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The spinel, MgTi2O4, undergoes a transition into a dimerized state at low temperatures that
is expected to be a spin singlet. However, no signature of a singlet-triplet transition has been
discovered, in part due to the difficulty of predicting the energy of the transition from theory.
We find that the dimers of MgTi2O4 can be described by a Heisenberg model with very small
interactions between different dimers. Using high-accuracy first-principles quantum Monte Carlo
combined with a novel model-fitting approach, we predict the singlet-triplet gap of these dimers to
be 350(50) meV, a higher energy than previous experimental observations have considered. The
prediction is published in advance of experimental confirmation.

INTRODUCTION

Exotic electronic states are predicted to occur at low
temperatures in geometrically frustrated lattices, includ-
ing the pyrochlore lattice[1, 2]. However, as tempera-
ture is decreased, the frustration is often resolved by
structural distortions. Because these systems have strong
electron-electron interaction effects, the resultant ground
states can be challenging to describe using simple elec-
tronic structure theories. The causation of this distortion
is not always completely understood, and the correlated
nature of the material makes theoretical approaches chal-
lenging.

In the case of pyrochlore MgTi2O4, the high temper-
ature pyrochlore lattice distorts to a dimerized struc-
ture at Ts = 260 K[3]. A spin-singlet state would not
be surprising in this case, since there is a sharp de-
crease in the magnetic susceptibility coincident with the
dimerization[4]. Existence of the singlet ground state is
also indirectly supported by optical experiments[5] in-
terpreted through density functional theory (DFT) cal-
culations with the B3LYP functional[3]. Local spin den-
sity approximation (LSDA) + U calculations find that at
nonzero U , the ground state contains antiferromagnetic
dimers[6]. However, both generalized gradient approxi-
mation (GGA) and local density approximation (LDA)
+ U with U < 6 eV fail to produce the insulating state,
highlighting the dependence of the results on the choice
of DFT functional. An additional concern with the spin-
singlet identification is that neutron scattering experi-
ments of MgTi2O4 find no singlet-triplet excitation up to
energies of 25 meV[2]. We are not aware of any attempt
to predict the singlet-triplet gap of the system from first-
principles calculations.

Another system, VO2, is quite similar to MgTi2O4

in that it undergoes a metal-insulator transition at low
temperatures simultaneously with a structural transi-
tion that forms dimers. An inelastic x-ray scattering
measurement found the singlet-triplet gap of VO2 to
be 460 meV[7]. Diffusion Monte Carlo (DMC) was ap-
plied to compute the singlet-triplet gap of VO2, finding

the gap to be 440(24) eV—within statistical errors of
the experiment[8, 9]. The analysis used the DMC cal-
culations to fit a model Heisenberg Hamiltonian, which
can be solved for the excitation energies. Similar tech-
niques have been successfully applied widely in the lit-
erature, including calculations utilizing quantum Monte
Carlo[8, 10–17]. Recently, the method was generalized
and given the theoretical grounding to fit a large family
of models, including Hubbard and generalized Hubbard
models[18], which would give access to additional types
of excitation energies. However, to cleanly demonstrate
its predictability, correct predictions with the method
should be published before the experimental observation.

In this manuscript, we use quantum Monte Carlo cal-
culations and a rigorous theory of effective models[18] to
make a prediction for the singlet-triplet gap of MgTi2O4.
The gap is predicted to be 350(50) meV, which should be
observable using neutron scattering or reasonant inelas-
tic x-ray scattering (RIXS) experiments. Observation of
an excitation at the singlet-triplet gap would be strong
evidence for the singlet ground state, and confirmation
that our technique is a new predictive tool for calculation
of excited state properties in transition metal systems.

METHOD

Our approach utilizes diffusion Monte Carlo (DMC) to
provide energies as inputs into a model fitting approach,
both of which are summarized here.

Diffusion Monte Carlo [19] is a stochastic projection
method for finding the ground state of a Hamiltonian,
H. It projects the ground state, |Ψ0〉, of H from a trial
wave function, |ΨT 〉, by noting that

lim
τ→∞

e−τH |ΨT 〉 = |Ψ0〉 .

