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Abstract

We analyze time evolution of charge and spin states in a quantum dot coupled to an electric reservoir.

Utilizing high-speed single-electron detection, we focus on dynamics induced by the first-order tunneling.

We find that there is a difference between the spin and the charge relaxation: the former appears slower than

the latter. The difference depends on the Fermi occupation factor and the spin relaxation becomes slower

when the energy level of the quantum dot is lowered. We explain this behavior by a theory including the

first-order tunneling processes and find a good agreement between the experiment and the theory.
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Semiconductor quantum dots (QDs) offer artificial quantum systems which can be controlled

by voltages applied on gate electrodes1–5. By coupling the QDs to electronic reservoirs, we can

explore the physics of quantum systems through electron transport measurements. The electron

tunneling through the QDs reflects internal levels of the QDs and the transport spectroscopy has

been a key technique to probe the inner levels. In addition, higher-order tunneling processes result

in interesting physics of cotunneling6,7 and the Kondo effect8,9. In recent years, sensitive high-

speed transport measurement of QD systems became possible by utilizing quantum point contacts

or QD charge sensors, and RF-reflectometry10–12. The technique is established and further devel-

oped in spin-based quantum bit experiments13–16 and realized fast qubit readout17 utilizing spin to

charge conversion by Pauli spin blockade18. The method is also useful to explore the dynamics of

open quantum systems formed by QD-lead hybrid systems19–24. We have previously demonstrated

the measurement of charge and spin dynamics induced by the first- and higher-order tunneling

processes, and revealed the time evolution by high-speed charge and spin measurements25.

In this work, we focus on the difference in the charge and spin dynamics in the first-order

tunneling processes. We observe that the spin equilibration is slower than the charge equilibration.

A theory treating the first-order tunneling explains the difference. We conduct detailed comparison

of the experiment and the theory with changing the energy of the QD levels against the lead’s Fermi

level.

Figure 1(a) shows a scanning electron micrography (SEM) image of the device and the

schematic of the measurement circuit. The device was fabricated from a GaAs/AlGaAs het-

erostructure wafer with an electron sheet carrier density of 2.0 × 1015 m−2 and a mobility of

110 m2/Vs at 4.2 K. The two-dimensional electron gas is formed 90 nm under the wafer surface

and patterned into QDs by applying negative voltages on Ti/Au Schottky surface gates which

appear white in Fig. 1(a). The target QD1 is connected to the lead through a tunneling barrier,

which is controlled by gate T. QD1 is also connected to the ancillary QD2 for spin initialization

and readout26,27. The charge state of QD1 and QD2 is monitored by a QD sensor formed at the

upper side of the device. The sensor is connected to an radio frequency (RF) tank circuit for the

RF reflectometry and information of the charge state of the double QD (DQD) is extracted from

the reflected RF signal11,12. All measurements were conducted in a dilution fridge cryostat with a

base temperature of 20 mK. The electron temperature was around 250 mK, which is higher than

the base temperature probably due to heating through the high-frequency measurement lines. An

in-plane magnetic field of 0.5 T is applied.
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FIG. 1: (a) SEM image of the device and the schematic of the measurement circuit. The target QD1 is

connected to the ancillary QD2 for the spin initialization and readout. The charge state is monitored by

the QD Sensor connected to the RF resonator circuit. (b) Schematics of the measurement procedure. The

spin state is initialized in QD2 and the electron is transferred to QD1. After that, the charge and spin states

evolve by the interaction with the lead. The charge state is monitored by the QD sensor. The final spin

state after some interaction duration is measured utilizing the spin blockade. (c) Charge stability diagram

∆Vsensor as a function of VP2 and VP1. I, O and M correspond to gate voltage conditions for initialization,

operation, and readout, respectively. The number of electrons in each QD is shown as (n1, n2).

Figure 1(b) shows a schematic of the measurement procedure: initialization, operation and

measurement. Figure 1(c) is the charge stability diagram showing the charge sensing signal

∆Vsensor as a function of VP2 and VP1. The number of electrons in each QD is shown as (n1, n2).

