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Abstract

In simulations of metallic interfaces, a critical aspect of metallic behavior is missing from the some of
the most widely-used classical molecular dynamics force fields. We present a modification of the Embed-
ded Atom Method (EAM) which allows for electronic polarization of the metal by treating the valence
density around each atom as a fluctuating dynamical quantity. The densities are represented by a set of
additional fluctuating variables (and their conjugate momenta) which are propagated along with the nuclear
coordinates. This “Density Readjusting EAM” (DR-EAM) preserves nearly all of the useful qualities of
traditional EAM, including bulk elastic properties and surface energies. However, it also allows valence
electron density to migrate through the metal in response to external perturbations. We show that DR-EAM
can successfully model polarization in response to external charges, capturing the image charge effect in
atomistic simulations. DR-EAM also captures some of the behavior of metals in the presence of uniform
electric fields, predicting surface charging and shielding internal to the metal. We further show that it pre-
dicts charge transfer between the constituent atoms in alloys, leading to novel predictions about unit cell

geometries in layered L1 structure.



I. INTRODUCTION

The metallic models normally used in molecular dynamics simulations of bulk metals (EAM, '

Finnis-Sinclair,”'® MEAM,'!"'® and Quantum Sutton-Chen'”!) have all been widely used by the
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materials simulation community for work on bulk and nanoparticle properties, melting,
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fracture, crack propagation,?’ and alloying dynamics.?® One of the strengths common to all

of the methods is the relatively large library of metals for which these potentials have been
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parameterize However, none of these models allow the metal atoms to polarize, so they

neglect a vital interaction with ionic or polar groups.

Streitz and Mintmire developed an electrostatic+EAM (ES+) potential energy model for
aluminum oxide surfaces,’® which combined a variable-charge electrostatic approach with the
Finnis-Sinclair variant of EAM®. The ES+ potential was originally parameterized only for Alu-
minum Oxide phases, but has recently been adapted to other materials. Charge-equalization
approaches based on the extended Lagrangian charge equalization method pioneered by Rick,
Stuart, and Berne,***! have also been utilized to parameterize similar EAM+Charge Transfer mod-
els for Cu/CuO interfaces,*? titanium/TiO, interfaces,* oxides of the ternary Al-Ni-Fe alloys,*
and binary Al-Zr oxides.* Another charge transfer ionic-embedded atom method potential was

parametrized by Zhou et al. to study the growth of O—Al-Ni—Co—Fe system.*®

Our primary interest is the interactions between metals and non-reactive, but polar, species
(e.g. water, carbon monoxide, ions, etc.). These interactions have a large role in the interfacial
thermal conductance, the ordering of water on metal surfaces, surface restructuring under gas
overpressure, surface friction, and slip/stick hydrodynamics. A charge or multipole that comes
close to a conducting surface creates a disturbance in the valence electron density in the conductor.
The charge density is altered only at the surface of the conductor, but the effective interactions are
often treated using image charges or multipoles which are located inside the metal. To accurately
capture this effect, EAM must be modified to handle perturbations in the valence electron density
due to the presence of external species. The goal is an atomistic model of a metal which can
accurately reproduce the image charge effects exhibited by real metal interfaces. Although the ES+
and related approaches that add fluctuating charges to EAM may exhibit some of these features,
they have been tuned to bulk-like properties for fully or partially-oxidized metals, and not for
surface interactions and screening of metal interfaces. There are two significant assumptions made

by the ES+ model:



1. The fluctuating charges interact primarily via Coulomb integrals between Slater-type or-

bitals centered on atomic sites.

2. The self-energy for modifying a charge on a site is essentially a parabolic function which

depends on the ionization potential (IP) and electron affinity (EA) of the neutral species.

We present here a model in which the core/valence distinction of EAM-like models is left in place,
and the fluctuating charges alter the valence densities, which are relatively diffuse in EAM-based
models. We also parameterize the “self”” potential as a sixth-order polynomial, using information
from thermodynamically-derived models for charge transfer (i.e. Pauling electronegativities), ex-
perimental measures of charge mobility in metals (Hall coefficients), and experimental ionization

data beyond the +1 and —1 oxidation states.