In our work, H is the first-principles Hamiltonian,
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where i indexes the electrons, ri are electron positions,
RI are the ion positions, and Veff is a small-core pseu-
dopotential provided by Burkatzki, Filippi, and Dolg
(BFD)[20, 21]. By stochastically applying the projec-
tion operator, e−τH to |ΨT 〉, it exponentially suppresses
all but the ground state component of |ΨT 〉. Without
further approximation, the method suffers from a sign
problem when applied to antisymmetric wave functions,
such as in many-fermion systems.

The fixed-node approximation avoids this sign prob-
lem by constraining the projected wave function,
limτ→∞ e−τH |ΨT 〉, to have the same nodes as |ΨT 〉.
This fixed-node wave function, |ΨFN〉 is the lowest en-
ergy wave function with a given set of nodes. If the trial
function nodes are exactly the ground state nodes, then
the method remains an exact ground state method. If
the trial function nodes are approximately the ground
state nodes, it will suffer some error known as fixed-
node error, which depends only on the accuracy of the
nodes of |ΨT 〉. Similarly, if the trial function nodes are
approximately the excited state nodes, in practice, the
method can give reasonably accurate estimates for ex-
cited state energies[22]. The accuracy of fixed-node DMC
has been established in a range of transition metal and
other strongly correlated systems[17, 23–29].

We used a conventional recipe to perform the DMC
calculations. To generate the trial functions, we em-
ployed single-Slater-Jastrow-type wave functions[30–33].
We expect the fixed-node error of this wave function
to cancel when taking energy differences based on the
ability of previous work utilizing single-Slater-Jastrow
wave functions to match experiment (see, for exam-
ple, [8, 9, 12, 17, 27, 34–37]). The Slater determi-
nant is provided by DFT calculations, which were per-
formed by the CRYSTAL package[38]. In previous stud-
ies of hybrid functionals and fixed-node error, the PBE0
functional often provides the best nodes compared to
other choices of common DFT functionals[8, 32, 35, 36],
so we employed the PBE0 exchange-correlation func-
tional for the DFT calculations in this work. We used
a local Gaussian triple-ζ with polarization (TZP) ba-
sis set for the PBE0 calculations. The Jastrow fac-
tor was energy-optimized with variational Monte Carlo
within the QWalk package[30, 39]. Fixed-node dif-
fusion Monte Carlo calculations were performed using
QWalk, using T -moves to handle the nonlocal parts of the
pseudopotential[40]. The timestep error was confirmed to
be negligible for these quantities (Supplemental Informa-
tion). All DMC energies were twist-averaged over the 8
real twist-boundary conditions.

We fit a nearest-neighbor Heisenberg model to our
DMC data, and use it to calculate the singlet-triplet gap.

Heff = J
∑
〈ij〉

Si · Sj (1)

where 〈ij〉 represent the pairs of Ti in a dimer. Because

each dimer is independent, the Hamiltonian is block di-
agonal with blocks corresponding to each dimer. Let |↑↑〉
represent the spin state on a single dimer with both spins
up, and |↑↓〉 be the corresponding state with one spin up
and one spin down, etc. Although not all of them are
eigenstates, the expectation value of the energies of these
states according to (1) are −J/4 for |↑↓〉 and |↓↑〉 and is
J/4 for |↑↑〉 and |↓↓〉. Thus, knowing the correct differ-
ence between the expectation value of the energies of |↑↑〉
state and the |↑↓〉 state determines J . Similar approaches
have been utilized in many systems to determine effective
exchange couplings[8, 10–17]. The singlet-triplet gap of
this Hamiltonian is then

