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Learning from data has led to a paradigm shift in computational materials science. In particular,
it has been shown that neural networks can learn the potential energy surface and interatomic
forces through examples, thus bypassing the computationally expensive density functional theory
calculations. Combining many-body techniques with a deep learning approach, we demonstrate
that a fully-connected neural network is able to learn the complex collective behavior of electrons in
strongly correlated systems. Specifically, we consider the Anderson-Hubbard (AH) model, which is
a canonical system for studying the interplay between electron correlation and strong localization.
The ground states of the AH model on a square lattice are obtained using the real-space Gutzwiller
method. The obtained solutions are used to train a multi-task multi-layer neural network, which
subsequently can accurately predict quantities such as the local probability of double occupation
and the quasiparticle weight, given the disorder potential in the neighborhood as the input.

I. INTRODUCTION

Machine learning (ML)'™ is one of today’s most
rapidly growing interdisciplinary fields.  The deep-
learning neural network (NN) provides a powerful univer-
sal method for finding patterns and regularities in high-
dimensional data®°. It has found successful applications
in a wide variety of fields. In condensed-matter physics
and materials science, notable applications include us-
ing ML to guide materials design®® and for identifica-
tion and classification of crystalline structures’'3. Re-
cently, ML techniques have also been taken up by re-
searchers in the area of strongly correlated systems. The
majority of such activities focus on using ML to iden-
tify phases and phase transitions in many-body systems
ranging from classical statistical models'*!” and quan-
tum fermionic Hamiltonians'®'? to topological phases®’
and many-body localization?!. In these studies, a deep-
learning NN, trained with data from classical or quantum
Monte Carlo simulations, is shown to be able to correctly
distinguish phases and predict phase diagrams. ML
trained NNs can also represent thermodynamic phases
in equilibrium (Boltzmann machines)??, or ground-state
wavefunctions of quantum many-body systems>*2?.

In this paper, we demonstrate another application of
ML in correlated electron systems, namely using NN
as an efficient emulator for many-body problem solvers.
Specifically, our goal is to investigate whether deep-
learning NN can be trained to predict electron correla-
tion, such as the probability of double-occupation, in a
disordered medium. Our approach here is similar in spirit
to those adopted in quantum chemistry and materials
science communities, where the ML trained NN is used
to bypass the time-consuming density functional theory
(DFT) calculations®® ®'. Such activities have led to the
fast prediction of molecular atomization energies®>33 and
efficient parametrization of interatomic force fields®*8,
to name a few. We note in passing that similar ideas
of bypassing expensive numerical calculations with ML

model have also been explored in correlated electron sys-
tems, such as using ML to replace the impurity solver
for DMFT??, or to speed up total energy calculation in
Monte Carlo simulations®®42.

We consider the disordered Hubbard model in two di-
mensions:
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o =1,] at site-i, and 7;, = éj +Ci o 18 the correspond-
ing number operator . The first-term describes nearest-
neighbor hopping of electrons. The second term denotes
the random local potential. The last term is the on-
site Hubbard repulsion. As in the standard Anderson
model, here the site energy ¢; is a random number drawn
uniformly from the interval [-W/2,+W/2]. We work at
half-filling on an L x L square lattice with periodic bound-
ary conditions. The Hamiltonian Eq. (1), also known
as the Anderson-Hubbard (AH) model, is considered a
paradigmatic model for studying the interplay between
strong electron correlation and disorder.

The AH model has been intensively studied by sev-
eral numerical methods, including Hatree-Fock calcula-
tions?®%*, quantum Monte Carlo simulations**~*8, and
extended dynamical mean field theory (DMFT)** %2, In
particular, intrinsic metal-insulator transition without
magnetic order can be quantitatively calculated within
the DMFT framework®®. For application to disordered
systems, DMFT can be readily combined with the typical
medium theory (TMT) in which a geometrically averaged
local density of states is used to construct the electron
bath®*. The non-magnetic phase diagram of AH model
obtained from the TMT-DMFT method includes three
distinct phases: a correlated metallic phase, a Mott in-
sulating phase, and an Anderson insulating phase®!%2.
Importantly, the two insulating phases of the AH model
have very different characters. The Mott insulator results

where ¢; _ is the electron creation operator with spin



from the strong correlation effect which prohibits elec-
trons from hopping to the neighboring sites. On the other
hand, strong disorder weakens the constructive interfer-
ence that allows an electron wave packet to propagate
coherently in a periodic potential, leading to the Ander-
son insulator. TMT-DMFT calculation shows that these
two insulating phases are continuously connected®!:>2

