well. And hence we use the tight-binding model to 

reduce the simulation workload for the following surface state calculations. From the band structure, we 

can see that there are complete bandgaps between band 1 and band 2, and between band 3 and band 4 

for any zk  except zk h π≠ ± . From the Chern number calculation, we can see that the gap between band 

1 and band 2 is topologically trivial, while the bandgap between band 3 and band 4 is topologically 

nontrivial. Hence for the discussion below, we will focus on the bandgap between band 3 and band 4.  
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As discussed before (and can also be seen in Appendix A), one can tune the hopping constant 0t  and ct  

to achieve the condition 0 2 2 ct t=  and then the nodal chain and Weyl point between band 3 and band 4 

are at the same energy. After projected onto the y zk k−  surface Brillouin zone, the nodal chains become 

straight lines at zk h π= ±  as highlighted by cyan in Fig. 6(c). The charge +2  Weyl point is projected to 

a point [denoted by the red point in Fig. 6(c)] at 0y zk k= = . According to the surface bulk 

correspondence, there should be two Fermi-arcs connecting the charge +2  Weyl point and charge 2−  

nodal chain. Different from the Fermi-arcs between Weyl points, here the Fermi-arc connects a Weyl 

point and a nodal chain, and the link point on the projection of nodal chain actually depends on the 

boundary conditions. We consider a semi-infinite system, which is truncated at the x− side with 

different truncations as shown with the two insets in Fig. 6(c). The Fermi-arcs at the energy of the Weyl 

point (also the energy of the nodal chain) with two truncations are shown in Fig. 6(c), where black and 

magenta represents the cases when sublattice 1 (2) is the outmost sublattice (see the inset on the lower 

right) and sublattice 3(4) is the outmost sublattice (see the inset on the upper left), respectively. Indeed, 

as we change the boundary condition, the link point slides on the cyan line.  

 

Besides changing of the link point of the Fermi-arc on the projection of nodal chain, this system also 

exhibits interesting surface states behaviors when truncated along the z direction. In this case, the nodal 

chain is projected onto two lines crossing at Γ  and the charge +2 Weyl point is located at Γ , inside the 

x yk k−  surface Brillouin zone. In the inset of Fig. 7(b), we show the nodal lines (cyan lines) as well as 

the Weyl point (red sphere). Figure 7(a) shows the surface states in the bandgap between band 3 and 

band 4 for a semi-infinite system, which is truncated on the z+  direction and with sublattice 4 on the 

outmost. Here for simplicity, we only show the spectrum of the surface states. It is quite interesting that, 

instead of the drumhead surface state [54,55], here we observe a “fan-like” surface state spectrum. To 

understand this “fan-like” spectrum of the surface state, we turn to the Zak phase distribution. Here we 

consider the Zak phase of a one-dimensional band with fixed xk  and yk , and the Zak phase gives the 

center of Wannier function of that one-dimensional band [59,60]. Now we consider the Zak phase θ  

(see definition given by the inset in Fig. 7(b)) of band 4 along a circle around Γ  as a function of the 

polar angle ϕ . The corresponding result is shown in Fig. 7(b) with the black curve, where we set 
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2 2 0.1x ya k k π+ = . The Zak phase almost falls inside the region ( )0.5 ,0.5π π− . The +2 Weyl point 

introduces a winding number of 2 of the Zak phase as a function of ϕ , and each time when crossing the 

nodal line, the Zak phase jumps a value of around π . Hence the presence of the +2 Weyl point together 

with the nodal lines give rise to the winding of Zak phase in Fig. 7(b). Figure 7(c) shows the Zak phase 

(color code) of band 4 in the x yk k−  surface Brillouin zone. The equal Zak phase contour demonstrates 

the feature of a fan structure. As the Zak phase represents the position of Wannier center, the dispersion 

of surface state should also be manifested by the distribution of Zak phase. Different truncations of 

boundary also affect the dispersion of surface state. When the boundary coincides with the center of 

Wannier function, there will be a Tamm-like states at the “zero energy” (Here the energy of the nodal 

lines and Weyl point). Otherwise, there will be no surface states at the “zero energy”. As an illustration, 

Fig. 7(d) shows a fan-like surface arc at the energy of the nodal chain where we truncate the semi-

infinite system with sublattice 3 on the outmost. Here we plot the density of state of the unit cell on the 

surface (surface local density of states) [61,62]. It can be seen that the Fermi-arc follows the equal Zak 

phase contour and shapes into a fan-like structure.  