〈↑↑|Heff |↑↑〉 − 〈s|Heff |s〉 = J/4− (−3J/4) = J,

where |s〉 = (|↑↓〉 − |↓↑〉)/
√

2 is the singlet ground state.
Fixed-node DMC provided the estimated energy dif-

ference between |↑↑〉 and |↑↓〉 state for each dimer. Trial
functions for each state are prepared by initializing the
DFT state with the target spin configuration, achieving
self-consistency, and checking that the resulting Kohn-
Sham Slater determinant has the correct spin configura-
tion. The spin densities of the Slater determinants for
each state are shown in Fig. 1. We then optimize a two-
body Jastrow factor for each Slater determinant gener-
ated this way, and use the resulting Slater-Jastrow wave
function as the trial function for DMC. Beginning with
each of these trial wave functions (with different spin
densities), the fixed-node constraint fixes the overall spin
symmetry as the DMC projection removes all the high en-
ergy components from the trial wave function. Thus the
resulting fixed-node wave function represents low-energy
states with the spins on each Ti corresponding to |↑↑〉 or
|↑↓〉 on each dimer.

RESULTS

We evaluated the energetics of the “dimer” and
“triplet” spin configurations presented in Fig. 1 to fit
the dimer model (1). We also evaluated the energy of
the spin-unpolarized state, finding it to be 810(30) meV
higher than the “dimer” according to DMC and 898 meV
according to PBE0. Net spin moments around each Ti
are therefore energetically favorable in our calculations.
The relative energy of the “triplet” state to the “dimer”
state according to both PBE0 and DMC are presented in
the “triplet” group of in Fig. 2. Requiring the model (1)
to reproduce this relative energy constrains its parameter
to be J = 350(50) meV. Thus the singlet-triplet gap is
predicted to be 350(50) meV.

To test the accuracy of the independent-dimer Heisen-
berg model (1), we compare its predictions for an addi-
tional test-set of states. An important approximation of
the independent-dimer model is that it neglects interac-
tions between different dimers. The Ti-Ti distance within
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dimer triplet inter-dimer 1 inter-dimer 2 inter-dimer 3 inter-dimer 4 inter-dimer 5

FIG. 1. Spin density contour plot for the spin states considered in this work. Up and down spin densities are represented as
blue and red. Orange atoms with spin are Ti atoms, of the spinless atoms, the smaller brown atoms are O, and the white
atoms are Mg. Bonds are drawn between dimerized Ti atoms, and bonds that exit the unit cell have no Ti atom on the end
outside the cell, which is drawn with black lines. The diffusion Monte Carlo energies of the dimer and triplet state determine
the model, and the “inter-dimer” states are used to test the accuracy of the model.
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FIG. 2. Energies of each state relative to the dimer state of
Fig. 1 according to DMC and PBE0 as well as models fit to
DMC and PBE0 data. The triplet energy difference is suf-
ficient to fit the parameter in (1), with J = 350(50) meV
from DMC, for example. This makes the singlet-triplet gap
350(50) meV for this system. The inter-dimer states are pre-
dictions from the independent dimer model (1), and are used
to test the predictability of the model. Because PBE0 re-
produces the energy differences for the unpolarized, triplet,
and inter-dimer state, PBE0 energies should be sufficient for
inter-dimer 2–5, which are only used to probe the relevance
of inter-dimer interactions. Due to computational constraints
we did not also provide DMC energies for inter-dimer 2–5.
The model predictions for the inter-dimer states agree quite
well with (1), suggesting that the independent-dimer model
is an accurate effective model for the spins in this system.

a dimer is approximately 2.85 Å. There are two bonds
that are 3.00 Å, two bonds that are 3.01 Å, and one long
bond that is 3.16 Å. Considering the bond lengths, the
intra-dimer interaction should be the strongest, with pos-
sible corrections due to inter-dimer interactions. The im-
portance of these intermediate-distance inter-dimer inter-

actions was checked by sampling additional “inter-dimer”
states with different relative dimer orientations as well
as different numbers of parallel and antiparallel intra-
dimer alignment. For example, the state labeled “inter-
dimer 1” in Fig. 1 will probe inter-dimer interactions, as
it changes the relative orientations of the dimers. For all
the states we calculated energies with DMC in Fig 2 and
the unpolarized state, PBE0 tends to reproduce the DMC
energy differences within 2–3σ (σ being the statistical
uncertainty of the DMC results). Given the agreement
with DMC and due to computational constraints, we only
computed PBE0 as reference energies for inter-dimer 2–
5, as these states are only used to probe the relevance of
inter-dimer interactions. The independent-dimer model
predictions appear in Fig. 2 along with the first-principle
energy differences according to PBE0. The independent-
dimer model can be fit to either the PBE0 or DMC triplet
energy difference, and both resulting model predictions
are presented in Fig. 2. The model predictions and refer-
ence energies agree within 10 meV, so the energy of these
spin states only depends on intra-dimer interactions to
high accuracy. Thus, the independent dimer model (1)
seems to be an accurate minimal model for the spin de-
gree of freedom of MgTi2O4.