II. METHODOLOGY

For a collection of atoms with instantaneous positions, {r}, and partial charges, {g}, the config-

urational potential energy in DR-EAM is given by
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Here, F; [p;] is an energy functional for embedding atom i in a total valence density, p;, located
at r;, the position of the pseudo-atom i (nucleus + core electrons). ¢;; is a pair potential that
represents the (mostly) repulsive overlap of the two pseudo-atom cores at a distance r;; = |r j ,|.
J (r,- j) is the Coulomb integral that accounts for electrostatic contributions from the fluctuations in
the valence charge density distributions, and Vs is the energy for under- or over-charging each
atom.
The instantaneous electron density due to the valence electrons from all the other atomic sites
is computed at the location of each atom. For atom i,
pi= ;(1—%)ﬁ(rij), 2)
where f; (r) is the radial dependence of the valence density of neutral atom j, and g; is a dynamic
charge variable that governs the instantaneous fluctuations in the valence density. N, is a “valency

count” for atom j that is determined by the number of free charge carriers in the bulk metal.
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Changes in the partial charge value allow for conduction band electrons (¢ < 0) or holes (g > 0)
to migrate into a spatially-localized cloud surrounding each atom.
The pair potential, ¢;;, in DR-EAM also depends on the instantaneous valence densities at sites
iand j. ,
, -4 ‘ — 4
bij (r, 6]1',6]1) = %{% i(r) + %%j r ] 3)
i N; J N;
where ¢;; is the pair interaction of two i atoms in the pure bulk metal.

A treatment of electrostatic interactions is required to account for local perturbations to the

background electron density. Here, we have adopted the damped shifted force (DSF) kernel*’,

o) :[erfc (ar) erfc(aR.)
r R,
“4)
erfc(@R) 2 €xp(-’R?)
R Y R (r—R.) r<R..

which has energies and forces that go smoothly to zero approaching a cutoff value, R.. The damp-
ing parameter, a, describes the effective screening length of the charge, essentially treating den-

1

sity perturbations as Gaussians of width @™'. Other electrostatic models, including analytical

integration of the Slater Coulomb integrals, have also been adopted by other fluctuating charge

approaches to polarization.>*4

A. The Self Potential

The self potential in DR-EAM accounts for the energetic penalty for over-charging or under-
charging a neutral atom, and is modeled with a polynomial,*3

6

Vse]f(CI) = Z ay qn- (5)

n=1
The parameters have been tuned using a range of electron affinities and ionization potentials for

commonly exhibited oxidation states in bulk materials,**-?

as well as the atomic polarizabilities
of the neutral metals. See Figure. 1 for an example of the self potential in both the DR-EAM and
harmonic models.

The standard electronegativity equalization models, e.g. charge equilibration (QEq)®* and fluc-
tuating charge (fluc-g)*, treat inter-molecular fluctuating charge interactions with a Coulombic

potential, but use Slater Coulomb integrals for intra-molecular interactions, and include harmonic
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FIG. 1. Vr(g) for Copper. In the traditional harmonic model (dashed line), the self potential is parame-
terized using the ionization potential (IP) and electron affinity (EA), and charge states are integer multiples

of electron charge (circles). In DR-EAM, oxidation states are separated by ~ 0.4e (squares), and the self

potential is fit using a sixth order polynomial (solid red line).

self potentials. The two parameters that are usually used to describe the harmonic self energy for
atom i are the Mulliken electronegativity, y; and J;; (twice the chemical hardness),

OVt IP — EA
Xi =
q=0

5 ) 2 ©

: (7)
where energies at fixed charge states, (¢ = 0, x1), i.e. the ionization potential (IP) and electron
affinity (EA), are used to set both of these parameters.%> However, there is now significant evidence
that the charge states in the condensed phase are better represented by partial charges that are

significantly smaller. Ab initio calculations of ionic liquids show the charges of ions in ionic liquids
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is typically between 0.6 to 0.9 in the units of electron charge.®*® Also, a molecular dynamics
study of charge transfer in 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide shows the
average charge on ions is + 0.84¢.%° Pluhafova et al. carried out an ab initio molecular dynamics
simulation of fluoride and lithium ion pairing in water, and found the fractional charges in fluoride
(-0.79 to -0.82¢) and lithium (0.89 to 0.90e).”°

More relevant to EAM-like models, Seriani et al.”! found that in various form of Platinum
Oxides, the calculated Bader charges on Pt atoms (in units of electron charge) are: 1.53 for a-
PtO,, 1.62 for B-PtO,, 1.13 for Pt;0,4 and 0.86 for PtO yielding an effective mapping of 0.4e for
each successive oxidation state. For oxygen atoms, the charges remain roughly constant: -0.76 for
a-PtO,, -0.81 for B-PtO,, -0.85 for Pt;04 and -0.86 for PtO (all corresponding to a -2 oxidation
state for oxygen). Wang et al. found the Bader charges in metal atoms for oxides of TiO,, MnO,,
Co00,, NiO,, and ZrO, to be 2.01e, 1.58e¢, 1.32¢, 1.29¢, 2.11e, respectively,72 providing an average
charge of 0.415e for each oxidation state. For this reason, DR-EAM adopts an effective scaling of
0.4e for the partial charge on each successive oxidation state.

