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Since the discovery of graphene, considerable research efforts have focused on understanding the
properties of other two-dimensional materials. Herein, based on ab-initio many-body calculations,
we report the optical properties of monolayer SnO2. First, we apply the first-principles density
functional theory and self-consistent quasiparticle Green function and screened Coulomb method
to determine the quasiparticle electronic structure. Second, we solve the Bethe-Salpeter equation
to obtain the absorption spectra. The quasiparticle band structure reveals an indirect quasiparticle
bandgap. The absorption spectra show that the direct optical excitation is characterized by an
optical bandgap of ∼ 5.36 eV, which is dominated by strongly bound excitons.

PACS numbers: 73.22.-f, 73.63.-b, 73.20.Mf

Stannic oxide (SnO2) is an environmentally-friendly,
earth-abundant polymorph of tin oxide. It is an impor-
tant semiconducting metal oxide with a bulk bandgap
of ∼ 3.6 eV [1]. SnO2 has been extensively studied
both as a candidate material for fundamental research
and for practical applications. It is widely used as a
major component material in solid-state chemical and
gas sensing [2], solar cells [3], transparent conducting
oxides and electrodes [4, 5], catalysis [6], and as anti-
static coatings [7]. In the past decades, nanostructures
of SnO2-based materials have also been synthesized and
studied (see, e.g., Refs. [8, 9]). With the advent of two-
dimensional (2D) materials, which offer far more flexibil-
ity to tune the optoelectronic properties, an opportunity
is in the horizon to further engineer SnO2-based devices
at the ultimate limit of a discrete atomic layer. Herein,
using the state-of-the-art first-principles many-body cal-
culations, we report for the first time, the optical prop-
erties of monolayer SnO2.

To simulate the monolayer SnO2 considered herein,
we initially carried out structural relaxation based on
density functional theory (DFT) [10] using the Perdew-
Burke-Ernzerhof (PBE) [11] exchange-correlation func-
tional. We constructed the monolayer by cleaving along
the [001] direction of the bulk crystal with a vacuum
size c ∼ 20 Å along the out-of-plane direction to avoid
the artifacts of the periodic boundary condition. The
cutoff energy Es for the planewave basis set is 550 eV
and a 15 × 15 × 1 Monkhorst-Pack grid was used to
represent the reciprocal space. The orbitals used in the
structural relaxation and self-consistent calculations are
between parenthesis for Sn (4s2 4p6 4d10 5s2 5p2) and O
(2s2 2p4). The monolayer structure is relaxed until the
energy (charge) is converged to within ∼ 10−4 (10−9 ) eV
and the forces dropped to ∼ 10−3 eV/ Å. The predicted
monolayer crystal exhibits a D3d (space group No. 164)
hexagonal structure with a lattice constant of 3.27 Å and
Sn-O bond length of 2.14 Å [Fig. 1(a)].

Obtaining full convergence of excitation energies in 2D
materials is challenging. It is well-known that the quasi-

particle bandgap converges rather slowly with the size of
the vacuum and an unusually fine reciprocal space grid
are needed to achieve a satisfactory convergence [12–14].
In order to determine a reasonable set of input parame-
ters that balance accuracy and the huge computational
demand of our many-body calculations, we carried out
a series of benchmarking calculations by carefully check-
ing the convergence of the spectra on various compu-
tational parameters, such as spin-orbit interactions, the
energy cutoffs, Brillouin zone (BZ) sampling grid, addi-
tional empty states for the Green’s function and screened
Coulomb interactions calculations and the solution of
the Bethe-Salpeter equation. We checked the effects of
spin-orbit coupling (SOC) at the DFT-level using PBE
functional. While the SOC induced a slight downward
shift in the electronic energies including the splitting
of the degenerate state at the valence band extremum
of the K point in the high symmetry zone, the energy
band gap remained practically unchanged ∆EPBE

