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We theoretically study the spin-orbit crossed susceptibility of topological Dirac semimetals. Be-
cause of strong spin-orbit coupling, the orbital motion of electrons is modulated by Zeeman coupling,
which contributes to orbital magnetization. We find that the spin-orbit crossed susceptibility is pro-
portional to the separation of the Dirac points and it is highly anisotropic. The orbital magnetization
is induced only along the rotational symmetry axis. We also study the conventional spin susceptibil-
ity. The spin susceptibility exhibits anisotropy and the spin magnetization is induced only along the
perpendicular to the rotational symmetry axis in contrast to the spin-orbit crossed susceptibility.
We quantitatively compare the two susceptibilities and find that they can be comparable.

I. INTRODUCTION

In the presence of an external magnetic field, magne-
tization is induced by both the orbital motion and spin
magnetic moment of electrons. When spin-orbit coupling
is negligible, the magnetization is composed of the orbital
and spin magnetization, which are induced by the mini-
mal substitution, p→ p+eA, and the Zeeman coupling,
respectively. Additionally, spin-orbit coupling gives rise
to the spin-orbit crossed response, in which the spin mag-
netization is induced by the minimal substitution, and
the orbital magnetization is induced by the Zeeman cou-
pling. In the strongly spin-orbit coupled systems, the
spin-orbit crossed response can give comparable contri-
bution to the conventional spin and orbital magnetic re-
sponses.

Spin-orbit coupling plays a key role to realize a topo-
logical phase of matter, such as topological insulators [1]
and topological semimetals [2]. A natural question aris-
ing is what kind of the spin-orbit crossed response occurs
in the topological materials. Because of the topologically
nontrivial electronic structure and the existence of the
topological surface states, the topological materials ex-
hibit the spin-orbit crossed response as a topological re-
sponse [3–7]. The spin-orbit crossed response has been
investigated in several systems. In the literature the con-
nection between the spin-orbit crossed susceptibility and
the spin Hall conductivity was pointed out [3, 4]. In
recent theoretical work, the spin-orbit crossed response
has been investigated also in Rashba spin-orbit coupled
systems [8, 9].

The topological Dirac semimetal is one of the topo-
logical semimetals [10–15] and experimentally observed
in Na3Bi and Cd3As2 [16–18]. The topological Dirac
semimetals have an inverted band structure originating
from strong spin-orbit coupling. They are characterized
by a pair of Dirac points in the bulk and Fermi arcs on
the surface [10, 11]. The Dirac points are protected by
rotational symmetry along the axis perpendicular to the
(001) surface in the case of Na3Bi and Cd3As2 [10, 11].
This is an important difference from the Dirac semimet-
als appearing at the phase boundary of topological in-
sulators and ordinary insulators [19–22], in which there

is no Fermi arc. A remarkable feature of the topological
Dirac semimetals is the conservation of the spin angular
momentum along the rotation axis within a low energy
approximation [23]. The topological Dirac semimetals
are regarded as layers of two-dimensional (2D) quantum
spin Hall insulators (QSHI) stacked in momentum space
and exhibit the intrinsic semi-quantized spin Hall effect.

The magnetic responses of the generic Dirac electrons
have been investigated in several theoretical papers. The
orbital susceptibility logarithmically diverges and ex-
hibits strong diamagnetism at the Dirac point [6, 24–26].
When spin-orbit coupling is not negligible, the spin sus-
ceptibility becomes finite even at the Dirac point where
the density of states vanishes [6, 27–29]. This is contrast
to the conventional Pauli paramagnetism and known as
the Van Vleck paramagnetism [29–32].

In this paper, we study the spin-orbit crossed suscep-
tibility of the topological Dirac semimetals. We find that
the spin-orbit crossed susceptibility is proportional to the
separation of the Dirac points and independent of the
other microscopic parameters of the materials. We also
include the spin conservation breaking term which mixes
up and down spins [10, 11]. We confirm that the spin-
orbit crossed susceptibility is approximately proportional
to the separation of the Dirac points even in the absence
of the spin conservation as long as the separation is suf-
ficiently small. We also calculate the spin susceptibility
and quantitatively compare the two susceptibilities. Us-
ing the material parameters for Na3Bi and Cd3As2, we
show that the contribution of the spin-orbit crossed sus-
ceptibility is important in order to appropriately estimate
the total susceptibility.

