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Abstract 
 
The vibrational thermal conductances (G) across GaN-AlN interfaces are computed using a 

non-equilibrium Green’s functions formalism in the harmonic limit with bulk and interfacial 
interatomic force constants (IFCs) fully from density functional theory. Several numerical 
methods and supercell configurations are employed to examine the sensitivity of 𝐺 to variances 
of IFCs. In particular, the effects of supercell size, the enforcement of symmetry constraints and 
truncation of IFCs near the interface, and atomic relaxation on phonon transmission and 
conductance are explored. Our fully first-principles calculations are compared with common 
approximations and measured G values inferred from thermal conductivity measurements for 
GaN-AlN superlattices. Our calculated value, 𝐺~300 MWm-2K-1, is nearly half that from 
measurements.  This discrepancy is critically analyzed in terms of the physical assumptions of 
the calculations and the derivation of the experimental values. This work provides guidelines to 
determine ‘physically correct’ sets of interfacial IFCs from first-principles for thermal 
conductance calculations using minimal computational resources. It also contributes towards 
developing predictive calculations and a more complete picture of thermal conduction across 
interfaces, a first step toward first-principles multiscale thermal transport.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



I. INTRODUCTION 
 

During the last decade, predictive calculations of phonon thermal conductivity of single crystals 
have flourished  [1–8], opening the possibility to design materials with targeted and extreme 
thermal functionalities computationally  [9–14]. The theoretical and numerical framework 
behind these calculations has also allowed for refinement of our fundamental understanding of 
transport processes, like providing new rules of thumb for three-phonon scattering  [9,15,16]. 
Extending this existing framework to systems with broken symmetry, e.g., including defects and 
interfaces presents significant challenges. Yet, such capabilities will expand the existing 
computational design effort of thermal properties to nanostructured materials, multi-material 
systems and devices. Moreover, such a framework has the potential to enrich our fundamental 
understanding of vibrational properties and phonon transport near and across interfaces, 
building a more comprehensive picture of these in coupled material systems.  
 
Creating a predictive framework for interface thermal conductance has several challenges, 
including benchmarking it. From a modeling point of view, thermal measurements on well-
characterized simple structures are desired. However, atomic structures near an interface are 
complicated. Atoms are not at ideal crystal positions, even diffusing into neighboring materials 
forming defects to release lattice stress [17]. Interfaces can vary from sample to sample and 
structural characterization is limited to a few non-trivial techniques, including 2D transmission 
electron microscopy and x-ray diffraction. Thermal conductance measurements invoke 
assumptions that limit sensitivity [18] and measured values of conductance on clean interfaces 
between commensurate crystals are scarce [19–24]. Interface conductance can also be inferred 
from the thermal conductivity of superlattices using resistive additive models, however, such 
models often ignore important lattice wave effects near and between interfaces  [25,26].   
 
Modeling heat flow across interfaces has its own challenges. Calculating the various interatomic 
force constants (IFCs) required to describe vibrations and transport for interface atomic 
configurations from density functional theory (DFT) requires a large computational effort. 
Furthermore, state-of-the-art first-principles methodologies to describe interfacial transport 
are missing key physical features: the Boltzmann equation neglects the wave nature of 
phonons, molecular dynamics calculations neglect their quantum nature and non-equilibrium 
Green’s function (NEGF) methods neglect anharmonic interactions. Note NEGF methods can 
include anharmonic interactions  [27–30], but to the best of our knowledge it has not been 
done from first-principles. The first ‘ab-initio’ interface conductance simulations only included 
mass variance effects, using IFCs from a single bulk material and fully neglecting IFC variations 
at the interfaces [31–33]. Others employed ad hoc assumptions to define the IFCs near the 
interface  [34]. More recent calculations on Gold–Alkane  [35], Cu/Graphene/Cu  [36] and 
silicide-silicon  [37] interfaces have computed interfacial IFCs more rigorously from ‘first-
principles’. These studies have shown that using simple averages of interfacial IFCs can 
overestimate the conductance by up to 70%  [37], thus demonstrating their importance for 
rigorous interface conductance predictions.       
 



Numerical calculation of interfacial IFCs and conductance from DFT and Green’s functions 
requires careful consideration of several variables, including supercell and interface sizes, IFC 
truncation, connecting interface regions with bulk contact materials, etc. Yet, systematic 
exploration of these numerical nuances, particularly toward achieving the correct physical 
picture of interface conductance with minimal computational cost, is lacking. In this paper, we 
present a thorough study of interface conductance as determined by first-principles IFCs 
derived from different numerical methods and supercell configurations. The effects of supercell 
size, interaction truncation distance from the interface, symmetry and invariance enforcement 
and atomic relaxation on phonon mode transmission and overall conductance are explored. 
Physically meaningful IFCs are determined by the finite displacement (FD) method, which eases 
the computational cost over other perturbative approaches as only required IFCs near the 
interface are calculated.   
 
Our study focuses on the interface of GaN and AlN (wide band gap, polar semiconductors with 
wurtzite structure) largely due to:  (1) their technological relevance as basic components of 
high-electron mobility transistors  [38,39] and optical devices  [40,41]; (2) availability of thermal 
conductivity measurements on epitaxially grown GaN-AlN superlattices  [25] with high 
interfacial quality  [42]; and (3) thermal transport is dominated by phonons. Long-range, non-
analytic polar interactions are important for describing the optical vibrations of these materials. 
These interactions are not well captured by real space methods, such as FD methods and non-
equilibrium Green’s functions. Uncertainty and limitations of these approaches are evaluated in 
this work.  
 
Complementing this numerical exploration of the GaN-AlN interface, calculations are critically 
compared with values inferred from experiments demonstrating significant discrepancies.  
Using these microscopic vibrational conductance calculations, we assess assumptions, both 
here and in deriving experimental values, compare with common approximations and develop a 
more complete physical understanding of thermal transport across interfaces.  This work will 
enable calculations of other important interfacial systems toward a more complete picture of 
thermal properties of devices.    
 
 

II. METHODS 
 
Describing and simulating an interface of materials - a non-periodic system - from periodic 
structures constructed by typical DFT methods is nontrivial, requiring definition of the interface 
region, careful consideration of the supercell building blocks and linking of the various material 
regions. For example, a perfectly abrupt interface of two materials has a finite spatial region for 
which the relaxed atomic positions and IFCs vary from the bulk constituent materials. A key task 
of this research effort is to characterize this region in a numerically efficient manner, balancing 
quantitative accuracy with computational cost.   
 
For our Green’s function description, GaN-AlN interfaces are divided into three regions:  left 
contact (bulk GaN), right contact (bulk strained AlN (sAlN)), and device (comprised of blocks of 



both GaN and sAlN primitive unit cells (uc)) as shown in Figure 1a.  The IFCs of the contact 
regions are derived from supercells built from their relaxed primitive uc (two group III atoms 
and two N atoms with wurtzite structure as shown in Figure 1b), just as with typical bulk crystal 
calculations. AlN is strained in-plane to match the lattice of GaN to most closely correlate with 
available experimental data (see Section III).   
 
For the device region, the goal is to describe a single interface from periodic structures (see 
Figure 1a and b).  This requires building an interface cell with a sufficient number of uc 
perpendicular to the material junction (defined here along the 𝑧 axis), truncating the 
interactions of these so that periodically replicated interfaces of the ‘superlattice’ do not 
artificially interfere, and connecting the truncated piece to the bulk constituent materials of the 
interface.  To determine interfacial IFCs, an interface cell of length 𝐿'())  (measured in uc) is built 
from 𝐿'())/2 primitive unit cells of GaN on the left of the interface and 𝐿'())/2 primitive unit 
cells of sAlN on the right. This cell is allowed to relax along the 𝑧 direction (see Appendix A) and 
then it is stacked in the 𝑥 and 𝑦 directions to create a 𝑊 ×𝑊 × 𝐿'())  supercell (example shown 
in Figure 1c for 𝑊 = 4 uc and 𝐿'()) = 8 uc). 
 
