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The singular density of states and the two Fermi wavevectors resulting from a ring-shaped or
“Mexican hat” valence band give rise to unique trends in the charged impurity scattering rates
and charged impurity limited mobilities. Ring shaped valence bands are common features of many
monolayer and few-layer two-dimensional materials including the III-VI materials GaS, GaSe, InS,
and InSe. The wavevector dependence of the screening, calculated within the random phase approx-
imation, is so strong that it is the dominant factor determining the overall trends of the scattering
rates and mobilities with respect to temperature and hole density. Charged impurities placed on
the substrate and in the 2D channel are considered. The different wavevector dependencies of the
bare Coulomb potentials alter both the magnitudes and the temperature dependencies of the mo-
bilities. Moving the charged impurities 5 Å from the center of the channel to the substrate increases
the mobility by an order of magnitude by suppressing the large wavevector backscattering

across the outer Fermi ring.

I. INTRODUCTION

Atomically thin two-dimensional (2D) materials are
being investigated for a range of applications includ-
ing emerging beyond-CMOS electronic devices, thermo-
electrics, and optoelectronics. A number of these materi-
als have “ring-shaped” valence bands. These materials
include the semiconducting III-VI monochalcogenides,
GaS, GaSe, InS, and InSe1–8, bilayer graphene when sub-
ject to a vertical electric field9–11, monolayers of Bi2Se3

1

and Bi2Te3
12–14, few-layers of Bi2Se3 intercalated with 3d

transition metals15, monolayer SnO16,17, 2D hexagonal
lattices of group V elements18, hexagonal group V binary
compounds19, and hexagonal IV-V compounds20.

A ring-shaped valence band edge results in a 1/
√
E

singularity in the 2D density of states and a step func-
tion turn on of the density of modes at the valence band
edge1,13,21–23. At low temperatures, density functional
theory calculations show that the singularity in the den-
sity of states leads to a ferromagnetic phase transition
at sufficient hole doping in GaS and GaSe6,7. More re-
cent calculations find that such a transition is a general
property of the Mexican hat dispersion16.

The ring-shaped dispersion affects ionized impurity
scattering through the density of states, the momentum
transfer required to scatter around the rings and between
the rings, and the momentum dependence of the screen-
ing. The question we address is what is the influence of
the “ring-shaped” dispersion on the temperature, den-
sity, and Fermi energy dependence of the ionized impu-
rity scattering rates and ionized impurity limited mobil-
ity.

Prior studies have theoretically investigated the role
of ionized impurity scattering in two–dimensional mate-
rials with a parabolic dispersion. Ionized impurity scat-
tering can severely limit the mobility in the transition

metal dichalcogenides such as MoS2
24 and give rise to an

unexpected temperature dependence of the mobility25.
It has been predicted that reducing the doping can en-
hance the linear screening response within the Thomas-
Fermi theory26. The role of screening on charged impu-
rity scattering and charged impurity limited moblility in
materials with a ring-shaped dispersion has not yet been
addressed.
We address this question using an analytical band-

structure model with parameters extracted from first
principles calculation. Screening is included within the
random phase approximation. Polarization functions and
scattering rates are analyzed, and the ionized impurity
limited hole mobility of the III-VI materials, GaS, GaSe,
InS, and InSe, are compared.

II. THEORY

The materials and geometry of the problem consist of
a monolayer 2D semiconducting material on an insulat-
ing substrate encapsulated by an insulating capping layer
which could be the same as the substrate. Example in-
sulating materials are BN or SiO2. The structure is il-
lustrated in Fig. 1 with SiO2 for the substrate and BN
for the capping layer. A cylindrical coordinate system is
used with r a vector in the x–y plane. The origin is at
the center of the semiconductor. Charged impurities will
be considered for two different positions, in the center of
the 2D semiconductor, z = 0, and on the surface of the
substrate, z = −d. Accounting for the 5 Å thickness of
a monolayer III-VI semiconductor and the 3 Å van der
Waals gap,1 we use d = 5.5 Å for the charged impuri-
ties on the surface of the substrate. The value of the
impurity density used in all calculations is 1012 cm−2.
All calculated scattering rates are linearly proportional
to the impurity density, and all mobilities are inversely
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FIG. 1. Monolayer GaS between SiO2 substrate and BN cap-
ping layer. The black atom depicts an ionized impurity at
the substrate interface 5.5Å from the center of the channel.
The blue atom depicts an ionized impurity at the center of
the monolayer GaS layer.

proportional to the impurity density, so any calculated
values can be scaled for different impurity densities.
The investigation of the effect of the Mexican hat dis-

persion on screening, scattering, and mobility, begins
with the model quartic dispersion

E(k) = ǫh − ~
2k2

2m∗ +
1

4ǫh

(

~
2k2

2m∗

)2

. (1)