The paper is organized as follows. In Sec. II, we in-
troduce a model Hamiltonian and define the spin-orbit
crossed susceptibility. In Secs. III and IV, we calculate
the spin-orbit crossed susceptibility and the spin suscep-
tibility. In Secs. V and VI, the discussion and conclusion
are given.
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II. MODEL HAMILTONIAN

We consider a model Hamiltonian on the cubic lattice

Hk = HTDS +Hxy +HZeeman, (1)

which is composed of three terms. The first and sec-
ond terms describe the electronic states in the topolog-
ical Dirac semimetals, which reduces to the low energy
effective Hamiltonian around the Γ point [10–12, 14, 15].
The first term is given by

HTDS = εk + τxσzt sin(kxa)− τyt sin(kya) + τzmk, (2)

where

εk = C0 − C1 cos(kzc)− C2 [cos(kxa) + cos(kya)] ,

mk = m0 +m1 cos(kzc) +m2 [cos(kxa) + cos(kya)] .
(3)

Pauli matrices σ and τ act on real and pseudo spin (or-
bital) degrees of freedom. a and c are the lattice con-
stants. t, C1, and C2 are hopping parameters. C0 gives
constant energy shift. m0, m1, and m2 are related to
strength of spin-orbit coupling and lead band inversion.
There are Dirac points at (0, 0,±kD),

kD =
1

c
arccos

(
−m0 + 2m2

m1

)
. (4)

The separation of the Dirac points is tuned by chang-
ing the parameters, m0, m1, and m2. The first term,
HTDS, commutes with the spin operator σz, and HTDS

is regarded as the Bernevig-Hughes-Zhang model [12, 33]
extended to three-dimension. The second term is given
by

Hxy =τxσxγ [cos(kya)− cos(kxa)] sin(kzc)

+ τxσyγ sin(kxa) sin(kya) sin(kzc), (5)

which mixes up and down spins. When Hxy is expanded
around the Γ point, leading order terms are third or-
der terms, which are related to the rotational symmetry
along the axis perpendicular to the (001) surface in Na3Bi
and Cd3As2. In the current system, this axis corresponds
to the z-axis and we call it the rotational symmetry axis
in the following. γ corresponds to the coefficient of the
third order terms in the effective model [10, 11]. When γ
is zero, the z-component of spin conserves. At finite γ, on
the other hand, the z-component of spin is not conserved.

As we mentioned in the introduction, the external mag-
netic field enters the Hamiltonian via the minimal substi-
tution, p → p + eA, and the Zeeman coupling. We for-
mally distinguish the magnetic field by the way it enters
the Hamiltonian in order to extract the spin-orbit crossed
response. Borbit and Bspin represent the magnetic field
in the minimal substitution and in the Zeeman coupling
respectively. They are the same quantities so that we
have to set Borbit = Bspin at the end of the calculation.

In the following, the subscripts α, β, γ, δ refer to x, y, z.
We define the orbital magnetization Morbit

α and the spin
magnetization M spin

α as follows

Morbit
α = − 1

V

∂Ω

∂Borbit
α

, (6)

M spin
α = − 1

V

∂Ω

∂Bspin
α

, (7)

where Ω is the thermodynamic potential and V is the
system volume. These quantities are written, up to linear
order in Borbit and Bspin, as

Morbit
α = χorbit

αβ Borbit
β + χSO

αβB
spin
β , (8)

M spin
α = χspin

αβ Bspin
β + χSO

αβB
orbit
β , (9)

where

χorbit
αβ =

∂Morbit
α

∂Borbit
β

, (10)

χspin
αβ =

∂M spin
α

∂Bspin
β

, (11)

χSO
αβ =

∂Morbit
α

∂Bspin
β

=
∂M spin

α

∂Borbit
β

. (12)

Spin-orbit coupling can give the spin-orbit crossed sus-
ceptibility χSO

αβ , in addition to the conventional spin and

orbital susceptibilities, χspin
αβ and χorbit

αβ [6, 7].
In the rest of the paper, we focus on the Zeeman cou-

pling, which can induce both of the orbital and spin mag-
netization as we see in Eqs. (8) and (9). The Zeeman
coupling is given by

HZeeman = −µB

2

(
gsσ 0

0 gpσ

)
·Bspin,

= −g+µBτ0σ ·Bspin − g−µBτzσ ·Bspin, (13)

where µB is the Bohr magneton and gs, gp correspond to
the g-factors of electrons in s and p orbitals, respectively.
We define g+ = (gs+gp)/4 and g− = (gs−gp)/4, so that
the Zeeman coupling contains two terms, the symmetric
term τ0σ and the antisymmetric term τzσ [7, 34, 35].

