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We study the effects of bond randomness in the spin-1/2 J1−J2 triangular Heisenberg model using
exact diagonalization and density matrix renormalization group. With increasing bond randomness,
we identify a randomness induced spin-liquid-like phase without any magnetic order, dimer order,
spin glass order, or valence-bond glass order. The finite-size scaling of gaps suggests the gapless
nature of both spin triplet and singlet excitations, which is further supported by the broad continuum
of dynamical spin structure factor. By studying the bipartite entanglement spectrum of the system
on cylinder geometry, we identify the features of the low-lying entanglement spectrum in the spin-
liquid-like phase, which may distinguish this randomness induced spin-liquid-like phase and the
intrinsic spin liquid phase in the clean J1 − J2 triangular Heisenberg model. We further discuss the
nature of this spin-liquid-like phase and the indication of our results for understanding spin-liquid-
like materials with triangular-lattice structure.

PACS numbers: 73.43.Nq, 75.10.Jm, 75.10.Kt

I. INTRODUCTION

Frustrated quantum magnets realize a surprisingly rich
place to explore the interplay between classical orders
and quantum fluctuations, which may lead to novel quan-
tum phases and unconventional quantum phase transi-
tions1. One of the exotic quantum states is quantum
spin liquid (QSL)2–5, which breaks no spin rotational
or lattice translational symmetry even at zero tempera-
ture and exhibits fractionalized quasiparticles6,7 with the
emergent long-range entanglement8. Nowadays, QSL is
actively sought in quantum antiferromagnets with frus-
trated and/or competing interactions3,4, which may en-
hance quantum fluctuations and suppress the ordering of
magnetic moments. In experiment, many spin-1/2 an-
tiferromagnetic materials on the frustrated lattices do
not show any magnetic order down to very low tempera-
ture; spin-liquid-like behaviors have also been observed in
the neutron scattering, NMR, and thermal conductance
measurements (see Refs. 3, 4, 5 and references therein).
Theoretical studies have indeed identified QSL states in
particular parameter regime for some microscopic models
(see review articles Refs. 3, 4, 5). However, it remains un-
clear if these theoretical observed quantum states explain
the widely reported spin-liquid-like behaviors in materi-
als.

In reality, materials inevitably have defects and/or
random disorder. For example, in the triangular or-
ganic salt materials such as κ-(ET)2Cu2(CN)3 and
EtMe3Sb[Pd(dmit)2]2

9–13, the randomness of the spin
degrees of freedom has been suggested as a consequence
of the random freezing of the electric-polarization degrees
of freedom at low temperature14. In the kagome mate-
rial herbertsmithite, the random substitution of magnetic
Cu2+ for nonmagnetic Zn2+ on the adjacent triangular
layer would lead to the random modification of the ex-
change couplings connecting the Cu2+ on the kagome

layer15. The randomness may enhance quantum fluctua-
tions and thus suppresses magnetic order. Very recently,
it has been proposed that the disorder even can generate
long-range entanglement and thus transform a classical
non-Kramers spin ice into a QSL16. The interplay among
frustration, quantum fluctuations, and randomness re-
mains a largely open question in the study of frustrated
quantum magnetism, leaving the origin of the spin-liquid-
like behaviors in materials an intriguing question.

The pioneer corner-stone of our understanding on
randomness in quantum system is the random sin-
glet phase in the one-dimensional (1d) Heisenberg spin
model, which represents the infinite-randomness fixed-
point (IRFP) in the strong-disorder renormalization
group (SDRG) and is universal for a broad class of spin
chains17–20. The schematic picture of the random sin-
glet state consists of pairs of spins which are coupled to-
gether into singlets, where the long-range singlet bonds
are much weaker than the short ones and the singlet
bonds cannot cross17,21. Later, extended 1d chains and
ladder systems with randomness have also been stud-
ied22–27, in which other random phases such as the quan-
tum Griffiths phase28 and the spin glass phase29 have
been discovered.

In two dimensions (2d), Imry and Ma gave an argu-
ment for weak randomness, which suggests that the or-
dered state is unstable against an arbitrarily small ran-
dom field that is directly coupled to the order parame-
ter30. In the strong-randomness case, the IRFP has been
found in quantum Ising model31,32, disordered contact
process33, or dissipative systems34. For the general 2d
Heisenberg models, frustration is an intriguing ingredi-
ent that may lead to novel quantum states. For exam-
ple, while the Néel antiferromagnetic order persists up
to the maximal randomness in the bipartite square and
honeycomb Heisenberg models without frustration35,36,
the numerical SDRG calculation shows a large spin for-
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mation in the frustrated Heisenberg models, suggest-
ing a spin glass fixed point37. The potential effects
of randomness in spin-liquid-like materials have stimu-
lated the exact diagonalization (ED) study on the frus-
trated triangular, kagome, and honeycomb Heisenberg
models14,36,38,39, in which the disordered phases display-
ing no magnetic or spin glass order have been found in
strong bond-randomness regime. The dynamical correla-
tion and thermodynamic properties of the random phases
could be consistent with the gapless spin liquid scenario
suggested from experimental observations14,36,38,39.

Recently, a new triangular spin-liquid-like material
YbMgGaO4 has been reported40–43. The possible mix-
ing of Mg2+ and Ga3+ ions in the material40,41,44

has stimulated further study on the randomness ef-
fects45–49. More recently, another triangular-lattice
compound YbZnGaO4, which is a sister compound
of YbMgGaO4, shows some spin-glass-like behaviors
which may due to the disorder and frustration effects50.
Since further-neighbor interaction in the material has
been identified43, the nearest-neighbor model with dis-
order14,36 may not capture the novel physics of such sys-
tems. Inspired by the experimental indications, in this
paper, considering the presence of further-neighbor cou-
plings in materials, we study the bond randomness in
the J1 − J2 triangular Heisenberg model, which would
be more relevant to the randomness effects in the re-
lated materials. In reality, spin-orbit coupling is strong
in YbMgGaO4 and YbZnGaO4, which effectively induces
anisotropic magnetic interactions. Nonetheless, theoret-
ical studies have found that the microscopic model with
only nearest-neighbor anisotropic interactions is always
magnetically ordered45,46. Competing interactions and
disorder seem to be the dominant ingredients for the
spin-liquid-like behavior43,51. Thus here we study a sim-
pler Heisenberg model with competing J2 interaction and
bond randomness, thus that we can use SU(2) symmetry
to deal with larger systems. By using the ED and den-
sity matrix renormalization group (DMRG) calculation,
we identify a randomness induced spin-liquid-like (SLL)
phase that does not show any magnetic order, dimer or-
der, spin glass order, or valence bond glass (VBG) order.
The dynamical spin structure factor shows a broad con-
tinuum extending to the zero frequency, supporting the
gapless excitations obtained from the finite-size gap scal-
ing. We also find the features of entanglement spectrum
in the SLL phase, which may distinguish the SLL phase
and the intrinsic spin liquid phase in the J1−J2 triangu-
lar Heisenberg model52–57. The nature of this SLL phase
appears to be consistent with the recently proposed 2d
random singlet phase48. Finally, we discuss the relevance
to the rare-earth triangular-lattice materials YbMgGaO4

and YbZnGaO4.