Quartic models have been previously used to investi-
gate interactions in biased bilayer graphene9, multiferroic
2D materials16, and electronic and thermoelectric prop-
erties of group III-VI and group VA 2D materials1,18,
and recently they have been used to fit the low energy
hole dispersion of group IV-V 2D hexagonal crystals20.
We define our momentum-energy relation such that the
hole kinetic energy is positive, the valence band edge
is at E = 0, and negative energies correspond to ener-
gies in the band gap. The term ǫh in Eq. (1) is the
height of the ‘hat’ at k = 0 and m∗ is the magnitude
of the effective mass at k = 0 (the top of the hat).
The addition of the constant term ǫh in Eq. (1), shifts
the dispersion so that the minimum energy, correspond-
ing to the band edge, occurs at E = 0. For energies
0 < E < ǫh the Mexican hat dispersion has two Fermi
wavevectors corresponding to the two branches of the
dispersion. In this energy region, the Fermi surface con-
sists of two concentric circles shown in Fig. 2(a). The

radii of the two circles are k1 =
√
2m∗ǫh
~

√

1−
√

E/ǫh and

k2 =
√
2m∗ǫh
~

√

1 +
√

E/ǫh. At the band edge, E = 0,

the two circles merge into a single circle with a radius of
k0 = 2

√
m∗ǫh/~. The effective mass at the band edge de-

termined from 1
m∗(k0)

= ∂2E
~2∂k2

∣

∣

∣

k=k0

is m∗/2. The single–

spin densities of states for each individual k-space ring
are identical and equal to

D1(E) = D2(E) = m∗

2π~2

√

ǫh
E

(0 ≤ E ≤ ǫh), (2)
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FIG. 2. (a) Comparison of a Mexican hat dispersion (red)
and a parabolic dispersion (blue). The height of the Mexican
hat band at k = 0 is ǫh = 0.11 eV. The two concentric rings
show the two Fermi circles that exist for energies below ǫh.
(b) Density of states of the Mexican hat dispersion (red) and
the parabolic dispersion (blue). The parabolic and Mexican
hat dispersion both have an effective mass of 0.409 m0.
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FIG. 3. Carrier concentration of GaS, GaSe, InS and InSe as
a function of Fermi level EF for (a) 5 K, (b) 77 K and (c) 300
K. Parameters used for materials are tabulated in Table I.

The total single-spin density of states is given by the sum
and is equal to

D(E) =

{

m∗

π~2

√

ǫh
E

(0 ≤ E ≤ ǫh)
m∗

2π~2

√

ǫh
E

(ǫh < E) .
(3)

The density of states is plotted in Fig. 2(b) using m∗ =
0.409 m0 and ǫh = 0.11 eV, which are similar to the
values for monolayer GaS1. The density of states diverges
as 1/

√
E at the band edge, and it is equal to twice the

single–spin parabolic density of states, m∗

2π~2 at the top of
the hat.
A parabolic dispersion E(k) = ~

2k2

2m∗
will be used as a

reference and for comparison. The parabolic and Mexi-
can hat dispersions and density of states are plotted to-
gether in Fig. 2. An effective mass of m∗ = 0.409m0 is
used for both dispersions.
Because of the large density of states resulting

from the Mexican hat dispersion, an extremely
high hole concentration is required to push the
Fermi level above the band edge at finite temper-
atures as shown in Fig. 3. For example, at T = 300
K, the hole sheet carrier concentration of InSe is
approximately 2× 1013 cm−2 when the Fermi level
is at the band edge (EF = 0). The fact that the
room temperature Fermi level is generally below
the band edge affects the polarization, screening,
scattering, and mobility.
The quartic dispersion is also often written as20

E(k) = α(k2 − k20)
2. (4)
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The relationships between the two free param-
eters in Eqs. (1) and (4) are ǫh = αk40 and
α = ~

4/(16ǫhm
∗2). With this form of the disper-

sion, the single-spin density of states for each in-
dividual k-space ring corresponding to Eq. (2)
becomes

D1(E) = D2(E) = 1
8π

√
αE

(0 ≤ E ≤ ǫh), (5)

This form is convenient for considering the tran-
sition from a Mexican hat to a pure quartic (k0 =
ǫh = 0) dispersion which has recently been pre-
dicted for certain IV-V hexagonal monolayers20.
However, it obscures the comparison with the
usual parabolic dispersion, such as, for example,
the single-spin, parabolic 2D density of states,
m∗

2π~2 .

The two–dimensional Fourier transform of the bare
Coulomb potential for a point charge at position x =
y = 0, z = z0 is

v(q) =
e2e−q|z−z0|

2ǫq
, (6)

where e is the charge of electron, ǫ is the average static
dielectric constant and q is the momentum transfer. All
of the III-VI materials and SiO2 have relative di-
electric constants in the range of 3 − 4. H-BN
has a thickness dependent, anisotropic dielectric
constant with calculated out-of-plane values rang-
ing from 3.3 to 3.8 and the in-plane values rang-
ing from 6.8 to 6.9.27,28. Experimental values ex-
tracted from infrared reflection measurements for
the out-of-plane and in-plane dielectric constants
are 5.09 and 7.05, respectively29. Experimental
values extracted from capacitance measurements
at 1 MHz are 5.06 and 6.85, respectively29. Since
the appropriate average ǫ in Eq. 6 will depend
on the particular layer arrangements, layer thick-
nesses, and parameter values with a range of un-
certainty, for all calculations presented below, we
will use the dielectric constants of the III-VI semi-
conductor. These values range from 3.08 for InS
to 3.55 for GaSe as shown in Table I.
Within the random phase approximation, the screened