The spin and charge density of the lowest energy state
are shown in Fig 3. The spin and charge density in DMC
is within statistical uncertainties of the Slater determi-
nant of PBE0 orbitals, hence we show the trial function
densities to avoid the statistical noise in DMC. The 2-
d slices, shown in Fig. 3, are through nearest neighbor
Ti atoms (intra-dimer) and through nearest neighbor Ti
atoms in the x-y plane (inter-dimer). The spin density in
the dimer bond is typical for systems interacting through
superexchange; in particular, the spin density on the oxy-
gen tends to be opposite the spin of the nearest Ti atom.
In contrast, the inter-dimer pairs ligands’ spin densities
do not show any obvious superexchange pattern. There is
an increase in Ti-O-Ti hybridization relative to the spin-
unpolarized state, but only inside the dimer bond, as one
can see from the increased charge density. The spin and
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FIG. 3. Spin density (top row) and charge density (ρ) relative
to the unpolarized charge density ρunpolarized (bottom row)
through Ti pairs and their intermediate O. Dimer signifies
the Ti atoms in the center form a nearest neighbor dimer pair
in the structure. Inter-dimer signifies that the Ti atoms are
nearest neighbors in the x-y plane. The dimer bond shows
spin density typical for atoms interacting through superex-
change, as well as an increase in hybridization between Ti
and O within the dimer as compared to the unpolarized state.
The inter-dimer bond shows no such signals of superexchange,
in agreement with the model results.

charge densities show little increase in hybridization out-
side the dimers, consistent with the results from fitting
the models above.

CONCLUSION

We have found the singlet-triplet gap of MgTi2O4 us-
ing high-accuracy diffusion Monte Carlo calculations to
be 350(50) meV. The approach utilizes a downfolding ap-
proach that had been applied successfully to VO2 and a
variety of other systems[18]. A second benefit of this ap-
proach is that it can evaluate the accuracy of minimal
models, which can provide simplified views of complex
materials. In this case, we found that a Heisenberg model
with interactions between Ti inside a dimer but with in-
dependent dimers can accurately describe the low-energy
spin states in the system. Experimental confirmation of
the singlet-triplet gap should be possible in RIXS or neu-
tron scattering. We are publishing this result in advance
of an experimental measurement so that it constitutes a
true prediction. If confirmed, this would be an example of
a rare event in correlated electron physics–the prediction
of a precise experimental result with quantitative accu-
racy, and cement diffusion Monte Carlo as a technique
that can accurately predict properties of correlated elec-
tron materials.
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FIG. 4. Energy vs. Brillouin zone sampling for the PBE0
calculations. The energies are shown relative to the largest
number of kpoints (6×6×6), so that the left point is zero by
definition. The error in the total energies is converged to the
micro-eV scale, which is well below the scale of other errors
in our work.
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SUPPLEMENTAL INFORMATION

We converged the Brillioun zone sampling in the PBE0
calculations in Fig. 4. The total energies are already
converged within the micro-eV scale with a 4×4×4 grid,
which is well below the scale of the energy differences
(hundreds of meV).

We converged the timestep error from the DMC sim-
ulations in Fig. 5. While the timestep error on the total
energy is larger than the statistical error, this error com-
pletely cancels in any energy differences. The difference
in extrapolated DMC energies match the difference in the
0.01 timestep energies within one standard error.
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FIG. 5. Timestep extrapolation for the DMC calculations was
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points were extrapolated to zero timestep. The timestep error
in the energy difference is well within our statistical error.
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