FIG. 1. Contour plot of |S(K)−S(M)| in the parameter space
J2−∆, where S(K) and S(M) are the spin structure factor for
the 1200 Néel order and the stripe magnetic order obtained
on the 24-site torus system. The definition of finite-size mo-
mentum points is shown in Appendix A. The solid points with
error bars denote the phase boundaries between magnetic or-
dered and disordered phases, where the error bars are from
the linear size-scaling of magnetic order parameters shown in
Fig. 2. The possible quantum phase transition between the
spin liquid phase and the randomness induced spin-liquid-like
(SLL) phase is discussed in section III C.

II. MODEL HAMILTONIAN AND METHODS

The Hamiltonian of the spin-1/2 J1 − J2 Heisenberg
model on the triangular lattice with bond randomness
reads

Ĥ =
∑
〈ij〉

J1(1+∆·αij)ŜiŜj+
∑
〈〈ij〉〉

J2(1+∆·βij)ŜiŜj , (1)

where αij and βij are bond random variables which are
uniformly distributed in the interval [−1, 1], and ∆ is
the parameter to control the random interval [Ji(1 −
∆), Ji(1 + ∆)] of exchange interactions on each bond,
i = 1, 2 for the nearest neighbor and the next-nearest
neighbor. We use ∆ ∈ [0, 1] to ensure the antiferro-
magnetic coupling. Here, we set J1 = 1 as the energy
constant.

We use ED and SU(2) DMRG58,59 to study this model.
The finite-size clusters we used are shown in Appendix A.
To measure the possible orders in the system, we de-
fine the high symmetry points in the first Brillouin zone
(BZ), including the Γ point with q = (0, 0), the K

point with q = (2π/3, 2π/
√

3), and the M point with

q = (π, π/
√

3). While the 1200 Néel order exhibits the
spin structure factor peak at the K point, the stripe or-
der has the peak at the M point. In the randomness
case, we use 2000 (for smaller system sizes) to 20 (for
the largest system size with the number of lattice sites
N = 48) in ED or DMRG torus calculation, and 15 in-
dependent samples for YC6-24 and YC8-24 cylinders in
DMRG calculation. We keep 2000 SU(2) states for torus
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and 1200 SU(2) states for cylinder geometry in these cal-
culations. The truncation error is less than 5× 10−5. In
the following, we use “〈〉” and “[ ]” to represent quantum
mechanical expectation value and stochastic averaging,
respectively.

III. NUMERICAL RESULTS

A. Melting the magnetic orders

In the absence of randomness, the spin-1/2 J1−J2 tri-
angular Heisenberg model exhibits an intermediate spin-
liquid phase for 0.07 . J2 . 0.15 according to the pre-
vious study52–57, which is sandwiched between the 1200

Néel phase and the stripe phase. First of all, we identify
the intermediate nonmagnetic phase from the vanishing
magnetic orders that are extrapolated to the thermody-
namic limit using the torus data up to 36 sites (see Ap-
pendix B). Our estimations qualitatively agree with the
previous results although the ED data slightly overesti-
mate the intermediate regime because of the finite-size
effects. Next, we focus on the system with bond ran-
domness.

In the magnetic order phases, bond randomness is not
directly coupled with the order parameter and it has been
found that only a finite bond randomness may kill the
magnetic order 14,35,36. In order to quantitatively char-
acterize how the ordering strength decreases with bond
randomness, we introduce two magnetic order param-
eters: (I) square sublattice magnetization for the 1200

Néel antiferromagnetic (NAF) phase14,39

m2
N =

1

3

3∑
α=1

 1

(N/6)(N/6 + 1)

〈(∑
i∈α

Ŝi

)2〉 , (2)

where α = 1, 2, 3 represent the three sublattices of the
1200 order (which is labeled by the three different col-
ors in Appendix A). For the classical 1200 Néel state,
the spins in the same sublattice order ferromagnetically
and the spins in the different sublattices are in the same
plane with 1200 angle structure. So actually we have
normalized m2

s to 1 in the classical case by using the ex-
pectation value (N/6)(N/6+1) of the total spin operator
in sublattice. In quantum case, the definition of Eq. (2)
describes the residual order after considering quantum
fluctuations. (II) square sublattice magnetization for the
stripe antiferromagnetic phase39

m2
str =

1

2

2∑
β=1

 1

(N/4)(N/4 + 1)

〈∑
i∈β

Ŝi

2〉 , (3)

where β = 1, 2 represent the two sublattices of the stripe
order. m2

str has also been normalized to 1 in the classical
stripe phase. According to the spin-wave theory60, the

magnetic orders follow the size scaling behavior

m2
N/str = m2

s/str(∞) +
c1√
N

+
c2
N

+ · · · . (4)

We use the leading behavior of this scaling function
1/
√
N to estimate the magnetic order strength in the

thermodynamic limit through finite-size scaling.
In Fig. 2, we show the linear extrapolation of the mag-

netic orders using torus geometry up to 36 sites. To con-
sider the two competing magnetic orders simultaneously,
we choose the cluster geometries that are compatible with
both the 1200 order and the stripe order. For this rea-
son, we only choose the 12-, 18-, 24-, and 30-site clusters
for the size scaling of m2

str as shown in Fig. 2(d-f). Both
orders are suppressed by increasing randomness. Up to
some critical values, the bond randomness kills the mag-
netic orders. The system undergoes a quantum phase
transition to a randomness-induced nonmagnetic phase.
Then we can estimate the phase boundaries between the
magnetic order phases and the nonmagnetic phase in the
J2 −∆ phase diagram of Fig. 1.