Coulomb potential is

V (q, z) =
v(q)

1−Π(q)v(q)
. (7)

Substituting Eq. (6) into Eq. (7) gives the 2D RPA
screened potential,

V (q) =
e2

2ǫ(qeq|z−z0| − e2

2ǫΠ(q))

=
e2

2ǫ(qeq|z−z0| + qλ(q))
, (8)

where qλ(q) ≡ − e2

2ǫΠ(q) is the wavevector dependent in-
verse screening length. In the static limit, the polariza-
tion function is30

Π(q) =
2

A

∑

k

f(Ek+q)− f(Ek)

Ek+q − Ek

(9)

where A is the area, Ek is the eigenenergy at wavevector
k, and f(E) is the Fermi-Dirac function. The factor of
2 is for spin degeneracy, since the Mexican hat bands
in the III-VI materials are spin degenerate. For both
the Mexican hat and parabolic dispersions, Ek is only a
function of the magnitude of k. Therefore, we define the
variable,

k+ = |k+ q| =
√

k2 + q2 + 2kq cos θ, (10)

and calculate the polarization from Eq. 9,

Π(q) =
1

2π2

∫ ∞

0

dkk

∫ 2π

0

dθ
f(E(k+))− f(E(k))

E(k+)− E(k)
. (11)

In the limit q → 0, the polarization function becomes
the negative of the thermally averaged density of states
at the Fermi level,

Π(q = 0) =

∫ ∞

0

dED(E)
∂f

∂E
, (12)

where D(E) is the density of states. Using the q → 0
limit for Π(q) in Eq. (8), gives the Thomas-Fermi form
of the 2D screened Coulomb potential with an inverse

screening length of e2

2ǫD(EF ). For the Mexican hat dis-
persion this is problematic, since the density of states
diverges near the band edge. Note that in defining the
polarization function in Eq. (9), Π < 0.
To calculate the momentum relaxation time, we need

the matrix elements of the RPA Coulomb potential. We
assume separable wavefunctions of the form 〈r|k〉 =
1√
A
eik·r

√

δ(z) and take the matrix elements of Ṽ (r) =
∫

d2q
4π2V (q)eiq·r to obtain 〈k|Ṽ |k′〉 ≡ Vk,k′ = 1

A
V (|k−k′|).

The Fermi’s golden rule expression for the inverse mo-
mentum relaxation time is given by

1

τ(k)
=

NI2π

~

∑

k′

|Vk′,k|2δ(Ek′−Ek)

(

1− v(k) · v(k′)

|v(k)|2

)

,

(13)
where NI is the number of charged impurities. For the
Mexican hat dispersion, the group velocity v is opposite
to the direction of k on the inner ring and parallel to k
on the outer ring. On a given branch of the Mexican hat
dispersion, E(k) is only a function of the magnitude of k.
Therefore, by converting the sum over k′ into an integral
and explicitly keeping track of the two branches of the
dispersion, Eq. (13) becomes

1

τ(k)
=

nIe
4

4ǫ2~

2
∑

ν=1

Dν(E)

∫ 2π

0

dθ

(

1− v(k′

ν
)·v(k)

v2(k)

)

(q eqz0 + qλ(q))
2 (14)
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where the sum is over the two Fermi rings, q = |k′
ν − k| =

√

k′ν
2 + k2 − 2k′νk cos θ, k and k′ν correspond to the radii

of the concentric iso-energy rings in Fig. 2, Dν(E) is the
final single–spin density of states corresponding to ring
ν, v(k′

ν) is the final group velocity of ring ν, and nI

is the impurity density per unit area. The value of z0
is either zero for impurities placed at the center of the
semiconducting monolayer or 5.5 Å for impurities placed
on the substrate.
The last term on the right of Eq. (13) is 1− v′

v
cos(θv,v′)

where θv,v′ is the angle between the group velocity of
state k and the group velocity of state k′. This term
is the relative change in the component of the velocity
that is parallel to the initial velocity v. When the final
velocity v′ is in the same direction and greater than the
initial velocity v, then scattering from v to v′ causes the
carrier to speed up and gives a negative contribution to
the momentum relaxation time31. This situation occurs
for carriers that are initially near the top of the hat in
Fig. 2(a) and then scatter to the outer ring. However,
the negative values are restricted to a range of angles
centered around 180◦, and the integral over θ in Eq. (14)
is always positive.
The carrier mobility is determined from the average

group velocity driven by an external electric field oriented
in the x–direction. To linear order, this is

〈vx〉 =
∑

k vx(k)fA(k)
∑

k f0(k)
, (15)

where fA(k) is the asymmetric component of the non-
equilibrium distribution function. Within the relaxation
time approximation, the asymmetric distribution func-
tion can be written as,

fA(k) = −τ(k)
eEx
~

∂f0(k)

∂k
cos θ, (16)

where f0(k) is the equilibrium Fermi function, Ex is the
electric field along the transport direction and θ is the
direction of k with respect to the kx axis. The mobility
is directly evaluated from its definition, µ = 〈vx〉/Ex.
Substituting (16) into (15), the final expression for carrier
mobility is

µ = − e

2π~2p

∫ ∞

0

dk k τ(k)
∂f0
∂ǫ

(

∂ǫ

∂k

)2

, (17)

where the spin–degenerate 2D hole density p =
2
A

∑

k f0(k).