g ∼ 2.48
meV [Fig. 1(b)]. Hence, we have not included SOC in
our subsequent calculations since the effects are negligi-
ble. Also, this will reduce the computational cost by at
least a factor of two since the self-consistent quasiparti-
cle Green’s function plus screened Coulomb interactions
and vertex corrections scales as ∼ N6, where N is the
number of bands included in the calculations. We next
carried a series of self-consistent calculations presented
in Fig. 2 for the convergence of the fundamental quasi-
particle bandgap at the “one-shot” Green’s function and
screened Coulomb interactions (G0W0) level of approx-
imation as a function of (a) energy cutoff using a grid
and vacuum size of 144 k−points and 20 Å, respectively,
(b) vacuum size with Es and grid size of 550 eV and
144 k−points, respectively, and (c) Brillouin zone sam-
pling grid with Es and vacuum size of 550 eV and 20
Å, respectively. As expected, the quasiparticle bandgap
is observed to converge slowly with respect to the afore-
mentioned input parameters. Our calculations also veri-
fied that at least 108 bands and 12 virtual and occupied
bands, respectively are converged enough for the many-
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body calculations. A compromised input parameter of
Es ∼550 eV, c ∼ 20 Å, and BZ sampling of 225 k−points
are found to be converged and have been used for the
results presented herein.

The self-consistency calculations are carried out by
combining DFT and self-consistent quasiparticle Green’s
function plus screened Coulomb interactions (sqGW),
which also accounted for vertex correction [15] using an
energy cutoff of 2/3Es ∼ 367 eV and 144 bands to com-
pute the quasiparticle electronic structure. The vertex
correction accounts for the polarization (electron-hole in-
teraction) effects beyond the leading order of the pertur-
bation theory (see, e.g., Refs. [16–19]. The sqGW ap-
proach obtains the GW eigenstates by a self-consistently
determined Hermitian one-electron Hamiltonian approx-
imation to the self-energy [20]. In our case, the one-
electron energies and one-electron orbitals are updated
four times. Subsequently, we solved the Bethe-Salpeter
equation (BSE) [21] using 20 virtual and occupied bands,
respectively to obtain the absorption spectra. Aside from
the structural optimization, all calculations include an
accurate account of electron-electron and electron-hole
interactions, and an optimized set of potentials to prop-
erly account for excited state properties. The above cal-
culations were done using the VASP electronic structure
suite [22].

An important quantity in characterizing a 2D mate-
rial is the exfoliation energy, which the ability of such
atomic layer crystal to be obtained from the bulk. The
exfoliation energy is the energy required to peel off an
atomic layer from the surface of a bulk material. The
exfoliation energy is crucial for the optimization process
of producing 2D crystals as it provides an experimen-
tal guide to the ease of removing an atomic layer from
the surface of the corresponding bulk material. Several
approaches have been proposed to calculate the exfoli-
ation energy [23–25]. Herein, we calculate the exfolia-
tion energy as the difference in the ground-state energy
per unit atom between bulk SnO2 and the correspond-
ing monolayer similar to the one used in Ref. [23]. We
obtain the exfoliation energy per unit area as ∆Eexf =
[Em −Ebm]/A, where Em (Ebm) is the monolayer (bulk)
ground-state energy per unit atom and A is the surface
area of the monolayer unit cell. Our calculation led to a
∆Eexf ≈ 0.29 Jm−2, which is smaller than the ∆Eexf

in the range 0.34− 0.46 Jm−2 and ∆Eexf ∼ 0.45 Jm−2

reported for graphene and hexagonal boron nitride, re-
spectively [23, 24] but slightly higher than ∼ 0.17 Jm−2

reported for monolayer MoS2 [23]. Such ∆Eexf implies
that a small energy cost is needed to cleave an atomic
layer from the surface of bulk SnO2. In order to ascertain
the bonding character of monolayer SnO2, we carried out
charge transfer calculations using the net atomic charge
approach [26]. Our calculations suggest a net charge
transfer of 1.66 |e| from Sn- to an O-atom with a bond
order sum of 3.51 (1.80) for Sn (O), which implies mixed

FIG. 1. (a) Top, side, and perspective views of the D3d hexag-
onal crystal structure of monolayer SnO2. The blue colored
arrows highlight the unit cell defined by the lattice vectors ~a1

and ~a2. (b) A comparison plot of the electronic properties of
monolayer SnO2 obtained using the density functional theory
(DFT) with (solid red line) and without (black dashed line)
the effects of spin-orbit coupling (SOC).

covalent-ionic bonding in monolayer SnO2.