To build the IFCs of the device region for the Green’s function calculations, the IFCs from the 
interface cell are restricted to length 𝐿'34 of the interface.  This reduced region is sandwiched 
between bulk GaN and sAlN as shown in Figure 1a. The restricted interface length 𝐿'34 should 
be less than half the interface cell length 𝐿'()), but long enough so that atoms near its far edges 
have IFCs similar to those of the bulk materials. This avoids including the spurious interactions 
from periodically replicated interfaces, while allowing more seamless connection to the bulk 
contacts. IFCs connecting two atoms from different regions are set to the corresponding IFCs 
from bulk GaN and sAlN. At this point, the IFCs from all regions, except those coming from the 
reduced region, satisfy derivative permutation, space group, translational and rotational 
invariances because those symmetries were enforced on the bulk crystals. Thus, we enforce 
these on the remaining atoms by slightly modifying IFCs for interacting atoms within the 
reduced region. Details of the calculations are given in Appendix A.  
 
IFCs are calculated by numerical differentiation of atomic forces in supercells, the so-called 
finite displacement method. Atomic forces are extracted from self-consistent energy 
computations using the pw.x module of Quantum Espresso  [43]. Some caveats for these 
calculations are discussed in Sec. IV.  
 



 
Figure 1: (a) Sample simulation cell consisting of device (red shaded region containing the 
interface) and contacts (bulk materials). This cell is repeated transverse to the interface to form 
the NEGF simulation system. (b) Schematic of the primitive unit cells of the GaN-sAlN interface 
region with length 𝐿'()) = 8 uc, and bulk GaN and sAlN contacts. The device is built by 
sandwiching a region of restricted length 𝐿'34 within the interface cell, between bulk GaN and 
sAlN. (c) 𝑊 ×𝑊 × 𝐿'())  supercell, with 𝑊 = 4 uc, built by repeating primitive interface unit 
cells (uc) with length 𝐿'()) = 8 uc, half GaN and half sAlN.      

 
Thermal conductance 𝐺 is defined as the ratio between induced heat flux and applied 
temperature gradient. In the harmonic limit, where phonons do not interact, the conductance 
of a device (region surrounding the interface shown in Figure 1a) connected to contacts (bulk 
sAlN and GaN as shown in Figure 1a) at thermal equilibrium can be expressed according to the 
Landauer formalism as  [44]   

 𝐺 =
1
𝐴
7

𝑑𝜔
2𝜋 𝐶(𝜔)𝑀𝑇(𝜔)

@

A
 (1) 

with 𝐴 the cross-sectional area, 𝜔 the phonon frequency, 𝐶(𝜔) = ℏ𝜔 CD(E)
C𝑻

 the mode heat 
capacity, ℏ the reduced Planck’s constant, 𝑁(𝜔) the Bose-Einstein distribution, 𝑻 the 
temperature and; 𝑀𝑇(𝜔) the sum of transmissions between all available phonons in the 
contacts, which is computed using non-equilibrium Green’s functions (NEGF)  [45]. The NEGF 
outcome is labeled  𝑀𝑇(𝜔) to highlight the wave and quantized nature of phonon transport. 
𝑀(𝜔) represents the number of modes or available transport channels at frequency 𝜔, while 
𝑇(𝜔) represents an average phonon transmission over those channels. 𝑀(𝜔) is closely related 
to the quantum of thermal conductance  [44] and defines an upper bound of conductance 
(when phonons flow ballistically 𝑇(𝜔) = 1), which arises from intrinsic scattering processes 
necessary to bring phonons to thermal equilibrium at the contacts  [45]. 𝑀(𝜔) is an integer 
number and can also be determined by counting the number of 1D phonon bands crossing 𝜔 
along the transport direction. Thus, 𝑀(𝜔) is sometimes referred to as the number of available 
transport channels  [45]. On the other hand, 𝑇(𝜔) captures an average of wave scattering 
properties of phonons. For instance in a simple 1D chain with one phonon band (𝑀(𝜔)=1), 
𝑀𝑇(𝜔) from NEGF matches the wave transmission found by solving the scattering problem of 
an impinging vibrational wave on a device  [46,47].  



 
When the system (device plus contacts) is periodic in the plane perpendicular to transport 
(Figure 1c), as is the case for an abrupt interface, the calculation of 𝑀𝑇(𝜔) is simplified by 
Fourier transforming the atomic coordinates perpendicular to transport into reciprocal space. 
This step turns the 3D system into decoupled 1D chains whose contributions can be calculated 
independently so that 𝑀𝑇(𝜔) is given by  [28,45,48,49] 

 𝑀𝑇(𝜔) =H𝑀𝑇IJ⃗L(𝜔)
IJ⃗ L

=HTrace RΓIJ⃗ L
T (𝜔)𝐺IJ⃗ L

U (𝜔)ΓIJ⃗ L
V (𝜔)W𝐺IJ⃗ L

U (𝜔)X
YZ

IJ⃗ L

 (2) 

with �⃗�\ a 2D wavevector perpendicular to transport running over a 2D Brillouin zone that labels 
each decoupled 1D chain. ΓIJ⃗ L

] (𝜔) with 𝛼 = 𝐿,𝑅 are the broadening matrices from the left and 
right contacts and 𝐺IJ⃗L

U (𝜔) is the retarded Green’s function of the �⃗�\ 1D chain. The Green’s 
functions describe the dynamics of atomic vibrations in the device portion of each chain, while 
the  broadening matrices describe the lifetimes of those phonons escaping to the contacts  [45]. 
Note that the Green’s functions are solutions of the many-body atomic equation of motion and 
thus captures the wave and quantum nature of atomic vibrations in the device. A description of 
the steps required to calculate ΓIJ⃗L

] (𝜔) and 𝐺IJ⃗ L
U (𝜔) from a given set of IFCs is given in Appendix 

A. In the following sections, 𝑀𝑇(𝜔) is plotted as an average over decoupled 1D chains 
〈𝑀𝑇(𝜔)〉IJ⃗ L = 𝑀𝑇(𝜔)/𝑁IJ⃗ L  with 𝑁IJ⃗L  the number of 1D chains or grid points in the 2D Brillouin 
zone. 
 

III. COMPARING THEORY WITH MEASUREMENTS 
 
Our conductance calculations versus temperature for two perfectly abrupt GaN-sAlN interfaces 
are given in Figure 2b, one with Al-N bonds at the interface (type 1, solid black curve) and the 
other with Ga-N bonds (type 2, solid red curve), see schematic in Figure 2a. Interfacial IFCs were 
determined from supercell structures with 𝑊 = 4 uc and 𝐿'()) = 8 uc. These were truncated 
near the material junction to include an interface length  𝐿'34 = 4 uc in our simulation system as 
depicted in Figure 1. The overall 𝐺 for both interface types are similar, despite their spectral 
contributions, which are proportional to 𝑀𝑇(𝜔), being different (Figure 2d). For instance, 
phonons around 7 THz are 30% more likely to cross a type 2 interface than a type 1 interface. 
Note that type 1 interfaces are energetically favorable [41]. When GaN is strained in-plane (sGaN) 
to match the lattice of AlN, G at room temperature for a type 1 sGaN-AlN interface is only 5% 
larger than that of its counterpart GaN-sAlN interface. Most of the difference arises from optical 
vibrations above the phonon bandgap that shift upward in frequency as GaN contracts in-plane.  
 