 

VI. Discussion and conclusion 

Our work demonstrate that nodal chains can possess a nonzero Berry charge, which is a new class of 

band degeneracy that carries the charge of Berry flux. This work hence provides new possibilities of 

engineering the topological charge and Berry flux distributions in the momentum space. Meanwhile, as 

the link point of surface arc states on the charged nodal line can shift, the propagation direction of 

surface waves can be easily manipulated by changing the boundary condition. When the flat band 

introduced by the geometric frustration lattice is broken, the nodal line degeneracy is lifted and the nodal 

chain breaks into a nodal line and/or Weyl points. However, the degeneracy between two bands is still 

protected by the nonzero charge of Berry flux of the nodal chain. The acoustic metamaterial studied in 

our work allows us to specifically design the desired hopping configurations, which hence provides a 

promising platform for studying geometrically frustrated lattice and associated various interesting 

phenomena [2,16,63]. The large density of states introduced by geometrical frustration is useful under 

circumstance such as Purcell effect[64]. Similar effects should also be observable for electromagnetic 

waves.  
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Appendix A: Tight binding model 

 

The Hamiltonian of the tight binding model in Fig. 2(a) is: 

 ( ) { }ˆ ˆ ,  where , 1,2,3, 4ijH H i j= ∈ ,  (A1) 

where

( ) ( )
( ) ( )

12 0 23 0

34 0 14 0

13

ˆ ˆexp / 2 / 4 , exp / 2 / 4

ˆ ˆexp / 2 / 4 , exp / 2 / 4

ˆ 4 cos cos sin cos sin sin
2 2 2 2 2 2

y z x z

y z x z

y y yx xz
c

H t i k a k h H t i k a k h

H t i k a k h H t i k a k h

k a k a k ak a k ak hH t i iδ

⎡ ⎤= + = +⎡ ⎤⎣ ⎦⎣ ⎦
⎡ ⎤= − + = −⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝⎣ ⎦

24

cos sin
2 2

ˆ 4 cos sin cos cos sin cos sin sin
2 2 2 2 2 2 2 2

ˆ ˆ0,

y z

y yx x x xz z
c

ii ij

k a k h

k a k ak a k a k a k ak h k hH t i i

H H

δ

δ δ

⎧ ⎫⎡ ⎤⎞ ⎛ ⎞⎪ ⎪⎛ ⎞+⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + − +⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎩ ⎭

= ˆ
jiH ∗=

,  (A2) 

We can obtain the eigenvalues at some special points. At Γ , the eigenvalues are 4 ct− , 4 ct− , and 

04 2ct t± . At S, the eigenvalues are 02t±  and 0 with doubly degeneracy. At Z, the eigenvalues are 02t±  

and both are doubly degenerate. And the eigenvalues at the above special points are independent of δ . 

Hence if we set 0 2 2 ct t= , the doubly degenerate point at Γ  and Z between band 3 and band 4 are at 

the same energy.  
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In the right panel Fig. 8, we show the Chern number as a function of zk  using the tight binding model, 

where we set 0 2 2t = −  and 1ct = − . The Chern numbers are numerically calculated with the 

discretized method discussed in Ref. [65]. We note that here the Chern number is independent of δ  

when δ  is small enough such that there is no additional band crossing point. The topological charges in 

this system are carried by the band degeneracy points or lines. And hence we can obtain the topological 

charge distribution as shown in the right and middle panels of Fig. 8. Geometric frustration extends the 

band degeneracy points in the left panel to nodal chains in the middle panel. Whether the nodal chain is 

charged or not depends on whether the original degeneracy point is charged or not. The above results are 

consistent with the one in Fig. 6 computed with fullwave simulations with only the shift of the Weyl 

point between band 2 and band 3. Hence the charge of Weyl points and nodal chains from the analysis in 

the main text and are the same as that in the acoustic metamaterial.   