III. RESULTS

The physics governing the scattering and the mobility
in Mexican hat materials is governed by the screening. In
a Mexican hat dispersion, the singular density of states
gives a strong wavevector dependence to the polarization
function at low temperature. It also increases the overall
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FIG. 4. (a)–(c) qλ(q) ≡ −
e2

2ǫ
Π(q) at three different tempera-

tures: 5 K, 77 K and 300 K. (a) qλ(q) for a parabolic disper-
sion with EF = 40 meV. (b) qλ(q) for a Mexican hat disper-
sion with EF = +5 meV. (c) qλ(q) for a Mexican hat disper-
sion with EF = −3 meV. The inset shows the two iso-energy
rings in momentum space of the Mexican hat dispersion. The
momentum transfer q between two rings is shown. (d) qλ(q)
for a Mexican hat dispersion for a fixed charged density of
1013 cm−2. The corresponding Fermi energies at each tem-
perature are shown in the legend. For both the parabolic and
Mexican hat dispersions, the band structure parameters are
the same as those used in Fig. 2, and the dielectric constant
is ǫ = 3.1ǫ0.

magnitude of the polarization function. The wavevector
dependent inverse screening length qλ(q) is added to the
momentum transfer q in the denominator of Eq. (8), and
the sum determines the wavevector dependence of the
screened Coulomb interaction. Therefore, we begin by
analyzing qλ as a function of q for different temperatures
and carrier concentrations.

To provide a point of reference, we first show in
Fig. 4(a) the well–known wavevector dependent inverse
screening length qλ resulting from a parabolic dispersion
with the Fermi level fixed at 40 meV above the band
edge. At low temperature and for wavevectors smaller

than 2kF , the magnitude of qλ is simply e2

2ǫ
m∗

π~2 , i.e.
e2

2ǫ
times the density of states at the Fermi level. This is

equal to 3.78 mr/ǫr = 0.499 Å
−1

where mr = 0.409 is
the relative effective mass and ǫr = 3.1 is the relative di-
electric constant. Since the density of states is constant,
the resulting inverse screening length is constant up until
the momentum transfer is greater than 2kF . At higher
temperatures, the polarization function can be written as
a convolution of the zero–temperature polarization and
a thermal broadening function30. The result is that the
sharp q-dependent features become smeared out at finite
temperatures.

Unlike the parabolic dispersion where scattering oc-
curs within a single Fermi ring, Coulomb scattering in a
Mexican hat dispersion occurs within and between two
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concentric rings for energies up to ǫh, which defines the
height of the Mexican hat dispersion. Furthermore, the
density of states is singular at the band edge. To un-
derstand the implications of these features, the inverse
screening length is plotted, as a function of the momen-
tum transfer, q, for different values of the Fermi energy
in Fig. 4(b-c) and for a fixed carrier density in Fig. 4(d).

Fig. 4(b) shows the inverse screening length of the
Mexican hat dispersion at 3 different temperatures with
the Fermi level fixed at 5 meV above the band edge.
The low–temperature (T = 5 K) curve has a strong q
dependence that arises from the bandstructure. There
are two Fermi wavevectors for 0 < EF < ǫ0 denoted as
kF1

and kF2
and illustrated in the inset of Fig. 4(c). The

two Fermi wavevectors result in three features for qλ(q)
at T = 5 K. These features correspond to momentum
transfers of q = 2kF1

, q = 2kF2
, and q = kF2

− kF1
.

Just as with the parabolic dispersion, there is a sharp
change in the derivative of qλ(q) when q is twice the Fermi
wavevector, except now there are two Fermi wavevectors.
The third and largest peak occurs when q = kF2

− kF1
,

which is the minimum momentum required to transfer
between the two Fermi rings. This can be viewed as a
type of Fermi surface nesting. Increasing the temperature
smooths out these sharp features, and at T = 300 K,
qλ(q) smoothly decreases with increasing q. When the
Fermi level is 3 meV below the band edge as in Fig.
4(c), the screening at T = 5 K is essentially zero since
there are no carriers, and the qualitative features of the
polarization functions at 77 K and and 300 K are the
same as those in Fig. 4(b) with a small reduction in
the overall magnitude resulting from the reduced carrier
density.

Fig. 4(d) shows the inverse screening lengths at a fixed
carrier density of 1013 cm−2 for different temperatures.
Now, the Fermi level moves with temperature as shown
in the legend. At 5 K, the Fermi level is 1.6 meV above
the band edge, and the small q peak becomes very large
as the Fermi level approaches the 1/

√
E singularity in the

density of states. At 77 K and 300 K, the Fermi levels
are in the band gap, and the polarization functions are
similar to those in Fig. 4(c).