B. Randomness induced spin-liquid-like phase

In this subsection, we will focus on characterizing the
SLL phase. We first show that there is no long-range chi-
ral or dimer order. For detecting the possible orders, we
define the structure factor for the scalar chiral correlation
as

χ(q) =
1

N

∑
ij

e−iqrij [〈χ̂iχ̂j〉] ,

χ̂i = Ŝi ·
(
Ŝi+a1

× Ŝi+a2

)
,

(5)

and the structure factor for the dimer correlation as

D(q) =
1

3N

∑
ij

∑
pq

e−iqrip,jq
[〈

B̂ipB̂jq

〉]
,

B̂ip = ŜiŜi+p − 〈ŜiŜi+p〉,
(6)

where i+p means the nearest-neighbor site of i-site along
a1,a2,−a1 + a2 direction for p = 1, 2, 3 respectively. a1
and a2 are the primitive vectors on the triangular lattice.
rip,jq means the displacement between centers of two
bonds, see Appendix C. In Fig. 3, we show the finite-size
scaling of the peak value of the chiral and dimer structure
factors. Apparently, as the bond randomness increases,
these two structure factors become weaker, which do not
show any ordering tendency both in the clean limit and
the large randomness limit.

In magnetic systems, randomness may induce glass or-
ders at low temperature such as the spin glass29 and
valence bond glass61,62, which have short-range order
but do not show long-range order. For example, the
spin glass state has the vanished total magnetization
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FIG. 2. (Color online) Linear extrapolation of the square magnetization of (a-c) the 1200 Néel order and (d-f) the stripe

order versus 1/
√
N (N is the total site number). The insets show the extrapolated order parameters as a functions of bond

randomness strength ∆. The vanishing orders with bond randomness can be used to estimate the phase boundaries between
the magnetic order phases and the nonmagnetic phase. In the stripe phase, the m2

str of the 36-site torus shows some deviation
from other system sizes due to the finite-size geometry effects (see Appendix A).
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zero in the thermodynamic limit. X point is the momentum
point where the dimer structure factor shows the maximum
value, see Appendix C.

M = 1
N

∑
i

[
〈Ŝi〉

]
= 0 but the nonzero spin glass or-

der q̄ = 1
N

∑
i

[
〈Ŝi〉2

]
6= 0. For detecting the possible

glass order, we define the structure factor for the square
spin correlation

GS(q) =
1

N

∑
ij

e−iqrij
[
〈ŜiŜj〉2

]
, (7)

which can be used to detect the spin glass order. In our
calculation, we find the peak of GS(q) at the Γ point with
q = (0, 0), which is the spin-glass susceptibility and can
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be used as spin glass order parameter63,64. If the peak
value increases with system size N equal to or faster than
a linear behavior, the order could be finite in the thermo-
dynamic limit. In our calculation, we find that GS(Γ)/N

appropriately scales to zero with both 1/
√
N and 1/N , as

we can see in Fig. 4(a), indicating the vanished spin glass
order. In the 2d Ising spin glass phase, the spin glass or-
der scales with 〈q̄2(L)〉 − 〈q̄2(∞)〉 ∝ L−1/265–67, which is
quite different from this triangular model, where the or-
der seems more natural to scale with 1/N . Although the
spin glass order grows slightly with increased random-
ness on finite-size system, the order parameter actually
drops faster with increasing system size. Clearly, for both
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J2 = 0.1,∆ = 1.0 and J2 = 0.3,∆ = 1.0 cases, the lin-
early extrapolated values are zero within numerical error.
The absence of the spin glass order in the SLL phase has
also been found in other frustrated Heisenberg models
with bond randomness14,36,38.

Similar to the spin glass order, we could define the
structure factor for the VBG correlation as

GD(q) =
1

3N

∑
ij

∑
pq

e−iqrip,jq
[
〈B̂ipB̂jq〉2

]
, (8)

where B̂ip has been defined in Eq. (6). The VBG struc-
ture factor also shows the peak at the Γ point. Interest-
ingly, the VBG peak at the Γ point seems to decrease
with growing randomness as shown in Fig. 4(b), which
indicates the absent VBG order in the SLL phase.

For further characterization of the SLL phase, we
study the energy spectrum and the excitation gaps. In
Fig. 5(a), we show a random averaged energy spectrum
on the 24-site torus. The eigenvalues appear to be con-
tinuously distributed in the energy landscape. In both
the ED torus and the DMRG cylinder calculations, the
random averaged ground state is the nondegenerate spin
singlet state (the ground state has probability to be in
the S = 1 sector in some random distributions) and the
averaged first excited state is the spin triplet state. In
Fig. 5(b), we show that in the SLL phase both the singlet
gap ∆SS = E1(S = 0) − E0(S = 0) and the triplet gap
∆ST = E0(S = 1)−E0(S = 0) drop fast and seem to go
to vanishing, suggesting the gapless excitations.

Next, we study the dynamical spin correlation using
ED simulation. We define the dynamical spin structure
factor as

Szz(q, ω) =
∑
n

[
|〈ψn|Ŝzq|ψ0〉|2δ(ω − (En − E0))

]
, (9)

where Ŝzq = (1/N)
∑
i e
−iqri Ŝzi is the Fourier transform

of the z-component of spin operator, |ψn〉 is the eigen-
state of the Hamiltonian with energy En, and |ψ0〉 is the
ground state with energy E0. The dynamical spin struc-
ture factor describes the correlations in both space and

time, which can be studied by inelastic neutron scattering
(INS) or X-ray Raman scattering. In the Lanczos itera-
tion method68,69, the dynamical structure factor can be
computed by continued fraction expansion70 using Lanc-
zos coefficients and rewritten as

Szz(q, ω)

= − 1

π
lim
η→0

Im

[
〈ψ0|

(
Ŝzq

)† 1

ω + E0 − Ĥ + iη
Ŝzq |ψ0〉

]
,

= − 1

π
lim
η→0

Im


〈ψ0|

(
Ŝzq

)†
Ŝzq |ψ0〉

z − a0 −
b21

z − a1 −
b22

z − a2 · · ·


,

(10)

where z = ω +E0 + iη, ai and bi+1 are the diagonal and
sub-diagonal elements of tridiagonal Hamiltonian matrix
obtained by Lanczos method with initial vector Ŝzq|ψ0〉.
The Lorentz broaden factor we use is η = 0.02.

In Fig. 6(a1)-(d1), we show the dynamical structure
factor Szz(q, ω) at different J2 along the high-symmetry
path Γ → M → K → Γ in the large randomness case
with ∆ = 1.0. For small J2, we can see a broad maxima
at the K point with a low frequency, showing the short-
range spin correlation dominated by the 1200 Néel type.
With increasing J2, the spectrum weight gradually trans-
fers to the M point, which indicates the dominant stripe-
like short-range correlation for J2 & 0.2. This behavior
can be seen more clear from the static spin structure fac-
tor S(q) = (1/N)

∑
ij e

qrij [〈ŜiŜj〉] shown in Fig. 6(a2)-

(d2), where the broad peak at the K point transfers its
weight to the M point as J2 increases. Even with strong
bond randomness, frustration seems to still affect short-
range spin correlation. In the dynamical structure fac-
tor, we also find that the broad finite spectrum extends
to zero frequency, supporting the gapless excitations sug-
gested in Fig. 5(b).