One additional consideration is the reliance on IP and EA values when other measures of elec-
tronegativity may be more useful. There are a number of approximate linear transformations
between the Mulliken electronegativity and the Pauling electronegativity scale,”® which is widely
used to predict polarization and charge transfer in the chemical literature. Because we seek to
model polarization and charge transfer between a range of elements, we begin with the Pauling-
Allred scale,”* which is derived from thermodynamic data, and fit a linear relationship to the
Mulliken scale (in eV) for all metals that have well-characterized electron affinity values. This

relationship,

XPauting ¥ 0.5106 muttiken — 0.2963, (8)

is then used to set the first derivative of the self potential (a; in Eq. (5)). Because we have adopted
fractional partial charges (0.4e) to represent each oxidation state, the Mulliken electronegativity is

related to the first-order coeflicient (a;) in the self potential by a factor of 2.5,
a1 = 2.5 Xaultiken = 4.8962 (Y puuting + 0.2963) )

For some metals (e.g. Mg), there are only approximate electron affinities available, so in order to
obtain the first order coefficients in the self potential, we use tabulated Pauling electronegativity

values to set a; for all of the parameterized elements.
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Traditionally, the chemical hardness has been estimated via Coulomb integrals for Slater or-
bitals centered on the atomic sites.* Because the total charge potential in standard fluc-g models
is harmonic, the fluctuating charges then have a single low-energy solution, yielding unique sets
of charges that satisfy electronegativity equalization at each atomic configuration.

In addition to overestimating of the partial charges carried by polarized sites in condensed phase
simulations, we find that standard harmonic models of the self potential also overestimate the bulk
polarizability (particularly for the coinage metals). One of the parameters (a,) in the self energy
(Eq. (5)) can be better estimated using either empirically-derived atomic polarizability data, or via
a Coulomb integral of only the valence charge density. The chemical hardness,

1 (0> Vs 1
K=- =—J. 10
2( 0q? 0 2 (10)

has been correlated with the atomic polarizablity « via an empirical relationship,”

1 (N\3
Kempricial = (_) (1)

dre, \ v

where N is the number of charge carriers per atom. The number of charge carriers per atom can
be experimentally determined using the Hall effect. The Hall effect is the production of a potential
difference on a current-carrying conductor when a magnetic field is applied perpendicular to the
current. The Hall coefficient, Ry, a constant relating the magnetic field, current, and the potential
produced, can be used to find the number of charge carriers. In DR-EAM, charge carrier densities

are determined using Hall coefficients (Ry),
N=—— (12)

where p, and m are density of the metal, and the atomic mass, respectively. Each of the charge

states has been scaled by 0.4, so, the number of effective charge carriers for atom i is

R
N = 0.4 2P (13)
m

In DR-EAM, N.g, is also taken to be the effective valence count in Eq.(2).

Fluctuating charge self potentials based on IP and EA can also overestimate the polarizablity
of metals, sometimes badly enough to trigger a polarization catastrophe. This happens because
the Coulombic interaction is bilinear in the charge degrees of freedom (¢g; X ¢;) so charges with

opposing signs will tend to amplify their differences without a fast-rising self-potential to bound
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the charges. If the curvature of a harmonic self-potential is too small, the Coulombic interaction
will dominate, leading to a polarization catastrophe.

Atomic polarizablity depends on the chemical hardness of the atom, which is related to the
coeflicient of second order in the self potential. In DR-EAM, the self potential is determined by
imposing the constraint that the coefficient of second order is equal to the hardness of atom. The
scaling of charge states and the use of a higher order polynomial helps solve the overpolarization
issues. A fourth or sixth-order polynomial with a positive coefficient in the highest order term will
eventually rise faster than the Coulombic energy falls. The polarization catastrophe was solved by
Zhou et al. in their modified charge transfer-EAM method using upper and lower bounds on the
charge values that oxygen and metals can take.**® We find that scaled charges and a higher order
polynomial are sufficient to prevent the polarization catastrophe in DR-EAM.

Zhou et al.*’ proposed EAM parameters and functionals for 16 metals. In this paper, we are
implementing DR-EAM based on these parameters. The valence electron density in the Zhou et

al. parameterization takes the form
feexp |87~ 1)
20
1+ (i - /1)

Te

fr) = (14)

where the denominator acts as a cutoff function that takes f(r) smoothly to zero at r/r, values
ranging from 2.5 to 3.5. The valence electron density without the denominator has form of a
Slater function.

In the local density approximation (LDA), there is another way of estimating the chemical

hardness from the electronic density of isolated atoms.”®

K=2J;=2 f f &’r &r’ ny(r) ! ni(r’) (15)

Ir — 1|

where 7,(r) is the electronic density of the isolated atom. Elstner et al.”®

used normalized spherical
charge densities,

T3
n(r) = —Le TRl (16)
8

where R is the location of the atom, to derive the chemical hardness of a spin-unpolarized atom or
Hubbard parameters U, in terms of 7,,.