Now, we consider the magnitude and angle dependence
of the matrix elements 〈k|Ṽ |k′〉 of the screened Coulomb
potential, given by Eq. (8) with q = |k− k′| and z = z0.
Fig. 5 shows polar plots of the screened Coulomb poten-
tial with ns = 1013 cm−2 at two different temperatures
and energies. The polar angle θ is the angle between k
and k′. The relevant qλ plots are shown in Fig. 4(d). For
a fixed energy, scattering can occur within the inner ring
(k and k′ both lie on the inner ring), within the outer
ring (k and k′ both lie on the outer ring), or between the
inner ring and the outer ring (k and k′ lie on different
rings). These 3 different matrix elements are denoted
in the legend of Fig. 5 as ‘Inner,’ ‘Outer,’ and ‘Inter,’
respectively,

We first consider the low-temperature T = 5 K ma-
trix elements at an energy of 2.5 meV above the band

edge shown in Fig. 5(a). At the carrier density of
ns = 1013 cm−2, EF = 1.6 meV, The wavevector de-
pendent screening qλ corresponds to the upper curve
in Fig. 4(d), and a more detailed view is shown in
Fig. 5(c). At E = 2.5 meV, the radius of the in-

ner ring k1 = 0.142 Å
−1

, the radius of the outer ring

k2 = 0.165 Å
−1

, and k2 − k1 = 0.023 Å
−1

. At θ = 0◦,
q = 0 for the inner and outer ring matrix elements and

q = k2 − k1 = 0.023 Å
−1

for the inter ring matrix ele-

ment. At q = 0, qλ = 9.1 Å
−1

, and at q = 0.023 Å
−1

,

qλ = 9.9 Å
−1

. Thus, at θ = 0◦, all three scattering mech-
anisms are strongly suppressed by the screening. The
θ = 0◦ inter ring scattering is a backscattering process,
since the two rings have opposite velocities. Thus, the
small q inter ring backscattering is strongly suppressed
by the screening. The values of q, qλ and q + qλ are
plotted in Fig. 5(c). The value of qλ in the range of
0 ≤ q ≤ 2kF2

is much larger than q. This means that for
q ≤ 2kF2

, the q dependence of V (q) is determined solely
by the q dependence of the polarization, and the bare
momentum transfer q is negligible in comparison.

Since qλ falls rapidly as q increases, the RPA screened
Coulomb potential in a Mexican hat bandstructure fa-
vors large angle scattering. This is opposite to the trend
resulting from the bare 1/q Coulomb interaction. The
large outer-ring matrix elements for θ between 150◦ and
210◦ arise because the momentum transfer around the
outer ring becomes larger than 2kF2

. The kink at 120◦

corresponds to the peak in qλ at 2kF1
. At low temper-

ature, the polarization strongly suppresses the magni-
tude of the matrix elements at the Fermi level. Only for
those energies several kBT above the Fermi level can the
momentum transfer become large enough that the po-
larization becomes negligible, and V (q) returns to a 1/q
dependence. This large momentum transfer corresponds
to backscattering across the outer ring.

Fig. 5(b) shows the T = 300 K matrix elements at an
energy of 25 meV above the band edge. As the temper-
ature increases to 300 K, both the magnitude and the
angular dependence of the matrix elements change con-
siderably compared to those at T = 5 K. This is a result
of the large change in the polarization function as shown
in Fig. 4(d). An enlarged view of the T = 300 K qλ
curve is shown in Fig. 5(d). The Fermi level now lies be-
low the band edge at EF = −26 meV. Compared to the
T = 5 K polarization, the magnitude of the polarization
decreases by an order of magnitude at the band edge, the
sharp features disappear, and qλ monotonically decreases
as q increases. However, the overall decrease of q + qλ
over the range of relevant q values is relatively small. At

E = 25 meV, k1 = 0.11 Å
−1

and k2 = 0.187 Å
−1

. At

q = 0, q + qλ = 0.861 Å
−1

, and at q = 2k2 = 0.374 Å
−1

,

q + qλ = 0.462 Å
−1

. Thus, the maximum increase in the
matrix element going from θ = 0 to θ = 180◦ is a fac-
tor of 1.8, which is shown for the matrix elements of the
outer ring in Fig. 5(b). Over the entire range of rele-
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FIG. 5. Polar plots of the matrix elements of the RPA
screened Coulomb potential as a function of scattering an-
gle at (a) T = 5 K and E = 2.5 meV and (b) T = 300 K
and E = 25 meV. The polar angle θ is the angle between k

and k′. The legend refers to the 3 curves in each polar plot.
“Inner” denotes matrix elements with k and k′ both on the
inner ring, “Outer” denotes matrix elements with k and k′

both on the outer ring, and “Inter” denotes matrix elements
with k on the inner ring and k′ on the outer ring. (c) q, qλ,
and q + qλ as a function of q corresponding to (a). (d) q, qλ,
and q+qλ as a function of q corresponding to (b). The carrier
density is fixed at 1013 cm−2 for all figures.

vant momentum transfer q, the T = 300 K polarization
is much less than the T = 5 K polarization, so that the
matrix elements are uniformly larger at T = 300 K com-
pared to those at T = 5 K. Since the scattering rate is
proportional to |V (q)|2, the scattering rates will be sig-
nificantly larger at room temperature compared to those
at low temperature.