For further insight into the K point and M point at
the edge of the BZ, we show the dramatic changing of the
dynamic spectrum as a function of randomness strength
∆ in Fig. 7(a)-(b), starting from the J1 − J2 spin liquid
regime. In small randomness, we see a sharp peak at the
K point with the frequency ω ∼ 0.5, which seems to sig-
nature coherently propagating magnon excitation. Note
that this sharp peak might be owing to possible strong
finite-size effects55,57,71 in the intermediate J1 − J2 spin
liquid phase. Meanwhile, the spectrum at the M point
exhibits several weaker peaks. As the randomness in-
creases, the peak at the K point transfers its weight to
lower and higher frequencies, keeping a broad maxima
near ω ∼ 0.5. On the other hand, the peak at the M
point also becomes broad but shifts to the lower fre-
quency. When the randomness is sufficiently large, a
broad continuum spectrum with exponentially decaying
high-frequency tail not only appears at the K and M
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the middle 8× 8 sites in the cylinder to do the Fourier transform. As the cylinder geometry does not respect the C6 rotation
symmetry, the three M points are not equivalent.

points but also stretches to other wave vectors near the
edge of the Wagner-Seitz Brillouin zone, which is quite
different from the magnon-like excitations.

In order to consider the finite-size effects, we show the
local or momentum integrated dynamical spin-spin cor-
relation with different system sizes in Fig. 7 (c), which is
defined as

Szzloc(ω) = Szzii (ω) =

∫
dqSzz(q, ω) =

− 1

π
lim
η→0

Im

[
〈ψ0| Ŝzi

1

ω + E0 − Ĥ + iη
Ŝzi |ψ0〉

]
,

(11)

where i is the real-space lattice site. Although random-
ness breaks translation symmetry, it can be approxi-
mately restored if the number of random samples is large
enough and thus we can take i as any lattice site. We
have also calculated the local dynamical dimer correla-
tion in Fig. 7 (d), which is defined as

Dii(ω) =

− 1

π
lim
η→0

Im

[
〈ψ0| B̂†i

1

ω + E0 − Ĥ + iη
B̂i |ψ0〉

]
,

(12)

where B̂i is defined in Eq. (6). The two local dynami-
cal correlations share the similar behaviors including the

broad spectrum and the finite density in the zero fre-
quency. Mostly significantly, the finite-size effects in the
SLL phase is not manifest even though we use small clus-
ters due to the limit of system size.

In the recent INS measurements on the triangular
spin-liquid material YbMgGaO4

42,43,72, the broad con-
tinuum spin excitations have been reported. While the
high-energy spin excitations between 0.25 and 1.5 meV
have been conjectured to be related with either a gap-
less spinon Fermi surface42 or the nearest-neighbor res-
onating valence bond correlations72, the low-energy ex-
citations down to 0.02meV72 seem to include crucial in-
formation on the origin of the spin-liquid-like behaviors
in the material, which is currently debated between an
intrinsic spin liquid and a disorder-induced mimicry of
a spin liquid42,43,45,46,48. By considering the scenario
of the disorder-induced spin-liquid-like phase, we com-
pare our numerical results in the SLL phase with the
INS data of YbMgGaO4. The SLL phase shows some
similar behaviors of dynamical spin correlations with the
experiment of YbMgGaO4, including the broadly spread
spectral weights in the Brillouin zone and the suppressed
spectral intensities near the Γ point43. In the INS in-
tensity data, the maxima at the K point above 0.5 meV
shifts to the M point below 0.1 meV43,72. The broad
low-energy excitation maxima at the M point could be
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FIG. 7. (Color online) (a) and (b) are the dynamical structure
factor at the K and the M points for J2 = 0.1 on the 24-site
torus system with different bond randomness strength. (c)
and (d) are the momentum integrated dynamical spin and
dimer correlations for J2 = 0.1,∆ = 1.0 in the SLL phase on
different system sizes.

consistent with our SLL phase with a small J2 coupling
as shown in Fig. 6(d1).

Therefore, we identify a gapless SLL phase in the pres-
ence of strong bond randomness. In this SLL phase, we
have not observed any conventional order or glass-type
order. For further understanding on this phase, we cal-
culate the sample distribution of spin correlation 〈ŜiŜj〉
as shown in Fig. 8 (a). Interestingly, at larger distance
side r ≥ 6, the width of correlation distribution satu-
rates to some finite value, which indicates the emergent
long-range correlations between two spins with near equal
probability of both positive and negative signs for differ-
ent randomness configurations. To look into detail of
nearest-neighbor correlation, we show the histogram of
its distribution in Fig. 8 (b). Compared with 1D random
singlet phase in bond randomness Heisenberg chain (see
Appendix D), this distribution in the SSL phase shows
a low probability near − 3

4J . Different value of the next-
nearest-neighbor J2 would not change this behavior. The
geometry frustration and the high coordination number
z = 6 in the triangular lattice may play an important
role here.

C. J1 − J2 spin liquid and the SLL phase

In this section, we study the difference between the
J1 − J2 spin liquid and the SLL phase. In the absence
of randomness, the nature of the J1 − J2 spin liquid is

0 2 4 6 8 10
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FIG. 8. (Color online) (a) Spin-spin correlations along the
x direction on the YC6-24 cylinder. The reference site m
is taken in the middle of the cylinder. r is the distance of
the two sites along the x direction. We show the results of
720 independent random samples in the figure. The dashed
lines show the lower and upper bound of spin-spin correlation.
(b) The histogram of nearest-neighbor spin-spin correlation
obtained from 720 independent random samples. We take 0.1
as the bar unit of the x axis. The y axis denotes the count
number that the random sample gives the spin correlation
value in the range of the given unit bar. Here, the next-
nearest-neighbor interaction and bond randomness strength
are chosen as J2 = 0.125,∆ = 1.0.

still debated between a gapless Dirac spin liquid and a
gapped spin liquid52–57,71. We calculate the triplet gap
on the torus clusters up to 48 sites (see Appendix B),
nonetheless the small-size data may not draw a conclu-
sive evidence to show whether the gap is finite or not. If
the gap is finite, we may expect a quantum phase tran-
sition from the gapped QSL to the gapless SLL phase,
as suggested in Fig. 9. However, if the ED calculation
suffers from strong finite-size effects and the spin liquid
turns out to be gapless52,56, our present size scaling may
not correctly show the phase transition.
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FIG. 9. (Color online) Linear size scaling of the spin triplet
gap with inverse system size 1/N at (a) J2 = 0.1 and
J2 = 0.15. We see the blend down behavior with growing
randomness on finite-size system.

