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We introduce highly local basis sets for electronic structure which are very efficient for correlation
calculations near the complete basis set limit. Our approach is based on gausslets, recently intro-
duced wavelet-like smooth orthogonal functions. We adapt the gausslets to particular systems using
one dimensional coordinate transformations, putting more basis functions near nuclei, while main-
taining orthogonality. Three dimensional basis functions are composed out of products of the 1D
functions in an efficient way called multislicing. We demonstrate the new bases with both Hartree
Fock and density matrix renormalization group (DMRG) calculations on hydrogen chain systems.
With both methods, we can go to higher accuracy in the complete basis set limit than is practical
for conventional Gaussian basis sets, with errors near 0.1 mH per atom.

Electronic structure calculations on molecules, solids,
and biological systems are performed by thousands of
groups worldwide and account for a substantial fraction
of the world’s scientific computing. Strongly correlated
systems, for which density functional approaches are in-
adequate, make up a small but important fraction of
these calculations. An almost universal problem with
methods for strong correlation is poor computational
scaling in both system size and accuracy. For example,
coupled cluster or configuration interaction approaches
typically scale as N6

e or higher for Ne electrons. Since
correlation methods must deal with the two-electron in-
teraction directly, scaling of at least N4 when using N
basis functions can appear hard to avoid, since the two-
electron interaction terms are described by a tensor Vijkl.

Local representations can reduce the size of the Vijkl
tensor. In the extreme case of a grid descretization, the
interaction is reduced by a factor of N2 to a matrix Vij ,
with Vij = 1/|~ri − ~rj | for i 6= j. For the less extreme
case of basis sets where the functions have substantial
spatial compactness, we say that two basis functions bi
and bj “overlap” if there is some point ~r where bi(~r)bj(~r)
is nonnegligible. Terms in Vijkl are negligible unless ba-
sis functions i and j overlap and also k and l overlap.
However, in three dimensions, even for substantially lo-
calized functions, many basis functions overlap, particu-
larly if the functions have been orthogonalized, limiting
any increase in the sparseness of Vijkl. This is unfor-
tunate, since basis methods have several advantages over
grids, such as the ability to add extra atom-centered core
functions to better resolve the nuclear cusps.

Recently one of us introduced a novel basis function
approach that has the same favorable scaling of the in-
teraction as a pure grid [1]. This involved two key in-
gredients: first, the introduction of a wavelet-related set
of highly localized, smooth orthogonal basis functions,
called gausslets, where each function is defined as a sum
over an underlying grid of simple Gaussians. Second, it
was shown that one can construct an accurate purely di-
agonal interaction Vij for a gausslet basis. This diagonal
interaction for a special type of basis is not new in itself:
a basis of sinc functions also allows this construction [2].

However, the extreme delocalization of sinc functions is a
severe disadvantage as a basis; the gausslet development
in Ref. 1 shows that one can get the diagonal property
with much more localized functions, where it is based
on the ability of gausslets to integrate like a delta func-
tion. But the usefulness of gausslets was previously only
demonstrated for 1D toy systems.

Here we generalize the gausslet approach to three di-
mensions and practical electronic structure calculations.
Given a 1D basis, one can always generate a 3D basis as
coordinate products, i.e. Gijk(x, y, z) = fi(x)gj(y)hk(z).
This simple approach produces overly large basis sets.
Instead, we introduce coordinate transformations which
put more functions near nuclei, and a procedure called
multislicing which allows the use of 1D coordinate trans-
formations rather than more complicated 3D transfor-
mations. Our multisliced gausslet (MSG) approach is
a generalization of our earlier sliced basis approach [3].
We demonstrate the resulting method on hydrogen chain
systems [4], using both Hartree Fock and the density ma-
trix renormalization group (DMRG) [5–7]. In both cases
the diagonal property make it possible to use very com-
plete bases. The combination of MSG and DMRG (MSG-
DMRG) allows for simultaneously exact correlation and
the complete basis limit, going well beyond chemical ac-
curacy in a controlled way, and exhibits linear scaling of
the computation time in the length of the chain.

In standard orthogonal wavelet theory, basis sets are
made of two types of functions, scaling functions, which
carry low momentum, and wavelets, which carry a range
of higher momenta. Gausslets are like scaling functions,
but they are constructed out of sums of Gaussians for
numerical convenience. A set of gausslets are shown in
Fig. 1(a), highlighting a single gausslet in the center of
the figure. To make a 1D basis, one puts a gausslet
at each point on an evenly spaced grid, scaling them
to match the grid spacing. The oscillatory tails make
the gausslets precisely orthonormal, and they can ex-
actly represent polynomials up to some predetermined
order (e.g. 10th order).