III. SPIN-ORBIT CROSSED SUSCEPTIBILITY

A. Formulation

The orbital magnetization is calculated by the formula
[36–40],

Morbit
α =

e

2~
∑
n

∫
BZ

d3k

(2π)3
fnkεαβγ

× Im〈∂βn,k| (εnk +Hk − 2µ) |∂γn,k〉, (14)

where fnk =
[
1 + e(εnk−µ)/kBT

]−1
is the Fermi distribu-

tion function, ∂α = ∂
∂kα

, and |n,k〉 is a eigenstate of Hk
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and its eigenenergy is εnk. The derivative of the eigen-
states |∂αn,k〉 is expanded as [39]

|∂αn,k〉 = cn|n,k〉+
∑
m 6=n

〈m,k|~vα|n,k〉
εmk − εnk

|m,k〉, (15)

where the velocity operator vα is given by vα = ∂αHk/~
and cn is a pure imaginary number. Using Eq. (15), the
formula, Eq. (14), is written as

Morbit
α =

e

2~
∑
n

∫
BZ

d3k

(2π)3
fnkεαβγ

× Im
∑
m 6=n

〈n,k|~vβ |m,k〉〈m,k|~vγ |n,k〉
(εmk − εnk)2

(εnk + εmk − 2µ).

(16)

We use the above formula in numerical calculation. Using

the 2D orbital magnetization M
orbit(2D)
z (kz) at fixed kz,

Morbit
z is expressed as

Morbit
z =

∫ π/c

−π/c

dkz
2π

Morbit(2D)
z (kz). (17)

The above expression is useful when we discuss numerical
results for χSO

zz . We can relate χSO
αβ to the Kubo formula

for the Hall conductivity,

σαβ =
e2

~
∑
n

∫
BZ

d3k

(2π)3
fnkεαβγ

× Im
∑
m6=n

〈n,k|~vβ |m,k〉〈m,k|~vγ |n,k〉
(εmk − εnk)2

. (18)

When the density of states at the Fermi level vanishes,
the intrinsic anomalous Hall conductivity is derived by
the Streda formula [3, 4, 41],

σαβ = −eεαβγ
∂Morbit

γ

∂µ
,

= −eεαβγ
∂χSO

γδ

∂µ
Bspin
δ . (19)

The topological Dirac semimetals possess time reversal
symmetry, so that the Hall conductivity is zero in the
absence of the magnetic field. On the other hand, in the
presence of the magnetic field, this formula suggests that
the anomalous Hall conductivity at the Dirac point be-
comes finite beside the ordinary Hall conductivity, if χSO

γδ
is not symmetric as a function of the Fermi energy εF.
In the following section, we only consider χSO

αα, because
χSO
αβ (α 6= β) becomes zero from the view point of the

crystalline symmetry in Na3Bi and Cd3As2.

B. Numerical results

Numerically differentiating Eq. (16) with respect to
Bspin
α , we obtain χSO

αα. In Sec. III and IV, we omit εk

in Eq. (2) for simplicity. This simplification does not
change essential results in the following calculations. In
Sec. V, we incorporate εk in order to compare the spin-
orbit crossed susceptibility and the spin susceptibility
quantitatively in Na3Bi and Cd3As2. Figure 1 shows
the spin-orbit crossed susceptibility χSO

zz at εF = 0 as
a function of the separation of the Dirac points kD. In
the present model, there are several parameters, such as
t, a,m0, and so on. We systematically change them and
find which parameter affect the value of χSO

zz . Figure 1
(a), (b), and (c) show that χSO

zz increases linearly with
kD and satisfy following relation,

χSO
zz = g+µB

2e

h

kD
π
. (20)

χSO
zz is proportional to the separation of the Dirac points
kD and the coupling constant g+µB.