Since the QSL and the SLL state may have different
entanglement structure, we calculate the entanglement
spectrum on the cylinder geometry with two different
open edges in the x direction. We denote the even bound-
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FIG. 10. (Color online) The YC8 cylinder with the even (a)
and the odd (b) boundary conditions in the x direction. In
the odd boundary condition (b), a spin-1/2 site is removed in
each open edge.
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FIG. 11. (Color online) Entanglement spectra in the (a1-c1)
even and (a2-c2) odd boundary conditions obtained on the
YC8-24 cylinder using DMRG. λi are the eigenvalues of the
reduced density matrix. The error bars are estimated from
15 independent randomness samples.

ary as the usual boundary conditions shown in Fig. 10(a)
and the odd boundary by removing a spin-1/2 site on
each open edge of the cylinder, as shown in Fig. 10(b).
In Fig. 11, we show the entanglement spectra obtained
on the YC8-24 cylinder. First of all, we analyze the spec-
trum in the SLL phase. In the even boundary shown in
Figs. 11(a1,b1,c1), the spectrum always show a two-fold
near degeneracy separated by a finite gap from the higher
levels. The two-fold eigenvalues are identified as coming
from the S = 0 and the S = 1 sectors (S is the good
quantum number of total spin for the subsystem). In the
odd boundary shown in Figs. 11(a2,b2,c2), one level with
S = 1/2 and two levels with S = 1/2, 3/2 are found in

the low-lying spectrum. These features in both bound-
ary conditions seem to be independent of J2 for systems
with large strength of the randomness, which might be
used to characterize the SLL phase.

Next, we investigate the change of entanglement spec-
trum with randomness, starting from the J1−J2 spin liq-
uid. Since the characterization of the spin liquid phase
in the even boundary conditions is likely to have large
finite-size effects55,71, here we consider the spectrum in
the odd boundary conditions as shown in Fig. 11(b2). In
the absence of randomness, the entanglement spectrum
has a double degeneracy for all the eigenvalues54,55. With
increasing randomness, the two lowest eigenvalues split.
For large randomness, we can see one level with S = 1/2
and two levels with S = 1/2, 3/2, which are separated
from the higher spectrum. This feature for the SLL phase
appears at ∆ ∼ 0.5. We have also checked the entangle-
ment spectrum of the YC6-24 cylinder and got the similar
result as the YC8-24. In the kagome Heisenberg model, a
possible phase transition induced by randomness between
the clean kagome spin liquid and the SLL phase has been
suggested at ∆ ∼ 0.439, where the randomness sampling
starts to have probability for the triplet ground state. In
the ED calculation of the triangular model with J2 = 0.1,
we find probability for triplet ground state at J2 & 0.6,
which is close to 0.5. The consistency between these dif-
ferent pictures suggests that the entanglement spectrum
may be used as a characterization to distinguish the spin
liquid and the SLL phase.

IV. SUMMARY AND DISCUSSION

By using the exact diagonalization (ED) and density
matrix renormalization group (DMRG) techniques, we
have studied the spin-1/2 J1 − J2 triangular Heisenberg
model with bond randomness in both J1 and J2 cou-
plings. In the absence of the randomness, the model has
two magnetic order phases and a spin liquid phase be-
tween them52–57. This spin liquid phase may even extend
to the anisotropic model that could be relevant to mate-
rials73. By turning on the bond randomness, we find a
randomness-induced spin-liquid-like (SLL) phase above a
finite randomness strength ∆ for a given J2, as shown in
the phase diagram Fig. 1. This SLL phase does not show
any spin, dimer, spin glass, or valence bond glass order
in our finite-size scaling. The spin triplet and singlet
gaps also seem to be vanishing after the finite-size scal-
ing. These static properties suggest a gapless spin-liquid-
like phase induced by bond randomness, which is sup-
ported by the dynamical spin structure factor Szz(q, ω).
In the SLL phase, Szz(q, ω) shows a broad continuum in
both momentum and frequency space. With growing J2,
the broad maxima at the K point transfers its weight to
the M point, showing that frustration affects short-range
spin correlations even in presence of strong randomness.
We compare the dynamical spin correlations of the SLL
phase with the inelastic neutron scattering (INS) data of



9

the spin-liquid-like triangular material YbMgGaO4. The
dynamical spectrum of the SLL phase with a small J2
coupling could be consistent with the INS data of the
low-energy excitations of YbMgGaO4, which shows the
dominant broad maxima at the M point43,72.

For studying randomness effects in the disordered
J1 − J2 spin liquid, we examine the bipartite entangle-
ment spectrum on cylinder geometry. We find the low-
lying spectrum features in the SLL phase, which seems
independent of J2 and may characterize the random
phase. This feature of entanglement spectrum appears
at ∆ ' 0.5, which may suggest a phase transition from
the spin liquid to the SLL phase and deserves more fur-
ther studies. Before further discussion, we would like to
remark that although most of our calculations are based
on the ED method, we have pushed the system size as
large as we can. Since the limit of system size, one should
not interpret all the results as the final answer; however,
we believe that our main results are convincing, includ-
ing the gapless nonmagnetic behavior of the SLL phase,
the absent glass-type orders, and the characteristic fea-
tures of dynamical spin structure factor. In the absence
of J2 coupling, the bond randomness has been studied
in previous ED calculation, which also proposed a spin-
liquid-like phase with growing randomness14. Based on
our phase diagram Fig. 1, it seems that the disordered
phase extends to a large region with finite J2. No other
disorder phase such as spin glass has been found.

Furthermore, we would like to discuss the nature of
the SLL phase. In 2d systems, randomness may induce
different quantum phases, with some examples such as a
spin glass29, VBG61,62, and quantum Griffiths phase28,74.
These phases have been found in the diluted and random-
graph-like systems, which are quite different from our
model with bond coupling randomness and a perfect lat-
tice geometry. For the SLL phase in this J1 − J2 tri-
angular model, our results suggest that spin glass and
VBG phases are unlikely. The numerical SDRG analysis
for frustrated Heisenberg models suggested a spin glass
fixed point37, which however seems not consistent with
our result and the recent numerical studies on other frus-
trated models14,36,38,39. In a recent theoretical paper by
I. Kimchi et. al., the authors have studied the effects
of bond randomness on 2d valence bond solid and spin
liquid states48. They found that the bond randomness
inevitably leads to the nucleation of topological defects
with spin-1/2 when destructing the valence bond order,
which would yield gapless spin excitations and the short-
ranged VBG order would be unstable. The SLL phase
found in our numerical calculation, which shows gapless
spin excitations and vanished VBG order, appears to be
in agreement with the proposed state in Ref. 48. The
next check of this SLL phase could be the thermody-
namic properties such as specific heat and susceptibility,
which we leave for future study.