 
 
 
 
 
 
 



For comparison, Figure 2b also shows G as determined by the diffuse mismatch model (DMM) 
obtained by replacing 𝑀𝑇(𝜔) in Eq. 1 with  [35] 

 𝑀𝑇cdd(𝜔) =
𝑀efD(𝜔)𝑀gh)D(𝜔)
𝑀efD(𝜔) +𝑀gh)D(𝜔)

 (3) 

where 𝑀efD(𝜔) and 𝑀gh)D(𝜔) are calculated from Eq. 2 assuming the device and contacts are 
either GaN or sAlN which yields 𝑇(𝜔) = 1. 𝑀(𝜔) then counts the number of propagating modes 
or transport channels available in either bulk material. This DMM conductance is built from first-
principles dispersions of GaN and sAlN. 𝑀𝑇cdd(𝜔) is a parallel combination of available 
transport channels in the contacts so it is large whenever both 𝑀efD(𝜔) and 𝑀gh)D(𝜔) are large. 
Figure 2d shows that 𝑀𝑇cdd(𝜔) is much larger than 𝑀𝑇(𝜔) for type 1 and type 2 interfaces, 
which happens because 𝑀𝑇(𝜔) is bounded by the available transport channels in the contacts 
that conserve momentum parallel to the interface [32]. The extra momentum conservation 
constraint diminishes 𝑀𝑇(𝜔) and conductance with respect to that from the DMM (Figure 2b).  
 

 

 
Figure 2: (a) Schematic of the simulated single and double interfaces. (b) Comparison of first-
principles G for a GaN-sAlN interface with the diffuse mismatch model (DMM) and with data 
inferred from GaN-sAlN superlattice experiments (symbols  [25]). Solid curves give G directly 
from calculations, while dashed curves give 𝐺 with contact resistances excluded (see text).  The 
shaded region represents the numerical uncertainty in the calculation of the black curve. (c) First-
principles G of a GaN-sAlN-GaN double interface compared with data determined from 
experiments. (d) Average 𝑀𝑇(𝜔) per unit cell in the interfacial plane (see Section II) for the 
interfaces described in (a). 

Figure 2b compares calculated interface conductance values with values inferred from thermal 
conductivity measurements of GaN-AlN superlattices 𝜅kT  [25]. The superlattices were grown 
using molecular beam epitaxy to achieve high quality interfaces with estimated interdiffusion and 
interfacial roughness ≲ 1 nm  [38,42]. Each sample was grown on a 3.6 µm GaN buffer starting 
and ending with AlN and keeping the thickness of AlN layers at ~4 nm  [25] so that the bulk of the 



AlN material strains to lattice-match with GaN (~53 nm thick) avoiding dislocations and 
cracks  [25]. 𝜅kT  was measured using time-domain thermoreflectance  [25], while the 
conductance of individual interfaces 𝐺 was inferred assuming the thermal resistance of a 
superlattice period is the sum of the resistances of the interfaces and layers  [25] 

 
𝑧efD + 𝑧h)D

𝜅kT
=
𝑧efD
𝜅efD

+
𝑧h)D
𝜅h)D

+
2
𝐺 (4) 

with 𝑧efD  (𝑧h)D) the thickness of GaN (AlN) layers and 𝜅efD  and 𝜅h)D  their corresponding thermal 
conductivities, which were taken to be the largest measured values in the literature (Appendix 
B). Note that smaller 𝜅efD  and 𝜅h)D  yield larger values of 𝐺. Figure 2b shows the extracted 𝐺 
from Eq. 4 with 𝑧efD = 53 nm (open dot comes from Figure 3a while filled dots from Figure 5 
in [25]). The 10% difference of measured values at room temperature manifests from the 
uncertainty of the 𝜅kT  measurements (ranging from 18.07 to 16.44 Wm-1K-1). Note that Eq. 4 
assumes that all phonons crossing an interface reach thermal equilibrium near it. This 
approximation is not fully justified, particularly near the 4nm AlN layer, however it provides an 
initial reference point to develop further understanding of phonon transport across interfaces in 
superlattice structures  [26,50]. 
 
The calculated 𝐺 for both types of GaN-sAlN interfaces (black and red solid curves in Figure 2b) 
are ~45% of the measured value extracted from GaN-AlN superlattices with 𝑧efD = 53 nm at 
room temperature (filled dots in Figure 2b). This difference is not expected to decrease when 
improving numerical convergence of the calculations (see Section IV), since increasing 𝑊, 𝐿'())  
and 𝐿'34 decrease the conductance value by about 10% (shaded region in Figure 2b). The 
discrepancy with experiments is partly due to our assumptions:  calculated G are obtained (1) in 
the harmonic limit (neglecting phonon-phonon interactions), (2) on perfectly abrupt interfaces 
(neglecting interatomic mixing), and (3) including additional contact resistances (not present in 
experimental values). Furthermore, the assumption in Eq. 4 that all of the individual interface 
resistances can be simply added is questionable given that some of the GaN-AlN superlattice 
interfaces are only 4nm apart. These factors are critically analyzed in the rest of this section. 
 
Part of the difference between calculated and measured G arises from artificial contact resistance 
in NEGF calculations. Eq. 1 computes conductance across a device between contacts at different 
thermal equilibria  [45]. However, vibrations in the device cannot thermalize and reach a steady-
state non-equilibrium distribution due to the harmonic assumption. Once phonons leak to the 
contacts, implicit scattering processes take them to equilibrium, creating a resistance at the two 
interfaces of the device and contacts  [45]. These resistances can be approximated defining an 
artificial local temperature at slabs of the device along the transport direction. At each slab, the 
temperature is found equating its total energy, arising from a non-equilibrium distribution, to an 
equilibrium distribution [51]. A temperature profile versus position of one of our interfaces, 
converting local non-equilibrium energy to equilibrium distributions, has three temperature 
drops: one at each contact-device boundary and one at the GaN-sAlN interface that we are 
modeling (see Figure 3b of reference  [52] for an example). In the data extracted from 
measurements there is only a single temperature drop at the GaN-sAlN interface. The 
conductance at the GaN contact can be approximated as twice the conductance of a 
homogeneous material 𝐺efD   [45,52] 



 𝐺efD =
1
𝐴
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since transmission is unity across a device composed of a homogeneous system, and the 
temperature drops are equal and localized to the two contact-device boundaries. Thus, the 
conductance of each boundary is twice that of 𝐺efD. A similar definition is valid for the resistance 
at the sAlN contact. Using Eq. 5 and assuming that the total resistance is the sum of resistances 
at the contacts plus resistance at the GaN-sAlN interface, we can approximate the interface 
conductance without contact resistance as  [52] 

 𝐺′ =
𝐺

1 − 𝐺 r 1
2𝐺efD

+ 1
2𝐺h)D

s
 (6) 

Note that the same equation was derived from arguments of local equilibrium related to four-
point probe measurements [31]. Figure 2b demonstrates that excluding the contact resistance 
for the type 1 and type 2 interfaces results in a 22% increase of conductance (dashed curves). 
Although this does not fully explain the discrepancy between theory and experiments, it is a 
sizable effect that should be considered in future first-principles calculations of G. A better 
description of this phenomena requires further understanding of phonon thermalization at 
interfaces. 
 
The wave nature of phonons interacting with interfaces in close proximity, like those of the 4nm 
sAlN layer in experiments, may also bridge the gap between theory and experiments. The 
resistance across two identical interfaces close to each other can be smaller than the sum of 
resistances of the interfaces in isolation due to tunneling and interference [47]. To obtain an 
upper bound of possible wave effects resulting from phonons crossing close interfaces, G was 
calculated for a GaN-sAlN-GaN double interface setting the thickness of the sAlN layer to 3.906 
nm (Figure 2a). The IFCs at each interface are the same as those from the single type 1 and type 
2 interfaces used in Figure 2b, while the IFCs of the sAlN unit cells joining them come from bulk 
sAlN. Figure 2c shows G of the double interface with and without contact resistance. It is 
compared with the conductance determined from the measured 𝜅kT  using 1/𝐺 instead of 2/𝐺 
in Eq. 4 to extract the conductance of the double interface. While the experimental data halves 
from Figure 2b to Figure 2c, the NEGF conductance does not, reducing the discrepancy with the 
measured data from 45% to 25% at room temperature (using the values without contact 
resistance). 𝑀𝑇(𝜔) for the double interface is compared with that of single interfaces in Figure 
2d.  
 