Real-space approaches such as variational Monte Carlo
(VMC) simulations®™*®, statistical DMFT**?% and the
Gutzwiller methods®®®7 can better cope with the crucial
spatial fluctuations in low dimensional systems. Apply-
ing VMC to the 2D AH model finds a continuous transi-
tion that separates the Mott insulator from the Anderson
insulator in the non-magnetic phase diagram®”*%. Tt is
worth noting that there is no sharp distinction between
correlated metal and Anderson insulator in 2D. Inter-
estingly, detailed large-scale simulations of the 2D AH
model within the Brinkman-Rice formalism, where the
efficient Gutzwiller method can be applied, showed that
strong spatial inhomogeneity gives rise to an electronic
Griffiths phase that precedes the metal-insulator transi-
tion®".

II. REAL-SPACE GUTZWILLER METHOD

Here we employ the Gutzwiller method to solve the
AH model on a square lattice. In its original formu-
lation, a variational wavefunction |[¥g) = Pg|VUy) is
constructed by applying a real-space projector Pg =
[L; P on the Slater determinant |¥g) obtained from the
non-interacting electron Hamiltonian®®. Optimization of
|Ue) can be efficiently carried out with the so-called
Gutzwiller approximation (GA)°®, which becomes ex-
act in the infinite dimension limit. Moreover, GA cor-
responds to the zero-temperature saddle point solution
of the slave-boson (SB) method®’. Indeed, by factor-
ing out the occupation probability P? of the uncorre-
lated state, the local projector can be expressed as P; =
Dap @i,ag/(Pl%)_l/ﬂa}(m, where a, 8 are the local
many-electron state, and the elements of the variational
matrix ®; correspond to the SB coherent-state ampli-
tude®®-6!. For single-band Hubbard model, ®; is a diago-
nal matrix of dimension 4, i.e. ®; = diag(e;, p;+,Di1,d:),
and the square of these diagonal elements corresponds to
the probability of empty, single (with spin o =1, ), and
double-occupied states, respectively. In the following, we
consider the non-magnetic solutions of the AH model and
assume p; + = p;.| = Pi.

The GA solution for the AH model in Eq. (1) is ob-
tained by minimizing the following energy functional:

E(pijs @) = —2t Y RiR; pi +2Zez Piis
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Here the prefactor 2 accounts for the spin degeneracy,
pij = <\Ilo|c;ci\\llo) is the single-particle density matrix,

Ri = (eipi + pid; / \/m is the Gutzwiller renor-

malization factor , Ny = n;4+ = n; | is the local elec-
tron density, and p; is the Lagrangian multlpher that en-
forces the Gutzwiller constraint n; = p? + d? = p;°%0L.
The optimization of the density matrix, or equlvalently of
the wavefunction |¥g), amounts to solving the following
renormalized tight-binding Hamiltonian:

H* = —t Z RZRJéIéJ + Z(Ei + /Li)ﬁi. (3)
(i5) i

The minimization with respect to SB amplitudes
0E/0®; = 0, subject to constraint e? + 2p? + d? = 1
can be recast into an eigenvalue problem for each site.
These two steps, optimization of ¥y and ®;, have to be
iterated until convergence is reached.

Using the above GA solver on a L = 30 square lat-
tice, large datasets were generated with various disorder
strengths W/t = 6,10, 14,18 and Hubbard parameters
U/t =2,4,---,16. The scatter plots in Fig. 1 show the
various local quantities versus the random site energy ¢;
obtained from the GA solution with three different val-
ues of Hubbard repulsion. The local quantities are the
site Lagrangian multiplier p;, the local electron density
ni, the double occupation probability D; = d?, and the
local quasi-particle weight Z; = R?. Interestingly, for a
given U, the data points cluster around a smooth curve,
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FIG. 1. Summary of the GA solution for the AH model on a
30 x 30 square lattice. The panels show the scatter diagram of
(a) local energy correction p;, (b) site electron density n;, (c)
probability of double occupation D; = d?, and (d) local quasi-
particle weight Z; = R? versus the random site energy &;.
The data points were obtained from calculations with random
strength W/t = 6,10, 14, 18 and three different U = 4¢, 10t,
and 16t. The smooths curves showing the underlying overall
trend for a given U were obtained using polynomial regression
with up to 14th-order polynomials. The red, blue, and green
curves correspond to U = 4t, 10¢, and 16¢, respectively.



indicating an underlying continuous trend. More quanti-
tatively, we used polynomial regression to determine the
overall dependence of the local quantities on the site en-
ergy ¢;; see the solid curves in Fig. 1.