Finally, we would like to make some remarks about
the application of our results to experiments. For
YbMgGaO4, bond randomness may not be weak44, and

second-neighbor interaction may play an important role
for the observations of experiments43. Theoretical calcu-
lations found that the spin anisotropic interactions may
not drive a spin-liquid-like behavior but support mag-
netic ordering45,46. By considering a minimum model
to study the effects of competing interaction and disor-
der, we find that the dynamical structure factor of the
spin-liquid-like phase with a small J2 agrees with the
INS data of YbMgGaO4. The gapless excitations and
the absence of the spin glass order are also consistent
with experimental observations. All these results indi-
cate a consistent description of the spin-liquid-like phase
on the ground state of YbMgGaO4 from our minimum
model. In this J1−J2 model, we do not find a spin glass
order in the presence of bond randomness. For under-
standing the spin-glass-like freezing in materials such as
YbZnGaO4

50, other spin anisotropic couplings may play
important roles, which deserves further study.
Note added. Recently, we became aware of an inter-

esting work75, which studied a spin-1/2 J-Q model on
the square lattice with bond randomness using quantum
Monte Carlo. The authors also found a disorder-induced
spin-liquid-like phase, which was suggested as a random
singlet phase.
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Appendix A: Finite-size clusters

In this paper, we use both ED and DMRG to do the
tori calculations. These tori are made of two dimen-
sion clusters (which are shown in Fig. 12) under periodic
boundary conditions. In order to get unbiased extrapo-
lations, the geometries of tori are important. Since 1200

Neel order and stripe order are the two competing mag-
netic phases, they need to be considered on an equal foot-
ing. Therefore, almost all of geometries (except for the
48-site one) we chose are commensurate to the 1200 an-
tiferromagnetic order, i.e. they have two K momentum
points in the Brillouin zone (BZ). And all the clusters
with even sites are also commensurate to the collinear or
stripe order. We also note that the 36-site and 48-site
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FIG. 12. Most of finite-size clusters used in the numerical
calculations. The red, green and olive solid points represent
three sublattices of 1200 AF order or

√
3×
√

3 magnetic order.
a1 = (a, 0) and a2 = (a/2,

√
3a/2) are primitive vectors. Here

we set the lattice constant or nearest-neighbor bond length
a = 1 as unit of length. The dashed lines which connect the
bond centers of the triangular lattice in the 24-site cluster
form a Kagome lattice. The bottom three figures show the
finite-size points in momentum space. In addition, 18- and
48- site rhombic clusters can be easily obtained by expanding
6×3 and 8×6 primitive cells. The 18-site rhombic cluster has
used in the calculation of singlet and triplet gaps in Fig. 14
and Fig. 15.

clusters have both three M points in the BZ, while other
clusters with even sites only have one M point in the BZ.
As a consequence of that, the square sublattice magne-
tization for stripe phase on 36-site torus is overestimate
than other system sizes (like 18, 24, 30), as can be seen in
Fig. 2 of main text. One should also note that the 24-site
cluster we use here is different from those in Ref.39.

For the tori smaller or equal to 30 sites, we use exact
diagonalization to do the calculations. While for 36-site
and 48-site clusters, we use SU(2) DMRG by keeping as
many as 8000 U(1)-equivalent states to do the calcula-
tions. The truncation errors are less than 5× 10−5 in all
calculations.
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FIG. 14. Linear extrapolation of singlet gaps with 1/
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various J2. The solid lines are least-square fitting lines. The
singlet gaps all seem to be zero in the thermodynamic limit.

Appendix B: J1 − J2 Triangular Heisenberg model

We have used finite-size tori to study the non-
randomness J1 − J2 Heisenberg model on triangular lat-
tice. Using linear extrapolation of magnetic order pa-
rameters, we got the nonmagnetic region which is about
0.05(1) < J2 < 0.16(2). This phase region is similar to
the previous DMRG results54,55 and is larger than the
VMC results52.

Both the 1200 AF phase and Stripe AF phase sponta-
neously break the spin SU(2) continuous symmetry in the
thermodynamic limit. According to Nambu-Goldstone
theorem, the system in these magnetic phase regions has
gapless excitations. In finite-size systems, a characteris-
tic and systematic structure of the continuous symmetry
breaking is the Anderson tower of states (TOS) in the en-
ergy spectrum. The TOS energy levels scales with 1/N
to the ground state, while the low energy magnon exci-
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FIG. 15. Triplet gaps scale with 1/N at various J2. The
solid lines in (a) and (c) are least-square fitting lines using
even-size tori. The dashed line in (d) is the cubic-polynomial
fitting lines. At J2 = 0.1, we use two groups of data to do the
fitting and ignore the small 12-site torus. Two 18-site tori are
used here, one is illustrated in Fig. 12; the other is a rhombic
cluster expanded by 6×3 primitive cells. The 18-site rhombic
cluster has smaller triplet gaps than the nonrhombic one.

tations scale with 1/
√
N (or 1/L, L is the linear system

size). Based on the knowledge, we scale the singlet gap

with 1/
√
N and triplet gap with 1/N . N is the number

of lattice sites.
In the SU(2) symmetry breaking phases, the singlet

and triplet gaps should go to zero in the thermodynamic
limit in the magnetic regions. From our finite-size cal-
culations, though some data has large variance, we still
can see the gapless tendency in Fig. 14 (a-b) and Fig. 15
(a) and (d). Unfortunately, the system size is still not
large enough to unbiasly extrapolate the triplet gap to
zero in the finite-size scaling. For the nonmagnetic phase
[Fig. 14 (c-d) and Fig. 15 (b-c)], it is even harder to draw
a conclusion whether it is gapless or not using the finite-
size clusters and the linear extrapolation.

Appendix C: Dimer correlation

In this sector, we show some dimer-dimer correlation
function in momentum space. In order to see the possi-
ble off-diagonal valence bond solid pattern, we take every
bond as a new lattice site which is sitting in the middle of
each bond. These new sites form a kagome lattice (1/4-
depleted triangular lattice, dashed lines in Fig. 12) or
with 3N lattice sites, N is the number of sites in the orig-
inal triangular lattice. Then we take the Fourier trans-
form from real space to momentum space using Eq. (6).
Here, we show the contour plot of dimer correlation in
momentum space using 24-site cluster, which is shown in
Fig. 16. We take the maximum D(X) to do the structure
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FIG. 16. Contour plot of dimer correlation in momentum
space at J1 = 0.125,∆ = 0.0 and J1 = 0.125,∆ = 1.0.

factor scaling. X is the momentum site where D(q) takes
its maximum. And it is the same or close to the middle
point in between K and M points [see Fig. 16 (a)] depend-
ing on the geometry of the finite-size clusters. There is
no any pattern of long-range VBS order in our numeri-
cal study (see Fig. 3 in the main text). In Fig. 16 (a),
the solid hexagon is the Brillouin zone edge of original
triangular lattice with N sites, while the dashed hexagon
is the “Brillouin zone” edge of new depleted triangular
lattice with 3N sites.