 

Appendix B: Numerical calculation of Chern number 

In this section, we give more details of the Chern number calculation in Fig. 5. As discussed in the main 

text, there are only band degeneracies with zk  at 0zk h = , 0.18π±  and π± . Meanwhile, as the Chern 

number changes only when passing those band degeneracies, we just need to calculate Chern number for 

any zk s between these values, and there we choose 0.5zk h π=  and 0.1zk h π= . These zk  values are 

away from the degneracies and thus the numerical calcualtion converges fast. The Chern number for 

negative zk  can be obtained through ( ) ( )z zC k C k= − −  since the system exhibits time-reversal 

symmetry.  

 

The Chern number is obtained through the winding number of the Zak phase [66]. In Fig. 9, we show 

the Zak phases (denoted by θ ) of each band as functions of xk  at 0.5zk h π=  [Fig. 9(a)] and 0.1zk h π=  

[Fig. 9(b)], where black, red, blue and magenta represent the Zak phases of band 1, 2, 3 and 4, 

respectively. Here the definition of θ  is given by  
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 ( ) ( ), , , ,y x y z x y z
y

dk i u k k k u k k k
k

π

π

θ
−

∂=
∂∫ , (B1) 

where ( ), ,x y zu k k k  represents the periodic part of the pressure field. The winding of the Zak phase as a 

function of xk  gives the Chern number of that band at fixed zk  [66]. Accordingly, the Chern number at 

0.5zk h π=  of bands 1, 2, 3 and 4 are 0, 0, −1 and +1, respectively; and the Chern number at 0.1zk h π=  

of bands 1, 2, 3 and 4 are 0, +1, 2−  and +1, respectively. Considering the fact that the Chern number 

can only change at band degeneracies, we now have the Chern numbers as functions of zk  of each band 

as shown on the right column of Fig. 5, 
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Figures 

 

  

FIG. 1. (a). Berry flux density distribution of a charged nodal line, where the arrows represent the 

direction and amplitude of the local Berry flux density and the red cylinder represents the charged nodal 

line. (b). Two nodal lines in the reciprocal space crossing each other can be regarded as two nodal rings 

chained together (c) as the reciprocal space is periodic.  
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FIG. 2. (a). A sketch of the tight-binding model. The spheres represent lattice sites. Each unit cell 

consists of four sites with different heights. The heights of the red, blue, magenta and cyan spheres are 

/ 4h , 2 / 4h , 3 / 4h  and h, respectively, where h is unit length along the z direction. Black and yellow 

cylinders represent hopping between nearest neighbor and next nearest neighbor, respectively. The 

hopping strength represented by the black bonds are the same as denoted by 0t , while that of the yellow 

bonds are slightly different. The transparent light blue plane is drawn just for better illustration. (b). The 

projection of the tight-binding model on the xy plane. The projection forms a square lattice with lattice 

constant a . The number on each sphere represents the height of that sphere. The black and yellow 

arrows represent respectively, the projection of the black and yellow cylinders in (a), where the arrows 

point to the upward direction. The hopping strength of the yellow bonds are either 1t  or 2t , as marked in 

(b). We set ( )1 1 ct tδ= +  and ( )2 1 ct tδ= − , where δ is a small number. (c).The reciprocal space with 

positions of relevant high symmetric points labeled and nodal lines highlighted in red.  
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FIG. 3. (a, b).The band structures of the tight-binding model in Fig. 2, where 0 2 2t = − , 1ct = − , 

0.1δ =  for (a) and 0δ =  for (b). The inset in (b) shows the amplitude distributions of the eigenmodes 

on the flat bands, where red, cyan and gray represent +1, 1−  and zero, respectively. Here all the 

eigenmodes on the flat bands are the same except for a global gauge freedom. The Weyl points at S  

and Z  in (a) get flattened by geometric frustration and form charged nodal lines in (b). The positions of 

the charged nodal lines are highlighted in Fig. 2(c), which hence form nodal chains in the reciprocal 

space similar as Fig. 1(c). (c, d). Logarithm of the absolute value of the Berry flux density of the highest 

band at 0.999zk h π= , where (c) and (d) correspond to the band structures in (a) and (b), respectively. 