Next, we investigate the electronic properties. Both in
experimental and computational studies, the electronic
properties seem to be the most essential as it serves as the
input in diverse material characterizations. For example,
the electronic bandgap is vital in the accurate characteri-
zation of the absorption spectra including the determina-
tion of the optical bandgap. In order to ensure an accu-
rate determination of the electronic properties, we have
instead adopted a version of the GW approach which
uses the quasiparticle eigenstates to self-consistently cal-
culate the quasiparticle properties including accounting
for vertex corrections [15].

We show in Fig. 3 the electronic properties of mono-
layer SnO2 obtained from our many-body calculations.
The left panel depicts the quasiparticle band structure.
The dashed magenta line is the corresponding band
structure obtained from G0W0 calculations. Our many-
body sqGW calculations predict an indirect quasiparticle
bandgap of 6.51 eV along the Γ−K of the k-space, which
is higher than the 2.38, 3.89, and 6.19 eV obtained from
our PBE, HSE06 hybrid functional [27], and G0W0 cal-
culations, respectively. The direct quasiparticle bandgap
is 6.92, 6.50, 4.41, and 2.91 eV for sqGW, G0W0, HSE06,
and PBE calculations, respectively. The PBE bandgap
is consistent with previous ones from semilocal function-
als [28, 29]. The sqGW direct (indirect) quasiparticle
bandgap is large than the G0W0 counterpart by 420 (340
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FIG. 2. Convergence of the fundamental energy bandgap
E

ind
g calculated at the G0W0 level as a function of (a) energy

cutoff Es with grid and vacuum size fixed at 144 k−points
and 20 Å, respectively, (b) out-of-plane lattice constant (size
of vacuum) with Es and grid size fixed at 550 eV and 144
k−points, respectively, and (c) Grid size (Brillouin zone sam-
pling grid) with Es and vacuum size fixed at 550 eV and 20
Å, respectively. A compromised input parameter of Es ∼550
eV, c ∼ 20 Å, and BZ sampling of 225 k−points are converged
enough and have been used for the results presented herein.

meV). Using a 32/33% of the Hartree-Fock mixing pa-
rameter as suggested by Ref. [30] for the hybrid calcula-
tions, we obtain an indirect (direct) bandgap of 4.34/4.42
(4.87/4.95 eV) in agreement with the data of Xiao et al

[28]. It is well-known that the bandgap systematically in-
creases as the mixing parameter is increased [31] due to
the increase in the Hartree-Fock exchange contribution
to the exchange-correlation energy. We observe that the
6.19 eV quasiparticle bandgap obtained from our G0W0

calculation is ∼ 0.26 eV larger than the results of Xiao et

al [28]. There are several potential sources for such dif-
ference not limited to the energy cutoff, potential, basis
set, Brillouin zone sampling, and most importantly, the
choice of a prior self-consistent data used as the starting
point in the G0W0 calculation. For example, the data
of Xiao et al [28] seem not to have accounted for the
Sn-d states in their basis set. As explained below, there
is a strong antibonding Sn-d–O-p interactions especially
around the valence band maximum (VBM).
We also checked for the effects of the choice of the start-

ing eigenstates on our GW calculations. Using the results

of the default Hartree-Fock mixing parameter of 25% as
the starting input, we obtained an indirect quasiparticle
bandgap of 5.50 and 6.49 eV for the G0W0 and quasipar-
ticle self-consistent GW calculations, respectively. While
the quasiparticle fundamental bandgap obtained using
the HSE06 results as the starting input for the G0W0