I 5

a = 471'60 1_6T(y

17)

We have adopted the Elstner et al. result along with the Slater-form of the EAM densities in Eq.

(14). We find that by setting 7, = /r., a chemical hardness appropriate for use the self potential
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can come directly from the valence density functions,

1 55

_—. 18
dren 16 1, (18)

Ksiater =

The valency count, N.g, and the hardness, K, values that were used to parameterize DR-EAM are
provided in Table I.

The second-order coefficient (a,) is fixed to value of chemical hardness (K) obtained from
Eq. (18). All remaining coefficients are determined by fitting gas phase electron affinities and
ionization potentials where the charges have been scaled to match the 0.4e per oxidation state in
the condensed phase. While performing the fits, the coefficients of the highest even order in the
polynomial (typically ¢°) were also constrained to be positive. Self-potential parameters are given

in Table II, and plots of the DR-EAM self-potentials are given in Figure. 2.

B. Differences from standard EAM

The embedding functional and pair potential are not unique in EAM, and it is possible to param-
eterize reasonable metal potentials by transferring some weight between the embedding functional
and the effective pair potential. In DR-EAM, we have adopted the same form and parameteriza-
tion for the embedding functional in DR-EAM adopted by Zhou et al.¢3"-"8. Although the original
EAM potentials have only positional degrees of freedom that alter the local valence density, DR-
EAM adds an additional charge degree of freedom to each atomic site. The system evolves with
the time-dependent positions and partial charges, readjusting the valence density contributed by

each atom. The adjusted valence density in DR-EAM,

qj
i(r, -)—>(1——) () (19)
fir.q) W)

where ¢g; and N; are the partial charge and valency count for atom j.

The form of the pair potential is tied to the choice of embedding functional. It is possible to
transform F' and ¢ so that the slope of the embedding function is zero at the equilibrium electron
density. Mixed-element pair potentials (¢;;) can be defined many ways in terms of pair potentials
for the two elements separately (¢; and ¢;;). Arithmetic means and geometric means have both
been used previously,* but when the slope of the embedding function is set to zero at the equi-
librium electron density, the effective two body potentials (¢) are negative at some distances, and

the geometric mean cannot be used. Johnson derived a mixed-element pair potential for alloys in
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TABLE 1. DR-EAM uses a count of the effective number of charge carriers per atom (Neg) as a valency
count in Eq. (2) and the chemical hardness, Ksjuter, defined in Eq. (18), to parameterize the harmonic term

(a) in the self potential.

Rup K
o Nest
Ksiater Kempirical
Cu 1.42 0.57 7.63 7.87
Ag 1.21 0.48 7.58 8.10
Au 1.48 0.59 7.92 9.38
Ni 1.12 0.45 8.08 7.78
Pd 1.21 0.48 7.59 9.13
Pt 4.10 1.64 6.15 12.34
Al 3.05 1.22 5.54 11.01
Pb! 4.57 1.83 6.70 12.50
Fe 3.00 1.20 9.49 9.88
Mo 0.77 0.31 7.38 5.62
Ta 1.22 0.49 7.12 7.51
W 0.86 0.34 7.79 6.33
Mg 1.68 0.67 7.68 8.31
Co 0.82 0.33 8.31 6.86
Ti? 1.15 0.46 7.18 7.15
Zr 1.12 0.45 6.24 5.85

! For Pb, we use the density and Hall coefficient of
the liquid phase.
2 The Hall coefficient used for Ti is the % of the per-

pendicular and % of the parallel components.

terms of the valence densities,’

L[ fi(n) fi(r)
¢ij(r) = ) %%’(r) + %fﬁjj(r) (20)

This form of the pair potential is independent of the arbitrary electron-density transformation.
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TABLE II. Coefficients for the self potential (Eq. (5)) used in DR-EAM. All parameters have units that give

the self potential in eV.

Element ap ar as as as ag
Cu 10.75 7.63 11.12 65.63 -72.22 21.88
Ag 10.90 7.58 14.04 70.03 -82.35 25.21
Au 13.89 7.92 13.19 68.17 -88.02 28.85
Ni 10.80 8.08 5.62 58.45 -58.13 16.77
Pd 12.22 7.59 2.36 84.42 -89.92 26.68
Pt 12.61 6.15 14.07 67.32 -86.75 28.28
Al 9.33 5.54 19.18 81.65 -136.26 57.17
Pb 12.86 6.70 -16.03 79.12 -59.70 13.84
Fe 10.41 9.49 1.14 64.45 -69.63 22.15
Mo 12.30 7.38 -5.77 70.98 -68.99 19.90
Ta 8.80 7.12 13.48 67.67 -92.80 31.22
\ 13.01 7.79 -4.39 74.83 -78.12 23.51
Mg 7.86 7.68 52.67 97.79 -338.60 211.34
Co 10.66 8.31 0.67 51.63 -41.62 9.92
Ti 8.99 7.18 -1.57 58.59 -56.70 16.41
Zr 7.96 6.42 5.11 42.34 -44.13 12.65

Since DR-EAM uses the readjusted valence density, the pair potential in DR-EAM is given by Eq.
(3). The self energy, V¢, and the Coulombic interactions could also be included in a modified
functional, but for simplicity, DR-EAM treats the energies due to alteration of net atomic charges

as separate terms in the potential energy.