I, O, and M indicate the gate voltages corresponding to the initialization, operation, and measure-

ment. The spin state is initialized in QD2 by utilizing the singlet formation at the configuration I.

After that, the initialized electron is transferred to QD1 by moving to the configuration O. ǫ is the

voltage from the center of the Coulomb blocked (1,1) charge configuration region. As O is close
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FIG. 2: (a) Observed charge and spin signals as a function of the interaction time. Red circles show the

charge signal 〈Vsensor(t)〉 calculated as the average of the sensor signal Vsensorα(t) over the experimental

runs indexed by α. Blue circles show the spin signal (the probability to find a singlet in M). The solid lines

are exponential fits resulting in a relaxation time of 1.7 µs for the charge, and 3.0 µs for the spin. The QD

level is close to the Fermi level of the reservoir (ǫ = 5.4 mV). (b) Observed charge and spin signals as a

function of the interaction time for a lowered QD level (ǫ = 5.0 mV). The spin relaxation time becomes

slower. (c) Schematic of the first-order tunneling process. The first-order tunneling event between the QD

and the lead changes the charge and spin states.

to the charge transition line, the electron in QD1 interacts with the lead through the first-order

tunneling processes. The change of the charge state is monitored by the sensor during this phase.

The change of the spin state is deduced by the subsequent spin blockade measurement18 at the

configuration M.

Figure 2(a) shows the observed charge and spin signals as a function of the interaction time

with the lead at O. Red circles show the charge signal. The signal is the average of the raw
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charge signal over the experimental realizations indexed by α. That is, we plot 〈Vsensor(t)〉 =

(1/Nα)
∑

α Vsensorα(t), with Nα = 16384 experimental runs. Single traces Vsensorα(t) (not shown)

allow to deduce the fluctuating charge state of the dot in real time, as the electron tunnels out and in.

Averaging over many experimental runs smoothens out these discontinuous jumps and results in an

apparently continuous and monotonic charge signal. Blue circles show the spin signal, the singlet

probability PS measured at M after spending a fixed interaction time at O. Again, we plot the

average over experimental runs, 〈PS〉 = (1/Nβ)
∑

β PSβ extracted from Nβ = 512 measurements.

Both the charge and spin signals change in time and show relaxation. From the previous detailed

measurement of the charge state25, we know that the mechanism of this relaxation is the first-order

tunneling processes: the electron shuttles between the dot and the lead, and the charge and spin

states change (Fig. 2(c)). The relaxation time is related to the tunneling rate, and the rate can be

controlled by the voltage on gate T. Note that the intrinsic spin relaxation time in a QD without

electron tunneling (several hundreds of µs to ms)27 is much longer than this time scale.

The solid lines in Fig. 2(a) are the result of the fitting with single-exponential relaxation curves.

Here, we define the relaxation time as the parameter extracted by the single-exponential fitting.

The charge relaxation time is 1.7 µs and the spin relaxation time is 3.0 µs. They are of the same

order but still there is a difference: the charge relaxation is faster than the spin relaxation. This

goes against naive intuition that those should be the same since both the charge and the spin are

carried by a single electron.

This difference is enhanced when we lower the energy level of the QD against the Fermi level

of the lead. Figure 2(b) shows the result for such a case with ǫ = 5.0 mV. The charge relaxation

time is 2.1 µs and the spin relaxation time is 9.1 µs now.

Figure 3 shows a series of the observed charge and spin signals for different alignments of

the QD levels with respect to the lead. In these figures, the charge signal is normalized to span

the range form zero to one. (The normalization is done using the initial and saturated charge

signal values at f ≈ 0 and their dependence on ǫ.) (a), (b), (c), (d) and (e) correspond to ǫ =

5.8, 5.6, 5.4, 5.2, 5.0 mV, respectively. When the QD level is above the Fermi level of the reservoir

compared to the electron temperature, so that the Fermi occupation factor f ≈ 0, the time scales of

the charge and the spin are almost same (Fig. 3(a)). When we lower the QD level against the Fermi

level of the lead, the spin relaxation becomes slower. On the other hand, the charge relaxation time

is not significantly affected and the decay amplitude becomes smaller (Fig 3(b), (c), (d) and (e)).