Extensive studies on the statistics of electron correla-
tion in 2D AH model have been carried out using SB
or real-space DMFT methods®°". One interesting phe-
nomenon is the screening of the impurity potential due
to electron correlations, especially close to the metal-
insulator transition. Our result shown in Fig. 1(a) clearly
demonstrates this trend. Indeed, from Eq. (3), one can
define a renormalized site potential as &; = ¢; + ;. The
anti-correlation between p; and e; thus results in a re-
duced effective site potential. Moreover, the local den-
sity m; exhibits a more homogeneous distribution in the
vicinity of Fermi energy with increasing U; see Fig. 1(b).

The overall behavior of local quasi-particle weight ver-
sus € is consistent with the result obtained from TMT-
DMFT using SB method as the impurity solver’®. As
shown in Fig. 1(d), electrons at large |e;| get less renor-
malization, i.e. retain a larger Z;, compared with those
close to the Fermi energy (¢ ~ 0). Moreover, the dif-
ference between large and small Z; increases as one ap-
proaches the Mott transition boundary. This behavior
also indicates a strong spatial inhomogeneity. While
electrons in some regions become localized magnetic mo-
ments characterized by a vanishing Z;, electrons in other
regions undergo Anderson localization transition and
maintains a large value of Z;.

III. NEURAL NETWORK MODEL

In order to capture the spatial site-to-site fluctuations
of electron correlation, we next employ deep-learning
techniques to predict the local electronic properties of
the AH model. More specifically, our goal is to predict
local quantities u, n, D, and Z at a randomly picked
site, say site-0, with the site potentials €; in its neighbor-
hood within a cutoff radius r. as the input; see Fig. 2(a).
This, of course, is based on the assumption of locality
which implies that correlation functions decay strongly
with the distance. In general, the single-particle den-
sity matrix exhibits an exponential and a power decay
for insulators and metals, respectively. The localization
of electron wavefunctions due to disorder also enhances
the decay of correlation functions, especially in 2D. To
quantify this locality approximation, we have repeated
our ML training with various r., and have verified that
the predictions of the NNs are not sensitive to the cut-
off radius. The results presented below were obtained by
including up to 14th nearest neighbors with a total of 89
sites within the cutoff.

A proper representation of the site energies €; is cru-
cial in order to provide a description of the neighbor-
hood that is invariant under fundamental transforma-
tions of the lattice symmetry. To this end, we first de-
compose all ¢; into irreducible representations (irrep) of
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FIG. 2. (a) Schematic showing the target site at Rg on the
square lattice. Random potentials €; of neighbors up to some
cutoff radius r. are used as input to the neural network (NN).
(b) Basic invariant subgroups of neighbors include two types
of squares and a octagons. (c) Architecture of the fully-
connected NN for the disordered correlated systems. For
input, we use all the random-distributed on-site energies in
the certain circle. ReLU activation function is used in the 5
hidden-feature extraction layers with 512 x 256 x 256 x 128 x 64
nodes. The linear activation function is used to predict local
quantities including p, n, D, and Z.

point group Dy, which is the site symmetry group of a
square lattice. The neighboring sites can be classified into
three different invariant sub-sets, as shown in Fig. 2(b).
Decomposition of these sub-sets into the corresponding
irreps is straightforward. Taking the square as an ex-
ample, there are three irreps: x4, = €4 +€p + €c + €4,
Tp, =€q—Ep+Ec—Ed, and Xg = (€4 — €¢,€p — €4). The
amplitudes of each irrep and their relative phases are then
used as the input for the NN. For example, consider all
doublet irreps: x,, withm =1,2,---, M, where M is the
total number. The amplitudes |x,,|, and relative angle
€08 O = X, * X/ |Xm| |Xn| are invariant under symme-
try operations. We note that this descriptor of the site
environment is similar to the atom-centered symmetry
functions used in ML potentials for quantum molecular
dynamics simulations®*37.