C. Charge Conservation

Because the fluctuating charge variables represent physical charge densities, they are not in-
dependent variables, and a charge conservation constraint is required when propagating these de-
grees of freedom along with the nuclear coordinates. Charge conservation is implemented using

the method of undetermined multipliers to enforce the constraints. The net charge constraint is
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FIG. 2. DR-EAM self potential Vr(g) for FCC, BCC and HCP metals. The symbols are gas phase ion
energies referenced to the neutral atom (with charges scaled by 0.4). Lines are Eq. (5) with coefficients

given in Table. II. The region between -0.4 < g < 0.4 is enlarged in the Supplemental Material’’ in Fig. S1.
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written as

N
M=) -0 21)

where Q is the (fixed) charge on the system in units of electron charge and ¢; is the fluctuating
charge of the i atom. Each contiguous metallic region can be thought of as a single molecule, so
it is also possible to constrain metallic regions separately using several undetermined multipliers.

However, using multiple constraints prevents charge transfer between the separate blocks.

D. Dynamics

The minimum energy of the fluctuating charge system is first determined using steepest-descent
minimization on the configurational energy of the system with frozen nuclear coordinates. Once an
optimal set of charges is known, perturbations to these charges depend only on nuclear coordinates
(which are relatively slowly-moving degrees of freedom). For this reason, propagation of the
fluctuating charge variables using extended-Lagrangian simulations has become widespread.

The extended Lagrangian in DR-EAM (with the charge constraint) is given by

N
L= Z[ miE + M ] ({r},{q»—ﬂ(Zqi—Q) (22)
i=1

where m; is the mass of the i atom, M, is the fictitious mass assigned to the fluctuating charges
and A is Lagrange multiplier for the charge constraint. The first term in the kinetic energy is the
contribution from the motion of atoms themselves while the second term is a fictitious kinetic
energy, the contribution from the charge velocities {g}. V ({r}, {g}) is the configurational energy
for the extended system defined in Eq. (1).

Equations of motion for the fictitious charge g and nuclear coordinates r can be obtained by

calculating the forces on the dynamical charge variables and on the atoms themselves,

0L ov

iti=F=_—=-— 23
it Gri 81',- ( )

oL 9V
Gi = fi = =—-—-2 (24)

M 9q; aq,

where A is the charge conservation constraint,
1 < oV

A=——= > — 25

1l
—_



Two temperatures, nuclear and electronic, are defined for the system. The nuclear temperature
arises from the kinetic energy of atoms whereas the electronic temperature comes from the ficti-
tious kinetic energy of the fluctuating charges. Perturbations in the fluctuating charge forces will
be due primarily to the motion of surface-adsorbed molecules (e.g. water), so the time scale for
charge fluctuations should be approximately the same as for nuclear motion. For this reason, M,
is chosen to be large enough (M, = 600 kcal mol™" fs? e7?) so that changes in electronic degrees
of freedom can be integrated along with nuclear coordinates. In theory, if M, is chosen to be
very small, it would be possible to simulate the collective electronic motion (e.g. plasmons), but
the time steps for those simulations would by necessity be extremely small relative to molecular
motion.

The charge and nuclear degrees of freedom are coupled by the DR-EAM potential energy in
Eq. 1. Although it is possible to propagate the entire system in the microcanonical (NVE) en-
semble, equipartition eventually brings the electronic temperature to the same value as the nuclear
temperature. Electronegativity equalization methods assume a single low-energy solution to the
charge degrees of freedom, i.e. an electronic temperature of zero, and there are many ways to
achieve this. One could minimize the energy with respect to the charge degrees of freedom at ev-
ery time step, but this would be prohibitively expensive. It is also possible to propagate the nuclear
coordinates in the microcanonical (NVE) ensemble while simultaneously keeping the electronic
degrees of freedom at a much lower temperature, 7, < 1 K, with a Nosé-Hoover thermostat. In
many of the tests and simulations described below, the electronic degrees of freedom were kept
at a low temperature using Langevin dynamics, with a drag coefficient of 0.1 kcal mol™! fs e™2.
As in any fluctuating charge method, the coupling between the electronic and nuclear degrees
of freedom will eventually transfer energy between the subsystems, so we expect that separately
thermostatting the electronic coordinates will be required.