Modifying the gausslets with coordinate transforma-
tions allows spatially varying resolution. Let x(u) and
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FIG. 1. (a) Array of gausslets, with the gausslet centered at
the origin emphasized to show detail. (b) Coordinate trans-
formation function u(x) for a single atom, with a = s = 0.7
in Eq. (2), to give gausslets variable resolution. (c) Distorted
gausslet basis based on the transformation of (b), which is or-
thonormal and allows a diagonal approximation. One of the
functions is emphasized. (d) Schematic representation of mul-
tislicing in 2D. The vertical lines represent slices, with three
shown in detail. Each dot is the center of a basis function, and
the shaded rectangles illustrate the principle support region of
some of the functions, although they have smooth tails well
beyond the rectangles. The multicolored shaded rectangles
represent long, thin basis functions which one would want to
contract at a later stage.

its inverse u(x) define a 1D smooth one-to-one coordinate
mapping, which will be used to make the grid narrow and
closely spaced near nuclei, and wide and sparse far away.
First consider a 1D arrangement, with just one atom at
x = 0. Define the gausslets on a uniform grid in the
u space and then map to x-space, inserting a Jacobian
factor to preserve orthonormality. If Gj(u) is a gausslet
centered at integer j, define

G̃j(x) = Gj(u(x))
√
u′(x) . (1)

The G̃j are orthonormal if the Gj are.
The coordinate mapping we choose for a single atom

is given by

u(x) = sinh−1(x/a)/s (2)

where the parameter s, the scale, sets or adjusts the over-
all gausslet spacing, and a, the core cutoff sets the range
in x over which we stop decreasing the gausslet spacing.
The smallest gausslet spacing at the nucleus is about
a · s. This transformation is shown in Fig. 1(b), with
the resulting 1D functions shown in Fig. 1(c). In the
Supplemental Material, we discuss the motivation for the
above form of the transformation u(x), as well as a modi-
fied form of the transformation better suited for multiple
atoms.
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FIG. 2. (a)Energies of a hydrogen atom in an MSG basis as
a function of a and s, in Hartrees, using the full Hamiltonian
(“exact H”) and using the integral diagonal approximation.
The exact energy is −1/2. (b) Energy of a hydrogen molecule
with separation R = 2 in standard Gaussian and MSG bases.

For 3D basis functions, a coordinate-product form
G(x, y, z) = f(x)g(y)h(z) greatly simplifies evaluation of
integrals defining the Hamiltonian. To keep this form,
we apply coordinate transformations to each coordinate
separately, in a method we call “multislicing”. The co-
ordinate directions are sliced up sequentially, z (which
runs along the chain), then y, then x. A first coordi-
nate transformation uz(z) determines a set of z-values
zk (k = 1, 2, . . .), with uz(zk) = k, at which are centered

distorted 1D gausslets G̃k(z). The plane z = zk and func-

tion G̃k(z) together define a z-slice. Next we slice up each
z-slice in the y direction, with a coordinate transforma-
tion unique to k, uyk(y), which defines a set of y-values
ykj . A y “slice” (or “subslice” of a “parent” z-slice) is
the line z = zk, y = ykj , with associated 2D function

G̃k(z)G̃kj(y). Finally, for each y-slice, define a unique
coordinate transformation uxkj(x), determining a set of x

values xkji, and 3D basis functions G̃k(z)G̃kj(y)G̃kji(x).
The key point in using this successive procedure is to

use of the knowledge of where a slice is, relative to the
nuclei, to make subsequent transformations with the low-
est density of functions. This is illustrated schematically
in 2D in Fig. 1(d). Preserving the product form via mul-
tislicing means that some basis functions are long and
thin; however, at a later stage on can devise methods
to contract such functions with their neighbors, reducing
unnecessary degrees of freedom. The details of the co-
ordinate transformations in the multisliced case are dis-
cussed in the Supplementary Material.

Each basis function has a well defined center
(xkji, ykj , zk), and we can make a simple rule for which
functions to keep: if the basis function is within a dis-
tance b of an atom, we keep it. Here b = 9 a.u. proved
very accurate (< 0.1 mH errors compared to larger b)
except for R = 1 for H10, where we used b = 13.