Interatomic mixing and anharmonicity at the interface are also important factors that these 
harmonic G calculations neglect. Ironically, adding interfacial disorder to a perfectly abrupt 
interface can increase G. The disorder breaks symmetry parallel to the interface allowing 
transmission between phonons with different components of momentum perpendicular to the 
interface. 𝐺 increases if these new transport channels are larger than the backscattering induced 
by disorder  [32].  Molecular dynamics, as well as NEGF simulations, have shown that adding 
interatomic mixing to an otherwise perfect interface enhances G by 10 to 20%  [31,32,53], a non-
negligible effect. However, those simulations only included the effect of disorder through mass 
variance. Other simulations on interfaces with larger amounts of intermixing and atomic 



rearrangement, that accounted for mass and IFC variance using empirical potentials, predict the 
opposite effect  [54]. As the effect of IFC variance from interfacial disorder has not been 
considered from first-principles, its impact on G remains unclear. Anharmonicity can also 
enhance interfacial thermal conductance as it allows phonons to thermalize near the interfaces 
favoring states with higher transmission  [55–59]. An increase of interfacial conductance with 
temperature is commonly seen in molecular dynamics simulations  [59,60]. Recently this 
enhancement was captured by a NEGF methodology combining Büttiker probes with 
phenomenological scattering rates  [37]. A fully first-principles treatment of G including 
anharmonic IFCs from first-principles near the interface has not been done. These represent 
future challenges for this field of research. 
 

IV. SENSITIVITY TO SUPERCELL GEOMETRY AND RELAXATION 
 
Supercell geometry:  Interfacial supercells (Figure 1c) should be large enough to capture the 
evolution of IFCs from one bulk material on one side of the interface to the other. An ideal set 
of IFCs would automatically capture long-range interactions and satisfy all invariances (point 
group, derivative permutation, translational and rotational). However, realistic numerical 
simulations are limited to fairly small size and thus interfacial IFCs can vary according to how 
supercells are constructed (𝑊, 𝐿'()), and 𝐿'34 in Figure 1). Sensitivity of the calculated 
interfacial conductance to variances of the IFCs from different supercell structures are 
examined here.  
 
To simplify the analysis, the temperature dependence of G (Eq. 1) is removed by taking the high 
temperature limit of the mode heat capacities  

 𝐺@ =
𝑘u
2𝜋𝐴

7 𝑑𝜔𝑀𝑇(𝜔)
@

A
 (7) 

Under this approximation all available frequencies contribute to transport and conductance is 
proportional to the area under 𝑀𝑇(𝜔). Also, the contributions from the high frequency optic 
phonons (𝐺@

vw , above the bandgap in Figure 2d) and lower frequency optic and acoustic modes 
(𝐺@h', below the bandgap) are distinguished, 𝐺@ = 𝐺@h' + 𝐺@

vw .  
 



 
Figure 3: High temperature conductance versus the number of unit cells in the interface 𝐿'34  
for supercells with W=3 uc (left) and 4 uc (right), and 𝐿'())  =8 uc (blue) and 𝐿'())=12 uc (red).   
Solid symbols use IFC sets with space group, permutation, translational and rotational 
invariances enforced, while open symbols use IFC sets with only space group and permutation 
invariances enforced. At 𝐿'34 = 6 uc, interface conductance is nearly converged with respect to 
𝐿'34. 

 
Interfacial IFCs are extracted from a 432-atom (𝑊 = 3 uc, 𝐿'()) = 12) supercell (Figure 1) and 
the cutoff length 𝐿'34 defining the IFCs used in the device is varied from 2 to 6 uc.  Convergence 
of G with respect to 𝐿'34 is nearly achieved by 𝐿'34 = 6 uc as shown by the open red circles in 
Figure 3, which are derived from IFC sets satisfying only space group and derivative 
permutation invariances. The conductance trend is primarily dictated by changes in 𝐺@

vw  
resulting from the inclusion of longer-range IFCs with increasing 𝐿'34 for these polar systems 
(Figure 3). From 𝐿'34 = 5 to 𝐿'34 = 6 uc, 𝐺@ decreases by less than 0.4%, 𝐺@

vw plateaus at 
about 102 MWm-2K-1 and 𝐺@h'  decreases by less than 0.9%. Despite the relatively small 
variance, 𝐺@h' does not seem to plateau with increasing 𝐿'34.  Analyzing the convergence of our 
transport calculations merely based on conductance might be misleading as 𝐺@ is proportional 
to the area under 𝑀𝑇(𝜔); it is an integrated quantity with no spectral information.  For our 
case, 𝑀𝑇(𝜔) for 𝐿'34=4, 5 and 6 uc are very similar (Figure 4) and the difference between 
integrated 𝑀𝑇(𝜔) values (∫𝑑𝜔{𝑀𝑇T|}~����(𝜔) −𝑀𝑇T|}~��(𝜔){)  for consecutive 𝐿'34 
decreases as 𝐿'34 increases. More importantly, the differences for these values for frequencies 
below the bandgap tends to zero, suggesting that 𝐺@h' is nearly converged. Similar convergence 
trends for  𝐺@, 𝐺@

vw and 𝐺@h' are obtained when translational and rotational invariances are 
enforced on the IFCs (solid red dots in Figure 3). 
 



 
Figure 4: (a) Average 𝑀𝑇(𝜔) per simulation cell for different interface cutoff lengths 𝐿'34 
corresponding to open red circles in Figure 3. The similarity of the curves demonstrates that  
𝑀𝑇(𝜔) is close to a converged value by 𝐿'34 = 6 uc. 

 
To complement the study on interface cutoff length dependence, we also examined 𝑀𝑇(𝜔) 
and 𝐺@ with different supercell constructions:  288-atom (𝐿'()) = 8, 𝑊 = 3) and 512-atom 
(𝐿'()) = 8, 𝑊 = 4) supercells with varying 𝐿'34. Blue open squares in Figure 3 give 𝐺@ versus 
𝐿'34 demonstrating an approach to convergence by 𝐿'34 = 4 uc. We conjecture that the 
conductance for a 𝐿'34 = 6 uc interface from a 𝑊 = 4 uc and 𝐿'()) = 12 uc supercell  should 
be about 3% lower than 𝐺@ = 384.35 MWm-2K-1, the value from a supercell with 𝐿'()) = 8 uc, 
𝑊 = 4 uc and 𝐿'34 = 4 uc. This expectation is based on our calculations using IFCs from 
supercells with 𝑊 = 3 (Figure 3). Note that the change in 𝐺@ when increasing the supercell size 
is mostly due to the optical phonon spectrum, while 𝐺@h'   remains unchanged  (see Figure 3 for 
𝐿'()) = 8 uc and 𝐿'()) = 12 uc when 𝑊 = 3 uc).  
 
 

 
Figure 5: (a) Average 𝑀𝑇(𝜔) per simulation cell and (b) 𝐺@ for systems whose interfacial IFCs 
are computed from supercells with various widths 𝑊 (Figure 1). At 𝑊 = 5 uc, 𝐺@

vw  has not 
converged due to the truncation of the long-range IFCs that give rise to LO-TO splitting.   