Appendix D: Histogram of spin correlations under
different bond randomness strength
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FIG. 17. Histograms of nearest-neighbor spin correlation with
different bond randomness strength ∆. The finite-size system
we take is 24-site torus with 400 independent disorder config-
urations. And the next-nearest-neighbor exchange interaction
J2 is set to be 0.125J1. The percentages shown in the boxes
mean the proportions of triplet ground state under 400 disor-
der configurations.

Here, we want to show how the distribution of nearest-
neighbor spin correlation changes with the bond ran-
domness strength. As the bond randomness strength in-
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quantum Monte Carlo simulations26. (b) The histogram of
nearest-neighbor spin-spin correlation obtained from 600 in-
dependent random samples. Two nearest-neighbor spins have
a large probability to form a singlet with the correlations
trend to be − 3

4
J .

creases, the distribution of n.n. spin correlation becomes
broaden and extends to − 3

4J and 1
4J . Also, the distribu-

tion changes from a gaussian-like shape to a asymmetric
one. However, it is a rare event to be a (approximated)
singlet between two nearest-neighbor sites. It is an strik-
ing difference between 1D random singlet phase and the
SLL phase. In 1D RS phase, the n.n. spin correlation
has large probability to be − 3

4J in Fig. 18.

∗ shoushu.gong@buaa.edu.cn
† donna.sheng1@csun.edu
1 Claudine Lacroix, Philippe Mendels, and Frederic Mila,

“Introduction to frustrated magnetism: Materials, experi-
ments, theory,” Springer (2013).

2 Leon Balents, “Spin liquids in frustrated magnets,” Nature
464, 199–208 (2010).

3 Lucile Savary and Leon Balents, “Quantum spin liquids: a
review,” Reports on Progress in Physics 80, 016502 (2016).

4 M. R. Norman, “Colloquium,” Rev. Mod. Phys. 88, 041002
(2016).

5 Yi Zhou, Kazushi Kanoda, and Tai-Kai Ng, “Quantum
spin liquid states,” Rev. Mod. Phys. 89, 025003 (2017).

6 X. G. Wen, “Mean-field theory of spin-liquid states with
finite energy gap and topological orders,” Phys. Rev. B 44,
2664–2672 (1991).

7 N. Read and Subir Sachdev, “Large-n expansion for frus-
trated quantum antiferromagnets,” Phys. Rev. Lett. 66,
1773–1776 (1991).

8 Xie Chen, Zheng-Cheng Gu, and Xiao-Gang Wen, “Lo-
cal unitary transformation, long-range quantum entangle-
ment, wave function renormalization, and topological or-
der,” Phys. Rev. B 82, 155138 (2010).

9 Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and
G. Saito, “Spin liquid state in an organic mott insulator
with a triangular lattice,” Phys. Rev. Lett. 91, 107001
(2003).

10 Y. Kurosaki, Y. Shimizu, K. Miyagawa, K. Kanoda,
and G. Saito, “Mott transition from a spin liquid to
a fermi liquid in the spin-frustrated organic conductor
κ−(ET)2cu2(CN)3,” Phys. Rev. Lett. 95, 177001 (2005).

11 Satoshi Yamashita, Yasuhiro Nakazawa, Masaharu Oguni,
Yugo Oshima, Hiroyuki Nojiri, Yasuhiro Shimizu, Kazuya
Miyagawa, and Kazushi Kanoda, “Thermodynamic prop-
erties of a spin-1/2 spin-liquid state in a -type organic salt,”
Nature Physics 4, 459 (2008).

12 Minoru Yamashita, Norihito Nakata, Yuichi Kasahara,
Takahiko Sasaki, Naoki Yoneyama, Norio Kobayashi,
Satoshi Fujimoto, Takasada Shibauchi, and Yuji Mat-

suda, “Thermal-transport measurements in a quantum
spin-liquid state of the frustrated triangular magnet -
(bedt-ttf)2cu2(cn)3,” Nature Physics 5, 44 (2008).

13 Minoru Yamashita, Norihito Nakata, Yoshinori Senshu,
Masaki Nagata, Hiroshi M. Yamamoto, Reizo Kato,
Takasada Shibauchi, and Yuji Matsuda, “Highly mobile
gapless excitations in a two-dimensional candidate quan-
tum spin liquid,” Science 328, 1246–1248 (2010).

14 Ken Watanabe, Hikaru Kawamura, Hiroki Nakano, and
Toru Sakai, “Quantum spin-liquid behavior in the spin-1/2
random heisenberg antiferromagnet on the triangular lat-
tice,” Journal of the Physical Society of Japan 83, 034714
(2014).

15 Danna E. Freedman, Tianheng H. Han, Andrea Prodi, Pe-
ter Mller, Qing-Zhen Huang, Yu-Sheng Chen, Samuel M.
Webb, Young S. Lee, Tyrel M. McQueen, and Daniel G.
Nocera, “Site specific x-ray anomalous dispersion of the
geometrically frustrated kagom magnet, herbertsmithite,
zncu3(oh)6cl2,” Journal of the American Chemical Soci-
ety 132, 16185 (2010).

16 Lucile Savary and Leon Balents, “Disorder-induced quan-
tum spin liquid in spin ice pyrochlores,” Phys. Rev. Lett.
118, 087203 (2017).

17 Shang-keng Ma, Chandan Dasgupta, and Chin-kun Hu,
“Random antiferromagnetic chain,” Phys. Rev. Lett. 43,
1434–1437 (1979).

18 Chandan Dasgupta and Shang-keng Ma, “Low-
temperature properties of the random heisenberg
antiferromagnetic chain,” Phys. Rev. B 22, 1305–1319
(1980).

19 Daniel S. Fisher, “Random transverse field ising spin
chains,” Phys. Rev. Lett. 69, 534–537 (1992).

20 Daniel S. Fisher, “Random antiferromagnetic quantum
spin chains,” Phys. Rev. B 50, 3799–3821 (1994).

21 R. N. Bhatt and P. A. Lee, “Scaling studies of highly dis-
ordered spin-1/2 antiferromagnetic systems,” Phys. Rev.
Lett. 48, 344–347 (1982).
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“Infinite-randomness quantum critical points induced by
dissipation,” Phys. Rev. B 79, 024401 (2009).