The integrand that determines the momentum scatter-
ing rates at a given energy E, given by Eq. (14), contains
not only |V (q)|2, but also the final density of states and
the relative change in the velocity which can be positive

or negative. The [1 − v′

v
cos(θv,v′)] term further reduces

the small angle intra-ring matrix elements, which are al-
ready small due to the large polarization at small q. The
integrand of Eq. (14) is plotted in Fig. 6 at T = 300
K, EF = −26 meV, and E = 100 meV. Fig. 6(a) shows
the angle-dependent scattering rate for the initial k on
the inner ring, and Fig. 6(b) shows the angle-dependent
scattering rate for the initial k on the outer ring. Note
that the energy E = 100 meV is 10 meV below the top
of the hat in Fig. 2(a). At this energy, the magnitude
of the group velocity of a state on the inner ring is much
less that of a state on the outer ring. For inter ring scat-
tering from the inner ring to the outer ring, v′ > v, and
a forward scattering process with θv,v′ = 0 causes the

[1 − v′

v
cos(θv,v′)] term in the integrand to become neg-

ative. The forward scattering process with θv,v′ = 0◦

corresponds to backscattering in k-space with θ = 180◦,
where θ is the angle between the initial state k on the
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FIG. 6. Polar plots of 1/τ (θ) given by the integrand of Eq.
(14) for (a) k on the inner ring and (b) k on the outer ring.
Inter-ring and intra-ring rates are indicated by the legend.
Inter-ring contributions can be either positive or negative. (c)
Four components of the total scattering rate as a function of
energy. The components are indicated by the legends where,
for example, “Inner-outer” denotes the initial state on the
inner ring and the final state on the outer ring.

inner ring and the final state k′ on the outer ring. Thus,
in Fig. 6(a), the negative values of 1/τ(θ), shown by the
blue curve, are centered around θ = 180◦. Backscattering
with θv,v′ = 180◦ corresponds to forward scattering in k-
space with θ = 0◦, and the corresponding positive values
of 1/τ(θ) are shown by the red curve centered around
θ = 0◦. When scattering from the outer ring to the inner
ring, v′/v < 1, so that 1/τ(θ) is positive for all angles as
shown in Fig. 6(b).

Fig. 6(c) shows the 4 components of the total scatter-
ing rate as a function of energy at T = 300 K. The energy
100 meV corresponds to the polar plots shown in (a) and
(b). As the energy approaches the top of the hat, 110
meV, the radius k1 of the inner ring goes to zero, so that
q = |k2 − k1| becomes independent of θ. The denomi-
nator in Eq. (8) is then independent of θ, the cos(θv,v)
term integrates to zero, and the integral over θ gives 2π.
Thus, in the limit E approaches ǫh from below, the inte-
gral in Eq. (14) can be performed analytically for both
inter-ring scattering and intra-ring scattering within the
inner ring. At E = ǫh, the single-spin density of states of
both the inner ring and the outer ring are equal to m∗

2π~2 .
For inter-ring scattering, q = k2, and the inter-ring scat-
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tering rate is

1

τinter
=

nIe
4

4ǫ2~

m∗

2π~2
2π

(k2 + qλ(k2))
2

= 4π2α2m0c
2

~

mr

ǫ2r

nI

(k2 + qλ(k2))
2

= 2.06× 1013 s−1 (18)

where k2 = 2
√
2m∗ǫh/~ = 0.217 Å

−1
and qλ(k2) =

0.364 Å
−1

. In the second line of Eq. (18), α is the fine
structure constant, m0 is the bare electron mass, c is
the speed of light, mr = 0.409 is the relative mass, and
ǫr = 3.1 is the relative dielectric constant. For intra-ring
scattering within the inner ring, q → 0, and the intra-ring
scattering rate becomes

1

τintra
= 4π2α2m0c

2

~

mr

ǫ2r

nI

q2λ(0)
= 9.38× 1012 s−1 (19)

where qλ(0) = 0.861 Å
−1

. The reduction of 1/τintra with
respect to 1/τinter is solely the result of the increased
value of qλ as q → 0. The largest component to the
total scattering rate is from scattering within the outer
ring, since scattering within the outer ring allows for the
largest momentum transfer q and thus the smallest values
of qλ.
The total scattering rates for an initial state on the

inner or the outer ring are shown in Fig. 7 for the same
charge density (1013 cm−2) and temperatures as in Fig.
4(d). The parameters are also the same as the ones used
in the calculation of the screened Coulomb matrix ele-
ments in Figs. 5 and 6. At T = 5 K, as a result of
the extremely large polarization, the scattering rate is
suppressed for energies below 14 meV. At E = 14 meV,

2k2 = 0.36 Å
−1

as shown in Fig. 6(d). At energies be-
low 14 meV, the polarization is large for all possible mo-
mentum transfer q, the matrix elements of the screened
Coulomb potential are reduced, and the scattering rate
is reduced. The low-energy minimum occurs at E = 2.5
meV, when the minimum inter-ring scattering momen-

tum q = 0.023 Å
−1

is where the polarization function
has its maximum value. As the energy decreases below
2.5 meV towards the band edge, the 1/