Here (c) and (d) share the same color bar, and red (blue) represents maximum (minimum).  
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FIG. 4 (a) and (b) show the side view and top view of a unit cell of an acoustic metamaterial which 

possesses nodal chains with nonzero Berry charges. Here blue and yellow represent the surfaces where 

hard boundary and periodic boundary conditions are applied, respectively. The system is filled with air 

(density 31.29kg/m  and speed of sound 343m/s ). (c) The band dispersion of system along several high 

symmetry directions, which are quite similar like the tight-binding model. The bands form nodal chain 

as highlighted in Fig. 2(c). The parameters used are 50cma = , 5cmr = , 10cmu = , 24cmh = , 

0 2.4cmw = and 1.6cmcw = . 
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FIG. 5. (a), (b), (c) and (d) show respectively, the charge distributions (left panel) in the reciprocal space 

and Chern numbers for fixed zk  (right panel) of the first (lowest) band to the forth (highest) band, where 

the red and orange spheres represent Weyl points with charge +2 and +1, respectively, cyan marks chain 

degeneracy with Berry charge 2− , and gray marks chain degeneracy without Berry charge. The 

parameters used are the same as Fig. 4.  
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FIG. 6 (a) The gray area represents the projected band structure of a strip of the system (shown in (b)), 

which is periodic along the y and z directions, and finite along the x direction. The number of unit cell 

along the x direction is chosen to be large enough that the dispersions of the surface states (represented 

by gray, cyan and red curves) are stable. Here the cyan and red curves represent respectively, one-way 

edge states localized on the left and right boundary, and gray represents trivial edge state. The color 

code in (b) represents the absolute value of the eigenpressure distribution of one edge state at 

0.1yk a π=  and 200.9 Hz, where red and blue correspond to maximum value and zero, respectively. The 

parameters of the system used are the same as Fig. 4. (c) Fermi-arcs on the y zk k−  surface Brillouin 

zone with different truncations calculated with the tight-binding model. We consider a strip of unit cells 

which is periodic along the y and z directions, while finite along the x direction. Here black and magenta 

represent the cases when sublattice 1 (2) is the outmost sublattice (the inset on lower right) and 

sublattice 3 (4) is the outmost sublattice (the inset on the upper left), respectively. The red dot and cyan 

line represent the projection of the charged +2 Weyl point and the charged 2−  nodal chain, respectively. 

In this calculation, we set 0 2 2t = −  and 1ct = −  and the energy is fixed at 4, which is also the energy of 

the nodal lines and Weyl points between band 3 and band 4. 
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FIG. 7. (a) Spectrum of the surface state between band 3 and band 4 and localized on the upper surface 

of a strip of the system. The semi-infinite system is semi-finite along the z direction with sublattice 4 on 

the outmost and periodic along the x and y directions. (b) The Zak phase of band 4 along the black circle 

as shown in the inset, which is a circle with 2 2 0.1x ya k k π+ =  and centers at 0x yk k= = . The cyan lines 

and red sphere of the inset represent the projection of the nodal chain and the Weyl point, respectively. 

(c) The Zak phase of band 4 as a function of xk  and yk . (d) The Fermi-arc at the energy of the nodal 

chain on the upper surface of a semi-infinite system same as (a) but has sublattice 3 on the outmost. 

Here we plot the density of state of the unit cell on the surface (surface local density of states). In this 

calculation, we set 0 2 2t = −  and 1ct = −  and the energy is fixed at 4.  
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Fig. 8 (a), (b), (c) and (d) show respectively, the charge distributions when 0.1δ =  (left panel) and 

0δ =  (middle panel) in the reciprocal space and Chern numbers for fixed zk  (right panel) of band 1 to 

band 4. Here the Chern number as a function of zk  for left panel and middle panel are the same. On the 

left and middle panel, the red, orange, and blue spheres represent Weyl points with Berry charges +2, +1 

and 2− , respectively, the cyan lines denote line degeneracy with charge 2− , and the gray sphere and 

lines denote point and line degeneracy without Berry charge. Here the tight binding model in Eq. (A1) 

with 0 2 2t = −  and 1ct = −  is assumed.  
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Fig. 9 The Zak phase of each band as a function of xk  for fixed 0.5zk h π=  (a) and 0.1zk h π=  (b), 

where black, red, blue and magenta represent the Zak phases of band 1, 2, 3 and 4, respectively. The 

geometric parameters of system under consideration are the same as Fig. 4. 

 

 