We design a fully-connected neural network (NN) with
5 hidden layers consisting of n = 512 x 256 x 256 x 128 x 64
rectified linear units (ReLU) neurons®®. The input layer
is the symmetrized neighborhood ¢ as discussed above.
The NN performs a sequence of transformations on the
input that are illustrated in Fig. 2(c). In the m-th layer,
the n-th neuron processes the activation a(™1) from
(m — 1)-th layer through independent weights and bi-
ases w(m—Da(m=1) 4 p(m=1) After the ReLU functions,
the outcome is fed forward to be processed by the out-
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FIG. 3. Comparison of the ML predictions with references ob-
tained from the GA solvers, for (a) the local potential renor-
malization p;, (b) site electron density n;, (c) probability of
double occupation D;, and (d) local quasi-particle weight Z;.
The blue and orange data points denote predictions for train-
ing and test datasets, respectively. The insets show the nor-
malized count of the error ¢ defined as the difference between
prediction and reference values.

reference Z

put neuron with linear activation function. Importantly,
here we adopt the multi-task ML technique®® that forces
the NN to learn multiple local electron properties simul-
taneously. The additional constraints coming from the
multi-task setup helps the search for the true ML model
because of the smaller set of models that can fit all prop-
erties simultaneously.

We use mean absolute error (MAE) as the cost function
with the L2 regularization® to avoid overfitting and a
minimum batch size of 100. We use randomly mixed
900000 data samples as the training set and perform a
5-fold cross-validation during the training. The Glorot
uniform initializer® and Adam optimizer®® with learning
rate of 0.00001 is applied for training process. Once the
training process is successful, the trained neural network
can rapidly predict the 237600 test data samples. Fig. 3
compares the ML prediction with the GA solutions for
all accumulated configurations, i.e. those used in the
training phase and the remaining configurations used for
validation. For all four local quantities, the NN gives
rather good predictions as attested by the small MAE,
which is of the order of less than one percent of the mean
values for all quantities.

IV. DISCUSSION AND OUTLOOK

To summarize, we have introduced a ML model for pre-
dicting local electron correlation of Anderson-Hubbard
Hamiltonian based on training a deep multi-task NN in
configuration space. In order to describe the spatial in-
homogeneity of the electronic structure, we use the real-
space Gutzwiller method to numerically solve the AH
model on a square lattice. Using the disorder poten-
tial in the neighborhood as the input, our ML trained
NN is able to predict local electron properties such as
double-occupancy and quasi-particle weight. Interesting
phenomena such as the correlation induced screening of
disorder potential and local Mott transition can be accu-
rately predicted by our ML model. Our work provides a
proof of principle study showing that deep NNs can serve
as an efficient many-body problem solver for large-scale
computation of strongly correlated systems. For exam-
ple, instead of the Gutzwiller solutions, one can train the
NNs with data-sets obtained from the real-space DMFT
or the VMC methods for the AH model. Although more
computational effort is required to generate the training
data, more accurate prediction can be achieved with the
resultant NN model.

As discussed above, a primary motivation for ML
trained NN is to bypass the expensive DFT calculation
that is required in simulations such as ab initio molecular
dynamics. Similarly, our proposed ML model as an effi-
cient GA solver also has direct application for the molec-
ular dynamics simulations of so-called Holstein-Hubbard
model®” % in which the site potential ¢; = —gX; is re-
lated to the amplitude of local phonon mode X, here g
is the electron-phonon coupling constant. In such sim-
ulations®®, forces acting on the local elastic modes are
proportional to the local electron density F; = gn;,
which can be efficiently computed using the trained NN.
Another related application is to the recently proposed
Gutzwiller molecular dynamics (GMD)™. The atomic
forces in this method are computed from the optimized
Gutzwiller many-electron wavefunction at every time
step. Contrary to DFT-based molecular dynamics, GMD
simulations allow one to investigate the effects of electron
correlation on atomic structural dynamics”™. Our work
shows that ML techniques can be applied to develop a
NN that efficiently emulates a GA solver. Preliminary
results”' indeed show that ML is a promising approach
for such applications.
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