Eq. (20) is given by numerical calculation. This result
is understood as follows. χSO

zz is obtained as

χSO
zz =

∫ π/c

−π/c

dkz
2π

χSO
zz

(2D)
(kz), (21)

where χSO
zz

(2D)
(kz) is the 2D spin-orbit crossed suscepti-

bility at fixed kz, which is defined in the same way as

Eq. (12). χSO
zz

(2D)
is quantized as 2g+µBe/h in the 2D-

QSHI and vanishes in the ordinary insulators [4, 7]. The
topological Dirac semimetal is regarded as layers of the
2D-QSHI stacked in the momentum space and the spin
Chern number on the kx-ky plane with fixed kz becomes
finite only between the Dirac points. As a result, we
obtain Eq. (20). The sign of χSO

zz depends on the spin
Chern number on the kx-ky plane with fixed kz between
the Dirac points. This is analogous to the anomalous Hall
conductivity in the Weyl semimetals [2, 23, 42]. In Fig. 1
(d), χSO

zz increases linearly at small kD but deviates from
Eq. (20) for finite γ. This is because the z-component
of spin is not conserved in the presence of Hxy, Eq. (5),
and the above argument for 2D-QSHI is not applicable
to the present system. In the following calculation, we
set m0 = −2m2, m1 = m2, m1/t = 1 and c/a = 1.

Figure 2 shows χSO
αα at εF = 0 as a function of γ. At

γ = 0, χSO
zz is finite as we mentioned above. On the other

hand, χSO
xx and χSO

yy are zero. This means that the orbital
magnetization is induced only along z-axis, which is the
rotational symmetry axis. As a function of γ, χSO

zz is an
even function and χSO

xx(yy) is an odd function.

Figure 3 (a) shows χSO
zz around the Dirac point as a

function of εF. When g−/g+ = 0, χSO
zz is an even function

around the Dirac point. At εF = 0, χSO
zz is independent

of g−/g+ as we see it in Fig. 1 (b). When g−/g+ 6= 0,
however, χSO

zz is asymmetric and the derivative of χSO
zz is

finite. This suggests that the Hall conductivity is finite
when g−/g+ 6= 0. Calculating Eq. (18) numerically, We
confirm that the Hall conductivity is finite at εF = 0.
Figure 3 (b) shows σxy as a function g−/g+. σxy linearly
increases with g−/g+. The topological Dirac semimetal
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FIG. 1: The spin-orbit crossed susceptibility χSO
zz at εF = 0

as a function of kD. We set the parameters m1 = m2,m1/t =
1, g−/g+ = 1, c/a = 1, and γ = 0, if the parameters are
not indicated in each figure. The panels (a), (b), and (c)
show that χSO

zz is proportional to kD, which means that χSO
zz

reflects the topological property of the electronic structure.
From these numerical results, we obtain analytical expression
for χSO

zz , Eq. (20), which is independent of model parameters
except for kD and g+. The panel (d) show that Hxy reduces
χSO
zz but it is negligible for sufficiently small kD.

is viewed as a time reversal pair of the Weyl semimetal
with up and down spin. Therefore, the Hall conductivity
completely cancel with each other. Even in the presence
of g+ Zeeman term (the symmetric term), the cancella-
tion is retained. In the presence of g− Zeeman term (the
antisymmetric term), on the other hand, the cancella-
tion is broken. This is because g− Zeeman term changes
the separation of the Dirac points and the direction of
the change is opposite for the up and down spin Weyl
semimetals. As a result, the Hall conductivity is finite in
g−/g+ 6= 0 and given by

σxy =
2

π

e2

ha

g−µBB
spin

t
. (22)

This expression is quantitatively consistent with the nu-
merical result in Fig. 3 (b).

γ [t]
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χ
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)k
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]
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FIG. 2: The spin-orbit crossed susceptibility as a function of
γ. The solid black curve is χSO

zz , the blue dashed curve is
χSO
xx , and the red dashed curve is χSO

yy . We set the parameters
m0 = −2m2,m1 = m2,m1/t = 1, g−/g+ = 1, and c/a = 1.
Breaking the conservation of σz, i.e., with the increase of γ,
χSO
zz is reduced, while χSO

xx and χSO
yy become finite.