We note that the fluctuating charge forces modified by the charge conservation constraint are

used in all steps of this method, including the initial minimization to find the optimal set of charges.

III. TESTS AND APPLICATIONS

To test the new method, we carried out simulations using DR-EAM where the choice of the

L 37

underlying EAM functions and parameters were taken from Zhou et al.”’ as a basis for further

refinement. We have tested the new method on: (1) pure bulk metals, (2) common surfaces of the
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bulk metals, (3) ordered structures (L1, and L1,), (4) a metal slab in a uniform electric field, and
(4) metal slabs with external fixed charges approaching the surface. In all tests, electrostatic inter-
actions were calculated with the damped shifted force (DSF) method with a damping parameter

(@) of 0.14 A",

A. Bulk Metals

The cohesive energy per atom, vacancy formation energy, bulk modulus, shear modulus, and
Poisson’s ratio were computed for both DR-EAM and the unmodified EAM energy function, and
these are provided in Table III. Elastic stiffness tensors were calculated using the Energy vs. Strain
method of Yu et al.”% and elastic constants were computed using the same definitions that are

utilized by the Materials Project.’!-8?

In all of the parameterized elements, the bulk metals do not polarize to any significant degree.
There is negligible (nearly zero) charge transfer between the atoms in pure metals, so DR-EAM

and EAM produce identical bulk properties within the limit of precision used in calculation.

B. Surface Energies of Bulk Metals

In DR-EAM, the anisotropic environment around atoms at the surface of a metal encourages
charge transfer into the near-surface atoms to allow the surface atoms to approach the equilibrium
valence density (p.). In traditional EAM, the only way for atoms to approach equilibrium densities

is by contracting the surface layers closer to the underlying bulk.

To study this difference, the surface formation energies for (111), (110) and (100) surfaces are
computed for FCC and BCC metals using both DR-EAM and EAM. For HCP metals, the basal
plane (0001) was exposed to calculate the surface energy. This data is provided in Table IV. For
most of the surfaces, DR-EAM and EAM again produce identical surface energies within the limit
of precision used in the calculations. Notable exceptions are the Ag(110), Al(100), and AI(110)
surfaces. Even for these surfaces, however, the surface polarization yields only a small charge,

(@) < 0.0025, on the atoms in the sub-surface layers. Surface atoms exhibit even smaller charges.
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C. Ordered Structures

Ordered alloys are composed of at least two elements which alternate in position in a regular
pattern. Two ordered structures (L1, and L1,) were used to study how DR-EAM predicts charge
transfer and structural changes in alloys (see Figure. 3). L1, alloys have AB composition and
space group P4/mmm, which exhibits a layered structure. The basis vectors for L1, with two

components, A and B, are

r =0 (A)
1
I'QZECIX‘FECZ (B)

where a and c are the lattice parameters. The alternation of A and B layers lies along the ¢
direction, while all atoms along the two directions with the a lattice parameters are identical. This
means that charge transfer between the two elements will result in modification of the c¢/a ratio
exhibited by the crystal.

L1, alloys have a AB3; composition and space group Pm3m. The basis vectors for L1, with two

components, A and B, are

r1:O (A)
1 . 1
rzzzay+§az B)
1 .1
r3:§ax+§az (B)
1 .1
r4:§ax+§ay (B)

where a is the lattice parameter. Each of the A atoms in an L1, structure is surrounded by a
symmetric set of B atoms, so charge transfer between A and B will result in isotropic volume
contraction due to electrostatic interactions.

Ordered structures were formed by replacing appropriate atoms in a bulk FCC lattice of A
atoms with B atoms. Following this replacement, the geometry of the periodic box was opti-
mized, while allowing the fluctuating densities in DR-EAM to re-optimize simultaneously with
each change in the geometry.

Bulk properties of the L1, and L1, ordered alloys (lattice constants, bulk modulus, shear mod-
ulus, Poisson’s ratio and energy per atom) are compared with DFT calculations and experimental
values (when known) in Tables V and VI. Significant charge transfer was observed between the

two components of the ordered structures. The direction and magnitude of the transfer is governed
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FIG. 3. Structures of the ordered alloys L1¢ (left) and L1, (right). L1g structures present alternating layers
of A and B atoms, so any charge transfer between the two elements will result in modification of the c/a

ratio exhibited by the crystal.