√
E density of

states term in Eq. (14) takes over, and the rate increases

as E → 0. For momentum transfer q & 0.36 Å
−1

, the
polarization is negligible, and the RPA screened poten-
tial reverts to the bare unscreened potential as shown
in Fig. 5(c). As the energy increases above 14 meV,
unscreened backscattering takes place within the outer
ring. The energy dependence for higher energies is gov-
erned by the energy dependence of the density of states
and the 1/q2 ≈ 1/4k22 dependence of the matrix element
squared.
The radius k1 of the inner ring is maximum at E = 0

and decreases with increasing energy. Thus, the polariza-
tion relevant to the inner ring matrix elements increases
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FIG. 7. Momentum scattering rates for a charge density of
1013cm−2 at (a) 5 K, (b) 77 K and (c) 300 K. The band
parameters correspond to the ones used in Fig. 2, and the
polarization functions are shown in Fig. 4(d). (d) Maximum
values of q for scattering from the outer ring (2k2) or within
the inner ring (2k1) as a function of energy.

with energy, causing the matrix elements to decrease.
The density of states monotonically decreases and the
scattering rate for states on the inner ring monotonically
decreases with energy. The total rate is dominated by
the intra-ring scattering of the outer ring.
At T = 77 K, the polarization loses its sharp features

and its magnitude is everywhere reduced causing an over-
all increase of the scattering rates and a monotonic de-
crease with energy. This trend is more pronounced at
T = 300 K where there is relatively little change in the
sum q + qλ over the range of relevant energies, and the
energy dependencies of the rates are determined by the
1/

√
E dependence of the density of states.

The total scattering rates for GaS and InSe are shown
in Fig. 8 for temperatures of 5 K, 77 K and 300 K.
The temperature dependence of the overall magnitudes
of the scattering rates are determined by the magnitudes
of the matrix elements squared of the screened Coulomb
potential, which, in turn, are determined by the temper-
ature dependence of the polarization functions as shown
in Figs. 4(d) and 5. When the energy is equal to the
height of the hat, the contribution from the inner-ring
scattering disappears giving an abrupt decrease in the
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FIG. 8. Energy dependence of the total momentum relaxation
rates for (a) GaS and (b) InSe for 3 different temperatures.
The charge density is fixed at 1013cm−2. Parameters used for
GaS and InSe are tabulated in Table I.

total scattering rate at T = 77 K and 300 K. At T = 5
K, the scattering rate from the inner ring is always small
compared to that of the outer ring (except right at the
band edge), so that the small discontinuity at E = ǫh
is primarily the result of the disappearance of the inter-
ring scattering from the outer ring to the inner ring. For
energies above the top of the hat, the rates become al-
most identical differing by at most a factor of 1.2 for InSe.
The fine differences result from the details of the different
Fermi levels combined with the different thermal broad-
ening for each different temperature. The large decrease
in the T = 5 K, low-energy scattering rate for InSe com-
pared to GaS is the result of the larger polarization in
InSe due to its larger mass and larger density of states.

The temperature and charge density dependence of the
mobility are plotted in Fig. 9. Both the temperature
dependence and the density dependence of the mobility
are primarily governed by the temperature and density
dependence of the polarization. The initial decrease in
mobility with temperature results from the decrease in
polarization with temperature as shown in Fig. 4(d).
The decrease in screening, increases the matrix element
squared which increases the scattering rate and decreases
the mobility. At T = 300 K, there is a significant contri-
bution to the integrand (µ(E)) of Eq. (17) from energies
above ǫh. Once E = ǫh starts to fall inside the thermal
window defined by −∂f0/∂E in Eq. (17), the sudden
decrease in 1/τ(E) shown in Fig. 8, gives rise to a cor-
responding increase in µ(E), so that the integral begins
to increase with temperature. The ‘turn-on’ or ‘ther-
mal activation’ of the mobility starts to be seen at lower
temperatures for lower carrier densities as shown in Fig.
9(a). For lower carrier densities, screening is less, the
matrix elements and scattering rates are larger at lower
energies, the low-energy values of µ(E) are reduced, and
the discontinuity at E = ǫh is larger so that the higher
energies give a disproportionally larger contribution to
the mobility.

For a fixed temperature, as the charge density in-
creases, the screening increases, which reduces the matrix
element squared and the scattering rates and increases
the mobility as seen in Fig. 9(b). At a charge density of
3× 1013 cm−2, the mobility is between 83− 153 cm2/Vs
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FIG. 9. Charged impurity limited hole mobility of GaS (a) as
a function of temperature for a carrier density of 1012 cm−2

(blue) and 1013 cm−2 (red) and (b) as a function of carrier
density at 5 K (blue), 77 K (red) and 300 K (green). The
impurity density nI is fixed at 1012 cm−2.