Figure 2(a) shows energies for a single hydrogen atom
for various a and s, using both the standard Hamilto-
nian and one where a diagonal approximation is made for
the single particle potential [1]. Since there are only N2

single particle terms, using this diagonal approximation
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barely improves computational efficiency, but one would
expect this approximation to mimic the performance of
the more important two-particle diagonal approximation.
The diagonal approximation is sensitive to the singular-
ity in the potential at the nucleus, but increasing the
basis function density near the nucleus by decreasing a,
for fixed s, nearly eliminates the diagonal approximation
error. A simple procedure to systematically converge to
the ground state for this system would be to fix a/s to
be a constant, say 0.5-0.6, and then decrease s.

Figure 2(b) shows the energy for a hydrogen molecule,
compared to standard basis sets cc-pVxZ, where x=D,
T, and Q, and also compared to the exact energy from a
treatment in special coordinates [9]. A diagonal approx-
imation for the two particle interaction is used here and
in all subsequent MSG bases, since calculations would
not be practical with the standard Vijkl form. All re-
sults shown are exact (full CI) given the approximate
Hamiltonian. The MSG bases systematically converge
to the exact results, and the diagonal approximation for
the single particle potential closely approximates the full
Hamiltonian, particularly for smaller s.

Also shown in Fig. 2(b) is a basis with a special delta-
function correction for the nuclear cusp. Increasing the
resolution near nuclei by using a small a is inefficient,
leading to many basis functions. For example, for the
hydrogen atom of Fig. 2(a), taking a = 0.3, s = 0.6
produced 1179 functions, which resulted in an error of
0.13 mH. Our correction consists of adding a single-
particle potential at each atom α of the form vαδ(~r−~rα).
The parameter vα is set by “turning off” all nuclear elec-
tron potentials for atoms other than α (yet keeping the
same set of functions to be used for the entire system),
and adjusting vα so that the one-electron ground state
energy is the exact hydrogen atom energy −1/2. The
errors associated with choosing a too large are localized
near the nuclei; the delta function potential alters the
terms in the Hamiltonian only for the basis functions
overlapping with a nucleus. Most importantly, vα → 0
as a → 0 or s → 0, so this correction does not change
what the basis converges to, only how fast it converges,
accelerating the convergence. In Fig. 2 and for the rest
of the results, we set a = s and use the delta correction.

We now turn to a more challenging system, a linear
chain of hydrogen atoms spaced R apart. Hydrogen chain
systems were the subject of a recent benchmark study
which compared more than a dozen methods in their
ability to reach the combined limit of exact correlation,
complete basis set, and infinite number of atoms [4]. We
first consider unrestricted Hartree Fock (UHF) on H10,
shown in Fig. 3. The plot shows HF energy differences
relative to those of a large Gaussian basis, cc-pV5Z. The
convergence of the MSG basis is irregular because the
centers of the gausslets are not aligned with the nuclei;
but it is easy to get very accurate results and judge the
accuracy. At small R, the Gaussian basis sets have trou-
ble due to linear dependence [4], leading to a small but
noticeable discrepancy between the 5Z and MSG results.
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FIG. 3. Hartree Fock energies per atom of H10 versus R,
relative to the Gaussian basis set cc-pV5Z (5Z)[4]. The con-
nected symbols are MSG-HF results at constant s = a, as
labeled. For small R, they converge to a small but notice-
ably different result from cc-pV5Z. The inset shows MSG-HF
data versus s = a, at R = 1. Horizontal lines show Gaussian
results, along with two exponential extrapolations, based on
(TZ,QZ,5Z) (labeled T-5), and on (DZ,TZ,QZ,5Z) (labeled
D-5). The MSG-HF agrees for small s with the T-5 extrapo-
lation, although the D-5 extrapolation was used in Ref. [4].

As shown in the inset, at R = 1 the Gaussians converge
slowly, and different extrapolations give different results.
As a rough comparison of the calculational effort for these
very high accuracy calculations: for R = 1, a = s = 0.5,
the MSG basis has just over 13, 000 basis functions; the
number of two-electron integrals is the square of this, or
1.7×108. The 5Z basis has 550 functions, but the number
of integrals (N4, ignoring symmetry) is 9.2 × 1010. The
calculation time of our UHF algorithm, which takes ad-
vantage of the diagonal nature of the Hamiltonian, scales
as N2Ne, where Ne is the number of electrons, with the
dominant part coming from a Davidson diagonalization,
for Ne eigenvectors, of the Fock matrix.

For correlated calculations, to decrease the number of
basis functions, one can use the HF occupied orbitals to
contract the MSG basis to smaller size. This can be done
in a way that maintains the diagonal form of the interac-
tions. One can also extrapolate in a cutoff that controls
this contraction, to obtain results for the uncontracted
basis. The largest systems needed for a extrapolation
are still about a factor of 2 or 3 smaller than the uncon-
tracted basis, and the results below follow this procedure,
which is described in the Supplementary Material.