 



Evaluating sensitivity of 𝐺 to the cross-section 𝑊 of the interfacial supercell (Figure 1c) is more 
challenging since the number of atoms scales as 𝑊�. For 𝐿'()) = 12 uc with 𝑊 = 4 and 5 uc, 
the supercell atom count rises from 768 to 1200, respectively, both systems beyond typical 
numerical budgets given the large memory and processing constraints. To circumvent this 
problem, the interfacial cutoff length is reduced to 𝐿'34 = 2 uc with 𝐿'()) = 4 uc to test the 
interfacial conductance sensitivity to supercell width (see Figure 5). While 𝐺@h'  and the acoustic 
contributions to 𝑀𝑇(𝜔) are close to convergence at 𝑊 = 5 uc, 𝐺@

vw  is not. 𝑀𝑇(𝜔) decreases 
notably over the optical frequency spectrum, precisely where our FD IFCs do not capture the 
LO-TO splitting well (Figure 15). This well-known problem for real-space calculations of IFCs for 
polar materials could be ameliorated using a correction for the neglected non-analytic 
contributions  [61], which is not trivial for these calculations. 
  
 

 

 
Figure 6: Average 𝑀𝑇(𝜔) = 𝑀(𝜔) per simulation cell and 𝐺@ for bulk GaN ((a) and (b), 
respectively) and sAlN ((c) and (d), respectively) using IFCs determined from the finite 
displacement (FD) method on 𝑊 ×𝑊 ×𝑊 supercells versus those calculated from density 
functional perturbation theory (DFPT). DFPT IFCs include long-range, non-analytical corrections 
and capture LO-TO splitting.  

 
 



The uncertainty of calculations of 𝑀𝑇(𝜔) and 𝐺@ with relation to neglecting long-range, non-
analytical IFCs is estimated via calculations of these for bulk GaN and sAlN, for which these 
long-range interactions can be included. For bulk materials, phonon transmission is unity and 
𝑀𝑇(𝜔) = 𝑀(𝜔). Besides using Eq. 2 on bulk crystals, 𝑀(𝜔) can be computed in a more 
intuitive way. For each �⃗�\, the dispersion along the transport direction can be calculated and 
the number of bands available at each 𝜔 counted. Summing over the 2D Brillouin zone where 
�⃗�\ is defined, we determine 𝑀(𝜔). Doing this process with a phonon dispersion that includes 
non-analytical, long-range IFCs from separate density functional perturbation theory (DFPT) 
calculations, we determine 𝑀(𝜔) and 𝐺@ in the limit of infinite supercell size for GaN and sAlN 
(Figure 6). Our calculations indicate that 𝐺@ including LO-TO splitting is 7% and 5% lower than 
that obtained using FD IFCs from 4 × 4 × 4 bulk supercells of GaN and sAlN, respectively. Thus, 
we estimate that 𝐺@ for an interface with IFCs coming from supercells with cross-section 𝑊 
tending to infinity is likely similarly lower than that from a 𝑊 = 4 uc supercell. This estimation 
of lower G ignores the LO-TO splitting effect from sAlN because its largest changes in 𝑀(𝜔) 
occur above 22.6 THz, the maximum frequency of GaN. Thus, these modes do not contribute to 
𝐺 in our elastic transport calculations, which require available transport channels in both 
contacts to have non-zero 𝑀𝑇(𝜔). 𝑀𝑇cdd(𝜔) in Eq. 3 can also be calculated including long-
range IFCs. Figure 7 shows 𝑀𝑇cdd(𝜔) for both cases (with and without long-range Coulomb 
interactions) and highlights differences in the high frequency optical spectrum. The resulting 
𝐺@ differ by 7.3%.  
 
Summing up conductance sensitivity to interface cutoff length and supercell cross-section, we 
expect that our reported values of conductance using 𝐿'()) = 8 uc, 𝑊 = 4 uc and 𝐿'34 = 4 uc 
to be 10% larger than a fully converged value. Note this error is in the limit of high 
temperature, where 𝐺@h'  and 𝐺@

vw constitute 76% and 24% of the total 𝐺@, respectively. As 
temperature decreases, 𝐺@

vw  decreases due to the heat capacity in Eq. 1, thus, the expected 
error due to neglecting LO-TO splitting decreases. For example, at room temperature 𝐺vw  gives 
14% of 𝐺 so the error decreases to 14/24*10%. 
 
 
 



 
Figure 7: (a) Average 𝑀𝑇cdd(𝜔) per simulation cell and (b) G with and without long-range 
Coulomb interactions. 𝐺@ from DFPT is 7.3% smaller than  𝐺@ from FD. 

 
Again, the interfacial IFCs were extracted from 𝑊 ×𝑊 × 𝐿'())  supercells with a single interface 
(Figure 1c). Using these IFCs to create the phonon dispersion of a superlattice (not used directly 
in the NEGF methodology) gives an imaginary longitudinal acoustic branch along the Γ to 𝐴 
direction (plotted as a negative blue branch in Figure 8a). This imaginary branch does not affect 
our NEGF interface conductance calculations. When including three interfaces in the supercell 
(doubling the supercell size and explicitly constructing superlattice periodicity), while keeping 
the same 𝑊 = 3 and 𝐿'()) = 4, eliminates this imaginary branch (see Figure 8a).  An instability 
near the Γ point re-emerges when explicitly including five interfaces in the supercell (triple the 
original supercell size).  Note that these ‘superlattice’ constructions should be equivalent, 
however, Figure 8a demonstrates differences in the dispersions.  Despite these differences, 
their associated interface conductance calculated from NEGF are similar. The acoustic 
contributions to 𝑀𝑇(𝜔) (Figure 8b) are almost independent of the number of interfaces 
included in the supercell and 𝐺@h'  varies by less than 0.7% (Figure 8c). Changes in 𝐺@

vw  arise 
from longer atomic interactions and should converge as the number of interfaces in the 
supercell increases. This analysis is relevant to calculation of IFCs by finite displacements as 
smaller supercells (higher computational efficiency) that give physically-meaningful results are 
desired.   
 



 
Figure 8: (a) Phonon dispersions for supercells with increasing number of interfaces (one, three 
and five) while keeping 𝑊 = 3 uc and 𝐿'()) = 4 uc constant.  Single interface (b) Average 
𝑀𝑇(𝜔) per simulation cell and (c) 𝐺@ using interfacial IFCs from these systems. Despite the 
different low frequency phonon behavior, 𝑀𝑇(𝜔)s are nearly identical below 5 THz, suggesting 
the imaginary phonon frequencies from the single interface supercells do not affect the NEGF 
transport calculations. 

 
Supercell relaxation:  Despite the variations of calculated IFCs that accompany atomic 
relaxation, we find negligible sensitivity of 𝐺 with the quality of relaxation. IFCs from 𝑊 = 5 uc 
supercells built using 𝐿'()) = 4 uc interface cells were determined in four different ways: (1) 
Atomic positions for an interface cell were relaxed until interatomic forces were < 7.8 × 10�� 
Ry Bohr-1. Then the supercell was built and IFCs were calculated without further atomic 
relaxation. At this point, atomic forces on the supercell were less than 2.4 × 10�� Ry Bohr-1. (2) 
Calculation similar to (1) but atomic positions on the supercell were further relaxed with 
<4.2 × 10�� Ry Bohr-1 precision. (3) Calculation similar to (1) but the strict initial relaxation 
bound on the interatomic forces of the interface cell is loosened to  4.9 × 10�� Ry Bohr-1. (4) 
The primitive unit cells along the supercell (𝑧 direction) were compressed by 0.075% (~0.015 Å) 
and atomic positions were relaxed until interatomic forces <8.3 × 10�� Ry Bohr-1. The 
calculated 𝑀𝑇(𝜔) values for all systems are similar and the variance of G among them is less 
than 0.16% (Figure 9). From these results we learn that calculations of IFCs, 𝑀𝑇(𝜔) and G are 
insensitive to small variances in atomic positions and stringent relaxations, within reason, are 
not required.     
 