calculation is smaller than that obtained using the PBE
as the starting input by ∼ 0.70 eV, that from the sqGW
calculation is smaller only by ∼ 0.02 eV. This should not
be surprising since the G0W0 approximation is strictly a
“one-shot” iteration of the self-energy. In practice, it is
perturbative and based on a prior self-consistent calcu-
lation. As such, the final G0W0 result generally depends
on the choice of the self-consistent mean-field used as a
starting point [32]. The dependence of the GW results
on the quality of the starting eigenstates makes it all im-
portant that some level of self-consistency on both G and
W is needed [33] and may even be more crucial in 2D ma-
terials due to weaker and non-local dielectric screening.
The sqGW approach provides a computationally cheaper
yet accurate alternative to the fully self-consistent GW
calculations. We believe that our predicted quasiparti-
cle properties using the sqGW approximation provide a
more complete description of the electronic structure and
excitations in monolayer SnO2.

In the right panel of Fig. 3, we present the partial den-
sity of states. The valence band is formed mainly by
O-p states. However, around the VBM, there is some
density of Sn-d states due to antibonding of Sn-d–O-p
interactions [34]. There are also a substantial density of
Sn-p and Sn-s states around 1.0 to ∼ 6.0 eV in the va-
lence band. We observed significant O-s states around
5.0 eV, which strongly hybridized with Sn-d states and
some density of O-p and Sn-p states around ∼ 16.0–23.0
eV (not shown). In the conduction band, the dominant
states are derived from a strong hybridization between
O-p and Sn-s states with both being tangible at the con-
duction band minimum (CBM). States up to 10 eV is
derived from the hybridization of the above conduction
band states hybridizing with Sn-p and Sn-d states. We
further confirmed the decomposition of the density of
states using the all-electron WIEN2K electronic struc-
ture code [35]. The overall composition of the states
forming the bandgap is similar to that reported for bulk
SnO2 [1, 36, 37]. However, a few important differences
exist. For example, our calculations show an insignificant
contribution from the O-s states around the CBM, which
is present in the bulk. We also observed a CBM domi-
nated by a strong hybridization of O-p–Sn-s states. We
attribute these differences mainly to the distinct crystal
symmetry of bulk and monolayer lattice, where the latter
could have a stronger crystal field effects [38].

To gain insight into the transport properties of mono-
layer SnO2, we calculated the carrier effective mass.
The band effective mass mb is obtained from the quasi-
particle band structure (Fig. 3) by fitting a parabola
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FIG. 3. The electronic properties of monolayer SnO2 showing
the quasiparticle band structure (left panel) and the total and
partial density of states (right panel). The spectra exhibit an
indirect quasiparticle bandgap E

ind
q ≈ 6.51 eV along the Γ−K

of the k-space. The horizontal dashed black line is the Fermi
level EF, which has been set to the top of the valence band.

Ek = ~
2

2m0

~kTA~k to the states around the band extremum
(CBM and VBM), where k = (kx, ky) is the in-plane k-
point measured from the band extremum, the eigenvalues
of matrix A yield the inverse of the effective masses in
the direction of the band curvature, and m0 is the free
electron mass. The obtained mb

e along kx (ky) is 0.57
(0.65) while the corresponding hole effective mass mb

h is
3.5 (5.2). The large hole effective mass is expected due to
the flat band at the VBM. Defining the exciton effective
mass as µ−1 = m−1

e + m−1
h , we obtain µ ∼ 0.49 (0.58)

along kx (ky) direction. We note that the electron and
hole effective mass obtained using PBE is 0.29/0.57 and
1.08/2.16 along the kx/ky, respectively.

The optical spectroscopy though less direct than the
quasiparticle band structure has the significant advan-
tage of being a true “bulk” probe of the electronic struc-
ture of a material. In order to study the absorption spec-
tra of monolayer SnO2, we calculated the photon-energy
dependent dielectric function from DFT, sqGW, and the
BSE. The latter is essential to account for the effects
of electron-hole interactions, which are important in 2D
materials as has been shown by both computations and
experiments [40–43]. We are not aware of any reported
optical properties of monolayer SnO2. Given the tech-
nological importance of SnO2, our results provide the
needed computational data for the experimental guide in
device applications.