by the electronegativities (a;) of the two elements. Even with charge transfer, for L1, structures,
most of the lattice constants are nearly equal to the structures optimized under non-polarizable
EAM. This is likely due to cancellation of added A-B attraction with the simultaneous B-B repul-
sion in L1, structure. Even though the DR-EAM and EAM structures are similar, the bulk mod-
ulus, shear modulus, Possion’s ratio and energy per atom do exhibit small changes due to charge
transfer. In the L1 structures (see Table VI), the DR-EAM optimized geometries are different
from structures optimized without charge transfer. However, when compared with DFT struc-
tures or experimental lattice parameters, the two EAM methods are remarkably similar. Some
notable exceptions (e.g. NiPt and AuCu) occur when charge transfer between the two metallic
components is relatively large. Inter-metallic charge transfer in L1, alloys will usually increase
in-layer Coulombic repulsion, while simultaneously increasing inter-layer attraction. This results
in changes to the c¢/a ratio that appear to depend largely on the extent of the charge transfer. How-
ever, very large charge transfers can also alter intermetallic pair potentials by changing the density

ratios in Eq. 3, modifying the equilibrium geometry of the alloy.

D. Metal Slabs in a Uniform Field

An atomic partial charge g; in an electric field E feels a physical force (F; = eq;E) due to that
field. To derive forces on the fluctuating charge variables due to the presence of an external field,

we define a potential that depends on the location of each atom,

N

Vew= =) eqr;-E. (26)

i=1
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This potential provides a fluctuating charge force due to the field,

_ 6VCXI
0gq;

=er;-E, 27)

which depends on the position of the atom relative to the origin of the coordinate system. (A
spatial derivative of V., also yields the correct physical force on the atom’s coordinates.)

We note that this uniform field is not realizable in any experiment, particularly when discussing
a conducting slab. Uniform fields may be approximated in a region between charged plates, but in-
terior to a conductor, the field will be shielded by the skin, and an external field should not interact
with the atoms on the interior. However, it is useful to test the behavior of the new methodology
on exposure to the field. If DR-EAM can approximate the correct behavior of a conductor, the
response should be an effective cancellation of the external field inside a metal slab.

A local electric dipole density can be defined between consecutive atomic layers. The origin
of a local coordinate system (O,) is set between layers n and n + 1, and the local dipole density
between these layers is measured with respect to this origin,

— e(qn>Rn + e<Qn+1>Rn+1
1%

P, (28)

where (g,) is the average charge in the n™ layer, R, and R, are the average positions of the two
layers with respect to O,, and v is the volume between the two layers (v = L,L,Az = AAz).

To test the shielding properties of DR-EAM, an electric field was applied along the z-axis of
a slab comprising 18 atomic layers of each metal. Because the local origin is located half-way

between each layer, the polarization density,

(Gn+1) —{qn) .
e————Z,

P, =
2A

(29)

depends only on the average charges on the two layers. The bound charge density inside the slab,
pp» = —V - P. Since our external field (and polarization density) both point along the z-axis, we can
simply write the bound charge density, p, = —0P/0z.

When an electric field is applied to a Pt slab with 18 layers, the resulting charge distribution in
DR-EAM screens the electric field in the interior of the slab. The average charges in each layer are
approximately linear in z in the interior of the slab, which yields a nearly constant dipole density
in the interior, and nearly zero bound charge density inside the slab. Figure. 4 shows the average
charge in each layer as well as the local dipole density and screened electric field values at the

surface and interior of the slab. These are the expected responses of a classical conductor in an
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external field. The electric field penetrates up to three layers deep from the atomic skin, but is fully

screened beyond that.

0.0015

a(e)
||||(|3||||

-0.0015

0.001—

0 2 4 6 8 10 12 14 16 18
Layer Index
FIG. 4. The response of an 18-layer DR-EAM Platinum (111) slab exposed to an external uniform electric
field (0.01 V/A along the z-axis). The average charge in each layer (top) displays a nearly linear dependence
on the z coordinate of the layer. The dipole density(middle), in units of 57, is approximately constant in the
interior of the slab. The net electric field (bottom) exhibits a nearly complete screening in the interior of
the slab. Only the outermost atomic layers feel the full external field, while the response of the DR-EAM

densities effectively screens the interior. The model has an effective penetration depth of 2-3 atomic layers

before complete screening is recovered.

E. Image Charge Effects

When a ion is placed directly above a conducting metal slab, the ion polarizes the slab and an
oppositely-charged image is induced on the surface of the slab directly beneath the ion. Classical
treatments of charges at the surfaces of infinite planar conductors predict an effective interaction

of the ion with its own image, U.q(d) = —g*e?/(4rey 2d), where d is the separation of the ion from
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the surface of the conductor, and ¢ is the charge on the ion (in units of electrons, e).

d

9 Fictitious image
charge surface

d+§6

FIG. 5. Configurational energies as a function of the distance (d) of a point charge from the surface are fit
to find an offset ¢ of the image charge surface from the top layer of atoms, and a scaling parameter (s ~ 2)

to understand how closely DR-EAM captures classical image effects.