 
Figure 9: (a) Average 𝑀𝑇(𝜔) per simulation cell and (b) 𝐺@ for systems whose IFCs are 
determined with different levels of atomic relaxation of the supercells. 
 

V. SENSITIVITY TO INVARIANCE CONDITIONS 
 
Numerically calculated IFCs from finite supercells typically violate invariance constraints of the 
physical system (point group (PG), derivative permutation (DP), translational (TI) and rotational 
(RI) invariances)  [62–64]. Furthermore, such invariances are broken when combining the non-
periodic interface cell with the bulk contacts. In this section, sensitivity of the calculated 
interfacial conductance to variances of the IFCs from different applications of the invariance 
constraints are examined. 
 
For analysis here, we consider the interfacial system 𝐿'()) = 8 uc, 𝑊 = 4 uc and 𝐿'34 = 4 uc 
because results from this configuration were compared with measurements in Figure 2.  
Detailed results for some other systems are shown in Figure 3 and Figure 11. Enforcing DP 
guarantees that the IFC matrix of the system is symmetric and avoids instabilities or negative 
values of 𝑀𝑇(𝜔) (Figure 10a). Aside from a few instabilities, 𝑀𝑇(𝜔) calculated from the IFC set 
before enforcing any invariance constraints (‘None’) is almost identical to that from a set where 
DP was enforced (Figure 10a). Additional enforcement of SG also results in a very similar 
𝑀𝑇(𝜔) (Figure 10a).  Figure 10b compares calculations of  𝑀𝑇(𝜔) from IFCs with DP and SG 
enforced with that from IFCs where TI and RI are also enforced by changing the least possible 
all irreducible IFCs (details in Appendix A). This process only changes 𝑀𝑇(𝜔) slightly at low 
frequencies and does not alter phonon transmission properties above 6 THz (Figure 10b and 
𝐺@
vw  in Figure 11). Note 𝐺@ from enforcing DP, SG, TI vs. enforcing DP, SG, TI, RI differ by less 

than 2%, however, differences become larger as 𝐿'34 and 𝑊 decrease (Figure 11). 
 
 
 



 
Figure 10: Average 𝑀𝑇(𝜔) per simulation cell from IFCs that satisfy different symmetry 
invariances. (a) Comparison of 𝑀𝑇(𝜔) for IFCs directly from FD calculations (‘None’), when 
enforcing derivative permutation (DP) and when enforcing DP and space group (SG) 
symmetries.  (b) 𝑀𝑇(𝜔) for IFCs with DP and SG compared to these with the addition of 
enforcing translational (TI) and rotational (RI) invariances, while minimizing the change in IFCs 
with DP and SG. (c) Enforcing simple translational invariance (sTI), commonly known as the 
simple acoustic sum rule, generates visible changes in 𝑀𝑇(𝜔) that result in a 7% 
overestimation of 𝐺@.    

A more commonly used method to enforce TI consists of equating onsite IFC matrix elements to 
the negative of the sum of all IFC matrices originating from that site, which is known as the 
simple acoustic sum rule (sTI). This process is simple to implement, but usually breaks DP and 
SG symmetries. Figure 10c compares 𝑀𝑇(𝜔) from IFC sets where TI and RI are enforced with 
those where sTI invariances are enforced. Transport properties are notably changed above 6 
THz when using the sTI (Figure 10b and c). This results in a 35% (6%) overestimation of 𝐺@

vw  
(𝐺@) and a 3.5% underestimation of 𝐺@h' compared to the other sets (Figure 11a). Below 3.5 
THz using sTI and TI+RI yield similar 𝑀𝑇(𝜔), so sTI may still be useful in low temperature 
calculations. The differences between 𝐺@

vw  from IFCs satisfying TI+RI and those satisfying sTI 
grow larger as 𝐿'34 increases and as 𝑊 decreases (Figure 11). Larger 𝐿'34 implies more onsite 
IFC matrices are modified, allowing for more distribution of variations, while shorter 𝑊 gives 
fewer IFC matrices, so changes of the onsite terms are more noticeable. 
 



 
Figure 11: 𝐺@ resulting from IFCs that satisfy various invariances as (a) the truncation length 
𝐿'34 and (b) the supercell width 𝑊 vary.  

 
 

VI. COMPARISON WITH OTHER APPROXIMATIONS 
 
Calculating interfacial IFCs from first-principles is computationally demanding, thus many 
approximations have been used previously to determine them from IFCs of the bulk materials. 
We examine some of these here; in particular, we approximate the interfacial IFCs (with 𝐿'34 =
4 uc) for four separate cases by using IFCs from (1) bulk GaN, (2) bulk sAlN, (3) the arithmetic 
mean (AM) of bulk GaN and sAlN, and (4) their harmonic mean (HM).  The masses of the atoms 
were unaltered.  The IFCs from these separate approximations are connected to GaN and sAlN 
contacts and all symmetries and invariances are enforced. All these approximations overestimate 
our fully first-principles 𝐺 by about 13% at room temperature and up to 20% at high temperatures 
(see Figure 12b). 𝐺 from the AM and HM calculations are similar and bounded by 𝐺 using 
interfacial IFCs from the contacts. As expected, long wavelength phonons up to 6 THz are 
insensitive to the choice of interfacial IFCs and differences in 𝑀𝑇(𝜔) tend to increase with 
phonon frequency (Figure 12a). Interestingly, 𝐺 from the AM set is larger than that from the HM 
set contrary to predictions by simple models  [46].  



 
Figure 12: (a) Average 𝑀𝑇(𝜔) per simulation cell and (b) 𝐺 for GaN-sAlN interfaces using 
common approximations for the interfacial IFCs. Namely, interfacial IFCs determined from the 
arithmetic mean (AM) and harmonic mean (HM) of the IFCs of GaN and sAlN, as well as simply 
using the IFCs of pure GaN and sAlN.   

Most of the existing ‘ab-initio’ interface conductance simulations only include mass variance 
effects, using IFCs from a single bulk material and fully neglecting IFC variations at the 
interfaces [31–33]. To test this approximation, G of GaN-sAlN interfaces assuming that all the 
IFCs of the system are either those of GaN or sAlN are computed (Figure 13). Our calculations 
indicate that neglecting IFC variance overestimates the fully first-principles G by 15% to 60% at 
room temperature, with important differences over the whole frequency spectrum. Note the 
spectral differences in 𝑀𝑇(𝜔) arise not only due to removing IFC variance at the interface but 
also due to changes in the phonon spectra at the contacts.  

 

 
Figure 13: (a) Average 𝑀𝑇(𝜔) per simulation cell and (b) G for GaN-sAlN interfaces considering 
only mass variance. The IFCs of the whole interfacial system are equated to either those of GaN 
(green curves) or sAlN (blue curves).  These are compared to the fully first-principles 
calculations (black curves). 

 
In spite of the limitations of approximating interface G only including mass variance effects, this 
variance captures better the fully first-principles G than when only interfacial IFC variance is 



included. 𝑀𝑇(𝜔) and G for GaN-sAlN interfaces assuming that all of the masses of the system 
are either those of GaN or sAlN, while keeping the IFCs equal to those from the fully first-
principles calculation, are shown in Figure 14. Including only IFC variance at the interface 
overestimates the fully first-principles G by 290% to 430% at room temperature. Most of the 
differences arise due to the change in phonon spectra at the contacts when the Ga masses are 
replaced by those of Al and vice versa, which transforms the GaN-sAlN interface to an interface 
between materials with more similar vibrational spectra.  
 