The calculated absorption spectra obtained from our
DFT+sqGW+BSE calculations are shown in Fig. 4. Also
presented in Fig. 4 is the absorption spectra obtained
with DFT+G0W0+BSE (dashed-brown line) and with-
out electron-hole interactions using the random phase ap-
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FIG. 4. The optical properties of monolayer SnO2 showing
the (a) imaginary part ε2 and (b) real part ε1 of the dy-
namical dielectric function as a function of the photon-energy
~ω. The spectra is obtained using DFT+sqGW+BSE cal-
culations. E

ind
q ∼ 6.51 eV is the quasiparticle bandgap ob-

tained from DFT+sqGW and Eb = 1.15 is the exciton bind-
ing energy. The structure at I in Fig. 4(a) denote the first
direct excitation energy ≈ 5.36 eV. The dashed-brown line
is the absorption spectra obtained using DFT+G0W0+BSE.
We also present the absorption spectra without electron-hole
interactions obtained using the random phase approximation
(solid-black line), which show no structure below the minimal
excitation energy (I).

proximation (black-solid line) calculations, respectively.
The absorption spectra obtained using the BSE theory
includes excitonic effects, which lead to a significant in-
crease in the absorbance at the ultraviolet photon ener-
gies. On the other hand, the optical spectra obtained
using the random phase approximation (solid-black line)
show no significant structure in this region of the photon
energy. At low-energy, the DFT+G0W0+BSE spectra
are red-shifted while at higher-energies, they are blue-
shifted. There are other notable differences especially in
the dispersive part of the dynamical dielectric function
including the reversal of peaks to troughs and vice-versa
at photon-energies of 7.98, 8.50, 8.73, and 10.10 eV. The
observed deviation from the DFT+G0W0+BSE absorp-
tion spectra could be due to among other things, the
lack of self-consistency in the “one-shot” GW quasiparti-
cle eigenstates used as input in the calculation of the ab-
sorption spectra. We note that these deviations are more
pronounced at higher energies. For example, the first ex-
citation energy even though is red-shifted only differ from
the DFT+sqGW+BSE results by ∼ 70meV.

The absorptive part of the dynamical dielectric func-
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tion ε2(ω) [Fig. 4(a)] shows prominent structures labeled
I–VI. The lowest sharp structure around 5.36 eV (I) cor-
responds to the direct optical excitation. Several experi-
mental approaches, e.g., scanning tunneling spectroscopy
combined with photoluminescence measurement could be
used to measure the exciton binding energy Eb. The ex-
citon binding energy is a measure of the nature of the
electron-hole pair (uncorrelated or bound) created during
photoexcitation and it corresponds to the difference be-
tween the quasiparticle bandgap and the absolute energy
of the exciton transition (I). For our monolayer SnO2 ex-
ample, using the quasiparticle direct (indirect) bandgap
of 6.92 eV (6.51) eV, we obtain a direct (indirect) exci-
ton binding energy of 1.56 (1.15 eV) for the lowest en-
ergy exciton. The rather high Eb is a signature of a
bound exciton, which implies stability against thermal
dissociation of the excitonic states that will dominate
the room-temperature optical response and nonequilib-
rium dynamics of monolayer SnO2. Hence, this prop-
erty makes this material a candidate for exploring room-
temperature optical device applications. Such a tightly
bound exciton also highlights strong screening effects,
which is a hallmark of atomically thin materials [44]. We,
however, note that the calculated binding energy is large
when compared to other 2D materials [40, 41, 43–47].
Another structure could be seen at ∼ 6.05 and 6.55 eV
(II), a dip is observed around 6.87 eV, and then a shoul-
der around 7.50 eV (III) before a sharp structure at 8.07
eV (IV). We also observed a structure around ∼ 8.67 eV
followed by two prominent peaks at 9.10 and 9.40 eV (V),
respectively. Another noticeable feature is a shoulder
around 10.40 eV (VI) before the spectra systematically
decay to zero at higher energies (not shown). The calcu-
lated dispersive part of the dynamical dielectric function
ε1(ω) is shown in Fig. 4(b). The main features are a peak
at 5.25 eV followed by a steep decrease leading to a neg-
ative ε1(ω) with a minimum at 5.42 eV before sharply
increasing towards zero. This excitation is from the di-
rect optical transition [structure I in Fig. 4(a)]. Just as in
ε2(ω), ε1(ω) show strong photon-energy dependence with
the features in agreement with the ones already described
in Fig. 4(a).