35 Nicolas Laflorencie, Stefan Wessel, Andreas Läuchli, and
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59 IP McCulloch and M Gulácsi, “The non-abelian den-
sity matrix renormalization group algorithm,” Europhysics
Letters 57, 852–858 (2002).

60 Herbert Neuberger and Timothy Ziman, “Finite-size ef-
fects in heisenberg antiferromagnets,” Phys. Rev. B 39,
2608–2618 (1989).

61 M. Tarzia and G. Biroli, “The valence bond glass phase,”
EPL (Europhysics Letters) 82, 67008 (2008).

62 R. R. P. Singh, “Valence bond glass phase in dilute kagome
antiferromagnets,” Phys. Rev. Lett. 104, 177203 (2010).

63 Y. Nonomura and Y. Ozeki, “Ground-State Phase Dia-
grams of the Two-Dimensional Quantum Heisenberg Spin
Glass Models,” Journal of the Physical Society of Japan
64, 2710 (1995).

64 J. Oitmaa and O. P. Sushkov, “Two-dimensional randomly
frustrated spin- 1/2 heisenberg model,” Phys. Rev. Lett.
87, 167206 (2001).

65 Creighton K. Thomas, David A. Huse, and A. A. Mid-
dleton, “Zero- and low-temperature behavior of the two-
dimensional ±j ising spin glass,” Phys. Rev. Lett. 107,

047203 (2011).
66 Shanon J. Rubin, Na Xu, and Anders W. Sandvik, “Dual

time scales in simulated annealing of a two-dimensional
ising spin glass,” Phys. Rev. E 95, 052133 (2017).

67 Yining Xu and Dao-Xin Yao, “Spin glass in the bond-
diluted J1 − J2 ising model on the square lattice,” Phys.
Rev. B 97, 224419 (2018).

68 Cornelius Lanczos, “An iteration method for the solution
of the eigenvalue problem of linear differential and integral
operators,” J. Research Nat. Bur. Standards 45, 255–282
(1950).

69 Y. Saad, Numerical Methods for Large Eigenvalue Problems
(Society for Industrial and Applied Mathematics, 2011)
http://epubs.siam.org/doi/pdf/10.1137/1.9781611970739.

70 E. R. Gagliano and C. A. Balseiro, “Dynamical proper-
ties of quantum many-body systems at zero temperature,”
Phys. Rev. Lett. 59, 2999–3002 (1987).

71 Shou-Shu Gong, W. Zhu, J.-X. Zhu, D. N. Sheng, and Kun
Yang, “Global phase diagram and quantum spin liquids in
a spin- 1

2
triangular antiferromagnet,” Phys. Rev. B 96,

075116 (2017).
72 Yuesheng Li, Devashibhai Adroja, David Voneshen,

Robert I. Bewley, Qingming Zhang, Alexander A. Tsir-
lin, and Philipp Gegenwart, “Nearest-neighbour resonat-
ing valence bonds in ybmggao4,” Nature Communications
8, 15814 (2017).

73 Zhenyue Zhu, P. A. Maksimov, Steven R. White, and A. L.
Chernyshev, “Topography of spin liquids on a triangular
lattice,” Phys. Rev. Lett. 120, 207203 (2018).

74 Rong Yu, Tommaso Roscilde, and Stephan Haas, “Quan-
tum disorder and griffiths singularities in bond-diluted
two-dimensional heisenberg antiferromagnets,” Phys. Rev.
B 73, 064406 (2006).

75 Lu Liu, Hui Shao, Yu-Cheng Lin, Wenan Guo, and An-
ders W. Sandvik, “Random-singlet phase in disordered
two-dimensional quantum magnets,” arXiv 1804, 06108
(2018).

http://dx.doi.org/10.1103/PhysRevB.92.041105
http://dx.doi.org/10.1103/PhysRevB.92.140403
http://dx.doi.org/10.1103/PhysRevB.92.140403
http://dx.doi.org/10.1103/PhysRevB.93.144411
http://dx.doi.org/10.1103/PhysRevB.93.144411
http://dx.doi.org/10.1103/PhysRevB.94.121111
http://dx.doi.org/10.1103/PhysRevB.94.121111
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://iopscience.iop.org/0295-5075/57/6/852
http://iopscience.iop.org/0295-5075/57/6/852
http://dx.doi.org/ 10.1103/PhysRevB.39.2608
http://dx.doi.org/ 10.1103/PhysRevB.39.2608
http://stacks.iop.org/0295-5075/82/i=6/a=67008
http://dx.doi.org/10.1103/PhysRevLett.104.177203
http://dx.doi.org/10.1143/JPSJ.64.2710
http://dx.doi.org/10.1143/JPSJ.64.2710
http://dx.doi.org/ 10.1103/PhysRevLett.87.167206
http://dx.doi.org/ 10.1103/PhysRevLett.87.167206
http://dx.doi.org/ 10.1103/PhysRevLett.107.047203
http://dx.doi.org/ 10.1103/PhysRevLett.107.047203
http://dx.doi.org/10.1103/PhysRevE.95.052133
http://dx.doi.org/10.1103/PhysRevB.97.224419
http://dx.doi.org/10.1103/PhysRevB.97.224419
http://dx.doi.org/10.1137/1.9781611970739
http://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/1.9781611970739
http://dx.doi.org/10.1103/PhysRevLett.59.2999
http://dx.doi.org/10.1103/PhysRevB.96.075116
http://dx.doi.org/10.1103/PhysRevB.96.075116
http://dx.doi.org/10.1038/ncomms15814
http://dx.doi.org/10.1038/ncomms15814
http://dx.doi.org/10.1103/PhysRevLett.120.207203
http://dx.doi.org/10.1103/PhysRevB.73.064406
http://dx.doi.org/10.1103/PhysRevB.73.064406
http://dx.doi.org/ https://arxiv.org/abs/1804.06108
http://dx.doi.org/ https://arxiv.org/abs/1804.06108

	Randomness induced spin-liquid-like phase in the spin-1/2 J1 - J2 triangular Heisenberg model
	Abstract
	Introduction
	Model Hamiltonian and methods
	Numerical results
	Melting the magnetic orders
	Randomness induced spin-liquid-like phase
	J1-J2 spin liquid and the SLL phase

	Summary and discussion
	Acknowledgments
	Finite-size clusters
	J1-J2 Triangular Heisenberg model
	Dimer correlation
	Histogram of spin correlations under different bond randomness strength
	References