When computing electrostatic interactions between atoms in the DR-EAM model and external
fixed charges, we have used the Damped Shifted Force (DSF) potential. The electrostatic kernel
in DSF is given by Eq. 4, so it is reasonable to fit the effective potential between the unit point

charge (¢ = 1) and the polarizable DR-EAM surface with a similarly-damped interaction model,

Uer(d) = -

e? [erfc (@ s(d + 5))] (30)

dre s(d + 96)

where « is the value of the damping coefficient (in A™") used in the calculation. If the DR-EAM
model captures the physics of classical image charges, the fitting parameter s would be expected to
be exactly two for infinite planar conducting surfaces, 6 measures the offset of the surface of zero
potential from the atomic layer at the top of the slab (see Figure. 5). For a perfectly flat classical
conductor, we would expect 6 = 0.

DR-EAM does exhibit image charge effects (shown graphically in Figure. 6). We placed a
point charge models of chloride (¢ = —1) ions above a range of metal surfaces, including Copper,

Gold, and Platinum (111) and (100) surfaces. The ions are brought close to the surface above

24



common sites (atop, hollow, and bridge) on these surfaces and the partial charges are allowed to
find their lowest energy configurations. The surfaces polarize directly beneath the probe charge,
and the distance dependence of the total interaction is used to fit d, s, and ¢ values in Eq. 30.
For all of the surfaces presented in Table VII, we note that the scaling approaches the classical
conductor value s — 2, and 9 sits approximately 0.5 layers beneath the atomic coordinates of the

surface atoms.

_6_{}—9—0—0-—(}—6—6—0-—0
-0.1
-0.2

-0.3

;

-0.4

L LI L L L
Q

S

-0.5
_-3-8-8@-8-8-8-0
/E’E

-0.1
-0.2

-0.3

// [+ £1 Hollow

-0.4

L DL L L L
o

Potential Energy (eV)

=

-0.5

-0.1

-0.2

-0.3

-0.4
_0_5-A||||||||||||||||||||||

FIG. 6. Effective interaction potential (Eq. 30) for a point charge model of a Chloride ion (¢ = —1)
approaching a Copper (111) surface (simulated using DR-EAM) above three different binding sites (atop,
three-fold hollow, and bridge). On the right, we show the induced density changes in the metal (represented
by changes in the atomic partial charges). Parameters for the fits of the effective interaction potential (dashed

lines) are given in Table VII
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TABLE VII. Parameters of the effective image charge potential (Eq. 30), s and & (A), for three different
metals (Cu, Au, Pt) with exposed (100) and (111) facets. A point charge representing a chloride ion is
brought close to the surface, and the effective potential is computed. For a (flat) infinite planar conductor,
we would expect s — 2 and 6 — 0. This data suggests that the atomistic polarizable model in DR-EAM is

capturing most of the classical image effect.

Metals ‘ Facet Atop Hollow Bridge

‘ s 0 S 0 s o

Copper 100 186 084 1.76 1.08 1.80 0.98
111 1.84 072 1.80 0.80 1.74 0.98

Gold 100 1.78 125 1.78 1.24 1.70 149
111 184 1.07 1.79 122 179 1.22

Platinum | 100 2.19 036 151 1.69 1.64 1.31
111 218 034 159 136 1.62 1.26

IV. CONCLUSIONS

DR-EAM is a polarizable force field for metals where each metal atom has an additional vari-
able, or partial charge, that represents a fluctuation in the local valence density on that atom.
The dynamics of the partial charges are calculated using an extended Lagrangian, and can aid
in simulating polarization and charge transfer effects in systems that contain these metals. The
polarization catastrophe in traditional electronegativity equalization models is solved using a
sixth order polynomial for the self potential. The coeflicients of this polynomial are tied to
thermodynamically- and experimentally-derived data, notably the Pauling-Allred electronegativi-
ties, Hall coefficients, higher ionization energies, and bulk polarizabilities of these metals.

A number of important physical properties of metals are captured by DR-EAM. The partial
charges distribute on the surface in response to external fields and produce screening of the electric
field inside a metal slab. In addition, the surface charge response reproduces the classical image
charge effect for point charges. These effects cannot be modeled using non-polarizable versions of
the embedded atom method. Additionally, all of the strengths of EAM (i.e. reasonably quantitative
results for bulk elastic constants and surface energies) have been retained in DR-EAM. Relative to

an unmodified EAM simulation, the extended Lagrangian in DR-EAM adds an additional 12.5%
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to the computational cost associated with a 2000 atom, 1 ns simulation. This is a relatively small
additional cost given the new capability to simulate interactions with charged and polar molecules

adsorbed on metal surfaces.
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