Figure 3(f) shows the relaxation times obtained by single-exponential fitting of the data.
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FIG. 3: (a), (b), (c), (d) and (e) The observed charge (red) and spin (blue) signals for different energy

alignment of the QD with respect to the Fermi level of the lead. The charge and spin signals are normalized.

(a), (b), (c), (d) and (e) correspond to ǫ = 5.8, 5.6, 5.4, 5.2, 5.0 mV, respectively. (f) The relaxation time

obtained by single-exponential fitting in the case of charge (red) and spin (blue) signals as a function of ǫ.

To reproduce the observed difference in the charge and spin relaxation and their QD energy

level dependence, we set up a rate-equation model including the first-order tunneling processes25.

The first-order tunneling event between the QD and the lead changes the probabilities according
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FIG. 4: (a), (b) Calculated charge and spin dynamics using the model in Eq. (1) and the parameters of the

experiment (magnetic field B = 0.5 T, electron temperature Te = 0.25 K). (a) and (b) are results for f = 0

and 0.6, respectively.

to

∂tPσ = −Γσ(1− fσ)Pσ + ΓσfσPe. (1)

Here, Pσ is the probability that the dot is occupied by a single electron with spin σ ∈ {↑, ↓}, and

Pe is the probability that the dot is empty. Further, fσ = f(µ − σgµBB/2) and Γσ are the Fermi

occupation factor and the tunneling rate for an electron with spin σ28. By solving this equation

with P↑ + P↓ + Pe = 1, we can calculate the charge and spin dynamics of the system, given the

experimental parameters (magnetic field B = 0.5 T, electron temperature Te = 0.25 K) and the

initial condition P↑(t = 0) = 1. Changing ǫ in the experiment corresponds to changing µ and then

f in the model.

Figure 4(a) and (b) shows calculated charge and spin dynamics at f = 0 and 0.6, respectively.

Here, we assumed Γ↑ = Γ↓ = Γ, for simplicity. The charge relaxation time becomes slightly

shorter with the increase of f and the decay amplitude decreases. On the other hand, the spin

relaxation time becomes longer with the increase of f . These results are qualitatively the same as

the observed experimental results in Fig. 2(a) and (b). The qualitative explanation of the difference

is that the charge dynamics of the QD is the result of both tunneling out and in process and

then the charge relaxation rate is proportional to the factor (1 + f). On the other hand, the spin

information is lost when the tunneling out process happens. For a large value of f , the electron
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has to first tunnel out, which happens with a small rate ∝ (1 − f). The smallness of this factor is

the reason why spin relaxation looks slower than the charge relaxation. In quantitative terms, the

general solution of Eq. (1) is given in the Supplementary Material of Ref.25. For the experiment

here, one considers spin-independent tunnelings. Then the equations in Ref.25 give the charge and

spin relaxation rates as (1 + f)Γ and (1 − f)Γ, respectively, corroborating the above qualitative

discussion.

The solid lines in Fig. 3(a), (b), (c), (d), and (e) show results of the fit-

ting by the theoretical curves. The charge and spin signal fitting share the

same fitting parameters f and Γ. The fitting parameters become (f,Γ(MHz)) =

(0.002, 0.42), (0.10, 0.43), (0.32, 0.41), (0.52, 0.41), (0.78, 0.46) for (a), (b), (c), (d), and

(e), respectively. With the decrease of ǫ, the Fermi factor f increases monotonically. The

theoretical fitting is consistent with the experimental data with reasonable fitting parameters. (The

small change in Γ will be induced by the change of the barrier hight induced by the change of the

QD condition.) This implies that our model captures the basic physics of the system induced by

the first order tunneling.

In conclusion, we analyzed the difference in the charge and spin relaxation in a QD-lead hybrid

system induced by first-order tunneling processes. The difference depends on the Fermi occupa-

tion factor and the spin relaxation becomes slower when the energy level of the QD is lowered

below the Fermi level of the lead. A theory describing the first-order tunneling process repro-

duces the observed experimental results. These results will be important for spin initializations

and manipulations utilizing the coupling to the lead.
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