for the 3 temperatures, 5 K, 77 K, and 300 K.
The temperature dependence of the 4 III-VI p-type

materials are shown in Fig. (10) for a fixed hole density
of 1013 cm−2 and two different positions of the charged
impurities, in the middle of the channel (z0 = 0Å) and
on the substrate (z0 = 5.5 Å). The relevant material pa-
rameters are given in Table I. The general trends of the
temperature dependence follow those seen in Fig. 9. The
low temperature mobilities order according to the effec-
tive masses with the lower masses correlating with the
higher mobilities. However, the dependence is weaker
than a 1/m∗ dependence. The minimum and maximum
effective mass differ by a factor of 2.3, and at T = 5
K, the mobilities differ by a factor of 1.4. The differ-
ence in mobilities increases to a maximum of 2 near the
beginning of the high-temperature crossover where the
mobilities start to increase. The cross-over begins at a
lower temperatures for the materials with a smaller value
of ǫh, since lower temperatures can thermally excite car-
riers above the top of the hat.
Moving the charged impurities from the middle of the

channel to the substrate increases the mobility, as would
be expected, since the charged impurities are further
away from the carriers. However, it also lowers the tem-
perature of the high-temperature crossover, which is not
an obvious consequence. The reason lies in the large
enhancement of the bare, large-wavevector screening as
shown in Fig. 10(b) for GaS at T = 77 K. For GaS,
the bare term qeqd in the denominator becomes larger

than qλ at q = 0.22 Å
−1

. The minimum value of 2k2 is

Material
Effective mass

m* (m0)
Height of the hat

(ǫh) (meV)
Relative

permittivity

GaS 0.409 111.2 3.10

GaSe 0.600 58.7 3.55

InS 0.746 100.6 3.08

InSe 0.926 34.9 3.38

TABLE I. Effective mass and height of the hat for III-VI
materials with Mexican hat1.
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bility as a function of temperature of GaS, GaSe, InS and
InSe with the charged impurities in the middle of the channel
(d = 0, dashed line) and on the substrate (d = 5.5 Å, solid
line). (b) qeqd, qλ, q+ qλ, and qeqd + qλ for GaS at T = 77 K
where d = 5.5 Å. The hole density ns = 1013 cm−2, and the
charged impurity density nI is fixed at 1012 cm−2.
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FIG. 11. Charged impurity limited monolayer hole mobili-
ties as a function of carrier density at (a) T = 77 K and
(b) T = 300 K for the 4 III-VI materials as indicated by the
legends. Solid lines result from charged impurities on the sub-
strate (z0 = 5.5 Å), and the dashed lines result from charged
impurities in the middle of the channel (z0 = 0). The impu-
rity density nI is fixed at 1012 cm−2.

0.31 Å
−1

at the band edge, and at the top of the hat,

2k2 = 0.43 Å
−1

. At that value of q, the denominator
qeqd + qλ is larger than at q = 0, so that backscattering
across the outer ring is strongly suppressed giving a large
enhancement to µ(E) for energies E = ǫh.
The hole density dependence of the charged impurity

limited mobility at T = 77 K and T = 300 K is shown

in Fig. (11). The mobility monotonically increases with
hole density for a fixed charged impurity density nI . This
trend would be expected due to increased screening re-
sulting from the higher hole density. At the highest hole
densities considered of 3 × 1013 cm−2, with the charged
impurities on the substrate, the T = 300 K mobilities lie
between 500 and 800 cm2/Vs for all 4 materials. With
the impurities at the center of the channel, the mobilities
decrease one order of magnitude and lie in the range of 50
to 80 cm2/Vs. All mobilites are calculated for a charged
impurity density of nI = 1012 cm−2, and the mobilities
are inversely proportional to nI , so that all mobility val-
ues shown can be easily scaled for arbitrary values of nI .

IV. CONCLUSIONS

The Mexican hat type bandstructure that occurs in the
valence band of monolayer and few layer III-VI materials
and other 2D materials gives rise to unique screening
properties. The singular density of states at the band
edge and the two Fermi wavevectors up to the height
of the hat, lead to large screening and strong wavevector
dependence of the screening. The wavevector dependence
of the screened Coulomb interaction is so strong, that
the temperature and density dependence of the matrix
element squared is the dominant factor determining the
overall trends with respect to temperature and density.
The reduction of polarization with temperature causes
an initial increase in scattering and decrease in mobility
with increasing temperature.
Short wavevector inter-ring backscattering and scatter-

ing within the smaller ring is always suppressed by the
large polarization at small q. When the the charged im-
purities lie in the middle of the 2D channel, the wavevec-
tor dependence of the polarization favors large wavevec-
tor backscattering across the outer ring. When the
charged impurities lie on the substrate, the bare screening
increases rapidly at larger wavevectors suppressing the
backscattering across the outer ring. Thus, for charged
impurities on the substrate, small wavevector scattering
is suppressed by the large polarization at small q, and
large wavevector scattering is suppressed by the exponen-
tial wavevector dependence of the bare Coulomb interac-
tion. The overall effect is an increase in mobility. The
suppression of the large wavevector scattering when the
impurities are on the substrate also reduces the thermal
activation temperature, i.e. the temperature at which
the mobility starts to increase.
The mobility monotonically increases with hole den-

sity up to the maximum value considered of 3 × 1013

cm−2 where it reaches a maximum value of 800 cm2/Vs
for GaSe with the charged impurities located on the sub-
strate. Placing the impurities in the center of the channel
reduces the maximum value by an order of magnitude.
All mobility values are calculated for a charged impurity
density of nI = 1012 cm−2 and scale inversely propor-
tionally to nI .
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