 

 
Figure 14: (a) Average 𝑀𝑇(𝜔) per simulation cell and (b) G for GaN-sAlN interfaces considering 
only IFC variance. The masses of the whole interfacial system are equated to either those of 
GaN (green curves) or sAlN (blue curves) while the IFCs are those from the fully first-principles 
calculation. These are compared to the fully first-principles calculations (black curves). 

 

 
 

VII. SUMMARY AND CONCLUSIONS 
 
Phonon thermal conductances (G) of GaN-AlN interfaces were calculated using a non-
equilibrium Green’s function formalism in the harmonic limit with interfacial interatomic force 
constants (IFCs) from density functional theory. The influence of varying geometric supercell 
parameters, IFC symmetry constraints and relaxation methods were quantitatively assessed in 
terms of spectral transmission and G.  This numerical effort provides uncertainty benchmarks 
for balancing computational efficiency and numerical accuracy for future interfacial 
calculations.  Neglecting long-range interactions of these polar systems yields an estimated 
~10% increase in 𝐺.  Enforcing a simple acoustic sum rule for translational invariance instead of 
more sophisticated methods overestimates the optic contributions to 𝐺 by 35%, using ad hoc 
interface IFCs, such as the arithmetic mean of bulk IFCs, overestimates 𝐺 by up to 20%, and 
only including mass variance at the interface overestimates G by up to 60%. Our conductance 
calculated fully from first-principles in the harmonic limit is nearly two times lower than values 
inferred from superlattice measurements. The possible physical origins for this discrepancy 



were examined in detail.  In particular, neglecting anharmonicity and interfacial atomic 
disorder, as well as artificial contact resistance in the Green’s function calculations, reduces G.   
Our work outlines guidelines for first-principles calculations of ‘physically correct’ interfacial 
IFCs and conductance in the harmonic limit. It also contributes towards developing predictive 
calculations and a more complete picture of thermal transport across interfaces.  
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APPENDIX A: CALCULATIONS DETAILS 
 

Density functional theory. DFT calculations used the pw.x module of Quantum Espresso [43], a 
density functional theory package based on plane wave basis sets. Valence electrons are 
represented with projected augmented-wave pseudopotentials (Al.pz-n-kjpaw_psl.0.1.UPF, 
N.pz-n-kjpaw_psl.0.1.UPF, Ga.pz-dn-kjpaw_psl.0.2.UPF) [65] using the local density 
approximation and Perdew-Zunger parametrization [66] for exchange-correlations. The cutoff 
energy for the plane waves was set to 100 Ry and the energy convergence threshold was less 
than  10��� Ry. 
 
Atomic relaxation. Equilibrium lattice parameters (a, c and u) of GaN and AlN are determined 
using the vc-relax option and sampling the Brillouin zone with a 9 × 9 × 6  Monkhorst-Pack 
mesh [67] displaced from the origin. The structural parameters deviate by less than 1% from 
measurements (Table 1). The in-plane lattice parameter (a) of AlN expands to match that of GaN 
in GaN-AlN superlattices with thin AlN layers  [25]. Thus, relaxed out-of-plane lattice parameters 
(c and u) of strained GaN and AlN (using the relaxed a of the other material) were computed and 
given in Table 1. Combining optimized unit cells of GaN and sAlN, the primitive unit cells of GaN-
sAlN supercells are built, which are referred to as interface cells (Figure 1b).  The sGaN 
configuration is used to compute G for an sGaN-AlN interface for comparison with GaN-sAlN G.  
All the out-of-plane degrees of freedom (along z axis here) are relaxed using a 9 × 9 × 2 



Monkhorst-Pack mesh (except for supercells with 𝐿'()) < 6 uc, where a 9 × 9 × 3 mesh was 
used) until atomic forces were less than 10�� Ry Bohr-1. In-plane atomic coordinates were fixed 
since they did not change during the initial relaxation steps and fixing them reduces the 
computational cost. Relaxed out-of-plane lattice parameters for supercells with various 𝐿'())  are 
shown in Table 2 and atomic positions are available in the scf input files of these systems available 
in the supplemental material  [68].  
 
 GaN AlN sGaN sAlN 

 Theory Experiment Theory Experiment Theory Theory 
𝑎	(Å) 3.1619 3.190 3.0880 3.110 3.0880   3.1619 
𝑐	(Å) 5.1561 5.189 4.9427 4.980 5.2165  4.8657 
𝑢 0.3763 0.377 0.3819 0.382 0.3699 0.3894 

Table 1: Equilibrium lattice parameters for GaN, AlN and their strained counterparts (sGaN and 
sAlN), where the in-plane lattice of GaN is set to that of AlN and vice versa. Experimental values 
are from Schulz et al.  [69]. 

 
𝐿'())  𝑐/𝐿'()) (Å/𝑢𝑐) 

2 5.0255 
4 5.0220 
6 5.0208 
8 5.0201 

12 5.0194 
Table 2: Calculated out-of-plane lattice parameter of GaN-sAlN supercells of various lengths 
(𝐿'())) after atomic and volume relaxation. 

 
Interatomic force constants: IFCs are calculated as numerical derivatives of forces from supercells 
with individual atoms displaced by ±0.04 Å, the finite displacement (FD) method. Supercells are 
built by repeating relaxed primitive unit cells and atomic forces are determined using scf 
computations sampling only the Γ point of the Brillouin zone. Figure 15a and 15b show phonon 
dispersions of bulk GaN and AlN determined with IFCs from the FD method on 4 × 4 × 4 
supercells. The dispersions are in good agreement with experimental data except for the 
longitudinal-optic (LO) branch close to the Γ point. For polar materials, like GaN and AlN, the FD 
method does not capture well the splitting between the longitudinal-optic and the transverse-
optic branches (LO-TO splitting) around the Γ point because it truncates long-range, non-
analytical Coulomb interactions. The extent of this effect is shown in Figure 15a and 15b, 
depicting dispersions using IFCs from density functional perturbation theory (DFPT), which 
includes these interactions  [61]. Increasing the size of the supercell used in the FD method is not 
a viable path to fix LO-TO splitting as convergence is slow (Figure 15d and 15e). The FD method 
is also used to determine IFCs for strained GaN and AlN (Figure 15c) and for the GaN-sAlN 
interfacial supercells used in this study.  
 



 

 
Figure 15: Phonon dispersions of (a) GaN and (b) AlN from finite displacements in a 4 × 4 × 4 
supercell, DFPT using  5 × 5 × 5 and 6 × 6 × 4 reciprocal space grids, respectively, and 
measured values from inelastic x-ray scattering  [70,71] and Raman spectroscopy [72]. (c) 
Phonon dispersions of unstrained and strained AlN from DFPT. Phonon dispersions of (d) GaN 
and (e) sAlN from FD with varying supercell size. 

 
 
Enforcing symmetry on IFCs: After obtaining IFCs from the FD method, various invariances 
required for ‘physically correct’ sets of IFCs are enforced. Space groups of the primitive unit cells 
are obtained using the spglib library created by Togo  [73] (186 for GaN and AlN, and 156 for GaN-
sAlN interfacial supercells). With the symmetry operations of each group and derivative 
permutation invariance, a set of irreducible IFCs is chosen. Their values are determined using 
singular value decomposition from the IFCs extracted from FD  [62]. Then, quadratic programing 
is used to solve for new values of the irreducible IFCs that satisfy translational and rotational 
invariance subject to the constraint of minimizing the Euclidean distance to the former set of 
irreducible IFCs. This procedure has been previously used to enforce invariances on IFCs near 
defects  [74,75]. Note that enforcing rotational invariance is especially important when the cross-
section of the supercell is 3 × 3 uc2 as it fixes some imaginary frequencies in acoustic branches 
close to the Γ point.  
 