IV. SPIN SUSCEPTIBILITY

In this section, we calculate the spin susceptibility us-
ing the Kubo formula,

χspin
αα (q, εF) =

1

V

∑
nmk

−fnk + fmk−q

εnk − εmk−q

× µ2
B |〈n,k|g+τ0σα + g−τzσα|m,k − q〉|2 ,

(23)

where V is the system volume, fnk is the Fermi distribu-
tion function, εnk is energy of n-th band and |n,k〉 is a
Bloch state of the unperturbed Hamiltonian. Taking the
long wavelength limit |q| → 0, we obtain

lim
|q|→0

χspin
αα (q, εF) = χintra

αα (εF) + χinter
αα (εF), (24)

where χintra
αα (εF) is an intraband contribution,

χintra
αα (εF) =

1

V

∑
nk

(
−∂fnk
∂εnk

)
× µ2

B |〈n,k|g+τ0σα + g−τzσα|n,k〉|2 , (25)

and χinter
αα (εF) is an interband contribution,

χinter
αα (εF) =

1

V

∑
n 6=m,k

−fnk + fmk

εnk − εmk

× µ2
B |〈n,k|g+τ0σα + g−τzσα|m,k〉|2 . (26)

At the zero temperature, only electronic states on the
Fermi surface contribute to χintra

αα . On the other hand, all
electronic states below the Fermi energy can contribute
to χinter

αα [29]. From the above expression, we see that
χinter
αα becomes finite, when the matrix elements of the
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FIG. 3: The spin-orbit crossed susceptibility χSO
zz as a function

of εF and the Hall conductivity as a function of g−/g+. We
set the parameters m0 = −2m2,m1 = m2,m1/t = 1, c/a = 1,
and γ = 0. At εF = 0, the value of χSO

zz is independent of
g− but its εF dependence changes at finite g−. Consequently,
the Hall conductivity becomes finite in accordance with Eq.
(19).

spin magnetization operator between the conduction and
valence bands is non-zero, i.e. the commutation relation
between the Hamiltonian and the spin magnetization op-
erator is non-zero. If the Hamiltonian and the spin mag-
netization operator commute,

〈n,k| [Hk, g+τ0σα + g−τzσα] |m,k〉 = 0, (27)

the interband matrix element satisfies

(εnk − εmk)〈n,k|g+τ0σα + g−τzσα|m,k〉 = 0. (28)

This equation means that there is no interband matrix
element and χinter

αα = 0, because εnk − εmk 6= 0.
In the following, we set εF = 0, where the density of

states vanishes. Therefore, there is no intraband contri-
bution and we only consider the interband contribution.
We numerically calculate Eq. (26). Figure 4 shows the
spin susceptibility χspin

αα as a function of (a) γ and (b)
g−/g+. In the following, we explain the qualitative be-
havior of χspin

αα using the commutation relation between
the Hamiltonian and the spin magnetization operator. In
Fig. (4) (a), χspin

zz vanishes at γ = 0, because the Hamil-
tonian, HTDS, and the spin magnetization operator of
z-component, g+µBτ0σz, commute,

[HTDS, g+µBτ0σz] = 0. (29)

For finite γ, on the other hand, χspin
zz increases with |γ|.

This is because the commutation relation between Hxy

and g+µBτ0σz is non-zero,

[Hxy, g+µBτ0σz] 6= 0, (30)

and χinter
zz gives finite contribution. χspin

xx and χspin
yy are

finite even in the absence of Hxy, i.e. γ = 0, because
HTDS and g+µBτ0σα (α = x, y) do not commute,

[HTDS, g+µBτ0σx] 6= 0,

[HTDS, g+µBτ0σy] 6= 0. (31)

At γ = 0, χspin
xx is equal to χspin

yy . For finite γ, however,
they deviate from each other. This is because HTDS pos-
sesses four-fold rotational symmetry along z-axis but Hxy

breaks the four-fold rotational symmetry. Figure (4) (b)
shows that χSO

zz becomes finite when g−/g+ 6= 0. The
antisymmetric term, g−µBτzσz, and HTDS do not com-
mute,

[HTDS, g−µBτzσz] 6= 0. (32)

Consequently, χinter
zz gives finite contribution, though the

z-component of spin is a good quantum number. The an-
tisymmetric term does not break the four-fold rotational
symmetry along z-axis, so that χspin

xx is equal to χspin
yy in

Fig. (4) (b).
The spin susceptibility χspin

αα is also anisotropic but
contrasts with the spin-orbit crossed susceptivity χSO

αα.
χspin
xx and χspin

yy are larger than χspin
zz , in contrast χSO

zz is

larger than χSO
xx and χSO

yy . Therefore, the angle depen-
dence measurement of magnetization will be useful to
separate the contribution from the each susceptibility.