We now turn to MSG-DMRG calculations for H10. Our
DMRG implementation uses the matrix product opera-
tor compression of our earlier sliced basis DMRG (SB-
DMRG) approach [3]. This compression makes the cal-
culation time for fixed accuracy per atom scale linearly
in the number of atoms in a hydrogen chain both in SB-
DMRG and MSG-DMRG. We are currently limited to
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FIG. 4. Complete basis set energies per atom of H10 versus R,
relative to a diffusion Monte Carlo method, for MSG-DMRG
(labeled by s) versus various approaches from Ref. 4.

about 3000-4000 basis functions. (In contrast, standard
DMRG in a Gaussian basis—with no diagonal approxi-
mation and no compression—is limited to about 100-200
active basis functions.) We find that the DMRG performs
very well. For the very high accuracy results shown be-
low, we generally only needed to keep about 200 states
for larger R, and up to 400-500 for R = 1 (due to its
more metallic character). This excellent performance is
due to the high locality of the basis, which DMRG and
other tensor network methods [10–12] strongly prefer.

We find that the correlation energy converges faster
with s than the HF energy. This is not surprising: the
representation of the nuclear cusp is poor with a coarse
gausslet basis, which is is primarily a single particle effect.
Therefore, to get total energies we use the HF energy
with very small s, and add to it the correlation energy
obtained with a larger s, where the correlation energy is
defined by subtracting the unrestricted HF energy from
the total energy for the same basis set.

In Fig. 4, we show a comparison of total energies
for several methods [4] and our MSG-DMRG for var-
ious s = a. All methods attempt to reach the CBS
limit; for all but the MSG-DMRG and DMC methods,
this involved an extrapolation in the basis set. The en-
ergy differences here are generally well below chemical
accuracy. Often such high accuracy is unnecessary, but
studying the high accuracy limit is an excellent way to
demonstrate the usefulness of MSG-DMRG. The ener-
gies are measured relative to one of the diffusion Monte
Carlo methods, LR-DMC-AGP (or DMC). In Ref. [4], at
this level of accuracy, none of the best available methods
agreed, so it was not known which was best, and refer-

ence plots were made relative to MRCI+Q for smaller
systems and AFQMC for larger ones. DMRG based on
standard Gaussian basis sets could not be done beyond
the TZ level, so no CBS results were available. Here, we
find systematic convergence of MSG-DMRG to energies
agreeing with the LR-DMC-AGP method. Agreement
was poorer at small R with a DMC method based on an
LDA trial function. There are systematic errors in DMC
stemming from the fixed node approximation, which are
unusually small in this 1D system, but hard to quantify.
Since the nature of errors in DMC and MSG-DMRG are
completely different, and since the MSG-DMRG energies
converge systematically with a control parameter, we can
be rather sure that MSG-DMRG and DMC are both get-
ting the most accurate energies.

The MSG-DMRG errors for fixed s = a are biggest
at small R. This is expected; at small R, it would be
more natural to scale s with R, keeping the number of
basis function more nearly constant. The smallest grid
spacings are about a ·s, or about 0.5 for s = 0.7. Small R
is challenging to the Gaussian basis set methods because
the basis functions become linearly dependent.

In summary, even in this first implementation of the
MSG-DMRG method, for the strongly-correlated H10

system we surpass the best Gaussian basis approaches
in the high-accuracy CBS regime. We believe larger Z
systems, not just in the linear geometry of H10, could be
treated straightforwardly using pseudopotentials. How-
ever, we believe our approach can also be improved so
that resorting to pseudopotentials is not necessary for
moderate Z. For example, one could add some Gaus-
sians from a standard basis to a gausslet basis, orthog-
onalizing the Gaussians to the gausslets, to better rep-
resent core orbitals. This is very simple to do in prin-
ciple, but we would also like to find diagonal approxi-
mations involving the Gaussians, or develop convenient
partially-diagonal approximations, where the number of
non-diagonal terms is not too big. The delta correction
would likely be eliminated in any of these approaches.
Another way to improve fitting core orbitals would in-
volve adapting the gausslets during the slicing to fit 1D
Gaussians taken from a standard basis. Regarding how
one uses MSG bases, in the hydrogen chains studied here,
the linear geometry makes DMRG especially powerful.
For less linear molecules or solids, one might couple mul-
tisliced gausslets with tensor network states [10–12] or
quantum Monte Carlo.
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