We analyze the related transitions corresponding to
the observed structures associated with the VBM, CBM,
and some conduction band states along the Γ-K point of
the reciprocal space. Such transitions include the opti-
cally allowed bright excitons (dominated by momentum-
allowed electron-hole pair excitations) and the dark exci-
tons (dominated by momentum-forbidden electron-hole
pair excitations) as well as localized excitons (dominated
by trapped electron-hole pair excitations). The states
associated with the VBM is mainly of p−antibonding
with some d−states. The direct excitation [structure I
in Fig. 4(a)] is dominated by a transition between O-p at
the VBM with Sn-s and O-p states in the lowest SnO2

conduction band. Structures II-V are dominated by the

interband transition of O-p, Sn-p, and Sn-d to Sn-5s and
O-p while the feature at VI and beyond is predominantly
due to a complex transition between O-p with some O-s
character and Sn-p states. Specifically, the small struc-
ture around 6.05 eV is a nearly-dark exciton that could
be associated with the second excited excitonic states.
This structure hybridized slightly with the next exciton
states at ∼ 6.55 eV.

To further explore the excitonic states and the origin
of the rather large exciton binding energy in monolayer
SnO2, we employ a simple exciton model. Intuitively,
because of quantum confinement, low-dimensional mate-
rials exhibit poor dielectric screening. Moreover, when
the quasiparticle bandgap is large, nonlocal screening ef-
fect is even weaker due to the narrow spatial overlap of
the density of occupied and unoccupied states. Because
of this narrow spatial extension of the wave function of
states in the proximity of the Fermi level coupled with
the long-ranged electron-hole interactions, the exciton ra-
dius will be reduced leading to higher binding energy.
This observation is supported by recent first-principles
calculations that show linear scaling of Eb and the quasi-
particle bandgap [13, 48]. To test this premise, we note
that the macroscopic dielectric function is related to the

polarizability as α(~q) = c ε(~q)−1
4π [49], where c ∼ 20 Å.

Evaluating this relation on a set of small ~q-points, we
obtain α ∼ 1.31 Å. Adopting the screened hydrogen

model [48, 50], Eb =
8µe4

~2[1+
√

1+32πµ (e/
√
3~)2]2

≈ 3Eg

2Ng

[50].

Herein, Ng = 9 (composed of O-p, Sn-s, and Sn-d states)
is the number of bands participating in the bandgap for-
mation along the Γ − K direction of the high symme-
try points. Using these values, we obtain Eb ∼ 1.09 eV,
which is in reasonable agreement (differ by only ∼5.65%)
with the binding energy obtained from our first-principles
Bethe-Salpeter theory.

In summary, we report the optical properties of mono-
layer SnO2 obtained from first-principles many-body cal-
culations. To ensure the accurate description of the
electron-electron and electron-hole interactions, which
are important for the electronic and optical properties,
we used several levels of theory. By calculating the
quasiparticle states within the self-consistent quasipar-
ticle GW approach, we show that monolayer SnO2 is an
indirect gap semiconductor with a bandgap of 6.51 eV
and a minimum direct bandgap of 6.92 eV. In order to
obtain the optical spectra, we solved the Bethe-Salpeter
equation. A detailed analysis of the first few exciton
features in the proximity of the optical bandgap suggests
that these structures are derived from the interband tran-
sitions across a direct optical gap of∼ 5.36 eV in the pres-
ence of strong electron-hole interactions. We deduced the
binding energy of these tightly bound excitons to be in
excess of 1.0 eV predicted both from our first-principles
Bethe-Salpeter theory and the screened hydrogen model.
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