V. DISCUSSION

In this section, we quantitatively compare the spin-
orbit crossed susceptibility χSO

zz and the spin susceptibil-
ity χspin

zz at the Dirac points as a function of g−/g+. In
the following calculation, we set the parameters to re-
produce the energy band structure around the Γ point
calculated by the first principle calculation for Cd2As3
and Na3Bi [10, 15]. The parameters are listed in the
table and we omit Hxy, i.e. γ = 0.

Figure 5 shows the two susceptibilities as a function of
g−/g+. We find that the two susceptibilities are approx-
imately written as

χspin
zz ∼

(
g−
g+

)2

, (33)

and

χSO
zz ∼ −

1

g+

(
χ0 +

g−
g+

)
, (34)

by numerical fitting. In the present parameters, χSO
zz is

negative and depends on g−/g+. The dependence on
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FIG. 4: The spin susceptibility χspin
αα at εF = 0 as a function

of (a) γ and (b) g−/g+. We set m0 = −2m2, m1 = m2,
m1/t = 1, and c/a = 1. At γ = 0 and g−/g+ = 0, χspin

zz = 0
while χspin

xx , χspin
yy > 0. These behaviors are explained by the

commutation relation between the Hamiltonian and the spin
magnetization operators as discussed in the main text.

g−/g+ originates from the existence of εk, which breaks
the particle-hole symmetry. The g-factors are experimen-
tally estimated as gs = 18.6 for Cd2As3 [43] and g− = 20
for Na3Bi [44]. Unfortunately, there is no experimental
data which determines both of gs, gp or g+, g−. From Fig.
5, we see that χSO

zz can dominate over χspin
zz if g−/g+ ' 0.

As far as we know, there is no experimental observation
of the magnetic susceptibility in these materials. We ex-
pect the experimental observation in near future and our
estimation of χSO

zz will be useful to appropriately analyze
experimental data.

Material parameters

Cd3As2 Na3Bi

C0 0.306[eV] -1.183[eV]

C1 0.033[eV] 0.188[eV]

C2 0.144[eV] -0.654[eV]

m0 0.376[eV] 1.754[eV]

m1 -0.058[eV] -0.228[eV]

m2 -0.169[eV] -0.806[eV]

t 0.070[eV] 0.485[eV]

a 12.64[Å] 5.07[Å]

c 25.43[Å] 9.66[Å]

χ
 [
(g

+
μ

B
/2

)2
/(

ta
3
)]

0.03

0.04

0.02

0.00

0.01

χ
 [
(g

+
μ

B
/2

)2
/(

ta
3
)]

0.03

0.05

0.02

0.00

0.01

g
-
/g

+

0.0 0.40.2-0.2-0.4

0.04

g+=5

g+=10

g+=15

g+=5

g+=10

g+=15

−χ
zz
SO

−χ
zz
SO

χ
zz
spin

χ
zz
spin

Na3Bi

Cd2As3

FIG. 5: The spin-orbit crossed susceptibility χSO
zz and the spin

susceptibility χspin
zz at the Dirac points as a function of g−/g+.

The dashed curve is χspin
zz and the solid lines are χSO

zz . The
upper (lower) panel shows Cd2As3 (Na3Bi). When g−/g+ are
sufficiently small, χSO

zz becomes comparable to χspin
zz .

VI. CONCLUSION

We theoretically study the spin-orbit crossed suscepti-
bility of topological Dirac semimetals. We find that the
spin-orbit crossed susceptibility along rotational symme-
try axis is proportional to the separation of the Dirac
points and is independent of the microscopic model pa-
rameters. This means that χSO

zz reflects topological prop-
erty of the electronic structure. The spin-orbit crossed
susceptibility is induced only along the rotational sym-
metry axis. We also calculate the spin susceptibility. The
spin susceptibility is anisotropic and vanishingly small
along the rotational symmetry axis, in contrast to the
spin-orbit crossed susceptibility. The two susceptibilities
are quantitatively compared for material parameters of
Cd2As3 and Na3Bi. At the Dirac point, the orbital sus-
ceptibility logarithmically diverges and gives dominant
contribution to the total susceptibility. Off the Dirac
point, on the other hand, the orbital susceptibility de-
creases [6, 24, 25] and the contribution from the spin
susceptibility and the spin-orbit crossed susceptibility is
important for appropriate estimation of the total suscep-
tibility.
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