Non-equilibrium Green’s functions (NEGF): The following brief description is based on 
reference  [45], but there are other useful resources available in the literature  [28,49]. Consider 



an abrupt material interface in the 𝑥𝑦 plane formed joining two semi-infinite crystals along 𝑧. 
Treating it as a 2D crystal made of 1D chains along 𝑧, we split the dynamical matrix of the system 
into large enough blocks such that only first nearest neighbor blocks interact along 𝑧 are non-
zero. A sample block 𝐷�,�

g,4  relates the degrees of freedom of the 𝑠4� unit cell, located at 𝑧g on the 
𝑛4� 1D chain with those of the 𝑡4� unit cell, located at 𝑧4  on the 𝑚4� 1D chain. Using these blocks, 
the 2D crystal is transformed into reciprocal space and the coupled 1D chains in real space turn 
into decoupled 1D chains in reciprocal space. Each reciprocal chain is labeled by a two-
dimensional wavevector �⃗�\ in the 2D Brillouin zone and a block of its dynamical matrix relating 
the 𝑠4�  and 𝑡4� unit cells is given by  

 𝐷IJ⃗L
g,4 = H𝐷�,�

g,4 𝑒��IJ⃗L∙(U⃗�L�U⃗�L)

�

 (8) 

with 𝑟�\ and 𝑟�\ the lattice vectors of the 𝑛4� and 𝑚4� real space 1D chains, respectively. The 
block tridiagonal dynamical matrix of the �⃗�\ reciprocal 1D chain is divided into device (𝐷), left 
contact (𝐿) and right contact (𝑅) regions 

 𝐷IJ⃗L = �

𝐷IJ⃗L
T 𝐷IJ⃗L

Tc 0
𝐷IJ⃗ L
cT 𝐷IJ⃗ L

c 𝐷IJ⃗ L
cV

0 𝐷IJ⃗L
Vc 𝐷IJ⃗ L

V
� (9) 

The device region contains a neighborhood of the interface large enough so atoms at the edges 
of this region are equivalent to those of bulk crystals. The contact regions contain the remining 
semi-infinite bulk 1D crystals and their dynamical matrix blocks are invariant along 𝑧 (𝐷IJ⃗L

g,g =
𝐷IJ⃗L
g��,g�� and 𝐷IJ⃗L

g,g�� = 𝐷IJ⃗ L
g��,g�� with 𝑠 labeling cells inside the contacts). Thus, we simplify the 

notation for dynamical matrix blocks of the left contact as 𝐷IJ⃗L
g,g = 𝐷IJ⃗ L

T,�� and 𝐷IJ⃗L
g,g�� = 𝐷IJ⃗ L

T,�   . 
Similar notation applies for the right contact. The retarded Green´s function for the �⃗�\ reciprocal 
1D  chain is given by 

 𝐺IJ⃗ L
U (𝜔) = ¡𝜔�𝐼 − 𝐷IJ⃗ L

c − ΣIJ⃗L
T (𝜔) − ΣIJ⃗ L

V (𝜔)¤
��

 (10) 
with 𝐼 the identity matrix and  ΣIJ⃗ L

] (𝜔) the self-energy matrices of contact 𝛼. All matrices in Eq. 
10 are square with dimensions equal to the number of degrees of freedom of atoms in the device 
region of the chain. ΣIJ⃗L

T (𝜔) and ΣIJ⃗L
V (𝜔) are zero everywhere except in the top-left block and the 

bottom-right block, respectively, which are given by  

 
Top-left block of ΣIJ⃗L

T (𝜔) = r𝐷IJ⃗ L
T,�  s

Y
𝑔IJ⃗ L
T (𝜔)𝐷IJ⃗ L

T,�   

Bottom-right block of ΣIJ⃗ L
V (𝜔) = 𝐷IJ⃗ L

V,�  𝑔IJ⃗ L
V (𝜔) r𝐶IJ⃗L

V,�  s
Y

 
(11) 

where 𝑔IJ⃗ L
] is the surface Green’s function of contact 𝛼  

 
𝑔IJ⃗ L
T (𝜔) = ¦𝜔�𝐼 − 𝐷IJ⃗ L

T,�� + 𝑖𝜂𝜔 − r𝐷IJ⃗L
T,�  s

Y
𝑔IJ⃗ L
T (𝜔)𝐷IJ⃗L

T,�  ©
��

 

𝑔IJ⃗ L
V (𝜔) = ¦𝜔�𝐼 − 𝐷IJ⃗ L

V�,� + 𝑖𝜂𝜔 − 𝐷IJ⃗L
V,�  𝑔IJ⃗ L

V (𝜔) r𝐷IJ⃗ L
V,�  s

Y
©
��

 
(12) 

𝜂 = 100 rad s-1 in our calculations ensures causality. The result of Eq. 12 is independent of the 
precise value of	𝜂 as 𝜂𝜔 is infinitesimal (~10�� rad2 s-2) compared to typical dynamical matrix 
entries ( ~10�ª to 10�� rad2 s-2). The surface Green’s functions for our calculations are obtained 



using a recursive algorithm described in detail in references  [76,77]. The broadening matrices of 
the contacts are given by 

 ΓIJ⃗L
] (𝜔) = 𝑖 «ΣIJ⃗L

] (𝜔) − WΣIJ⃗ L
] (𝜔)X

Y¬ (13) 
From Eq. 10 and 15, we get the ingredients necessary to calculate 𝑀𝑇(𝜔) from Eq. 2. 
 

 
Figure 16: Full and reduced mesh in the transverse Brillouin zone used in NEGF calculations. 

For our NEGF calculations, the frequency grid was formed splitting the interval 0 to 28 THz into 
𝑁E = 169 grid points. The Brillouin zone in the transverse direction was split into 6643 points 
with variable weights to account for a 𝑁IJ⃗L = 81 × 81 mesh. When symmetry is enforced, we 
use a reduced mesh containing 1148 grid points (see Figure 16) to decrease the numerical 
effort. These numerical settings are well converged as doubling either the frequency or Brillouin 
zone grid change the conductance by less than 0.16% (see Table 3). 
 

𝑁E 𝑁IJ⃗L  𝐺@(MWm-2K-1) 
85 81 × 81 397.4481 
169 81 × 81 397.7795 
337 81 × 81 397.4496 
169 41 × 41 396.4781 
169 81 × 81 397.7795 
169 161 × 161 397.1686 

Table 3  High temperature conductance versus grid size in NEGF calculations. 
 
 
 
 
 
 
 
 
 
 



 
 
 

APPENDIX B: FITTING THERMAL CONDUCTIVITY OF GaN AND AlN 
 

 
Figure 17: Thermal conductivity of GaN and AlN. Blue dots are experimental data from  [78,79] 

We fit experimental data combining phenomenological expressions of phonon scattering rates 
with vibrational frequencies and group velocities from DFPT. Thermal conductivity is computed 
from 

𝜅 =Hℏ𝜔IJ⃗ ,𝐶(𝜔IJ⃗ ,)𝑣IJ⃗ ,,¯
� 𝜏IJ⃗ ,

IJ⃗ ,

 

with �⃗� the phonon wave-vector varying over the first Brillouin zone, 𝑗 the branch index, 𝑣IJ⃗ ,,¯ 
the group velocity in 𝑧 and 𝜏IJ⃗ , the scattering time, which is calculated from Matthiessen’s rule 

1
𝜏IJ⃗ ,

=
1
𝜏IJ⃗ ,
² +

1
𝜏IJ⃗ ,
w� 

including only boundary scattering on a system with length 𝐿  
 

1
𝜏IJ⃗ ,
² =

2{𝑣IJ⃗ ,,¯{
𝐿  

and phonon-phonon scattering 
1
𝜏IJ⃗ ,
w� = 𝐶𝑇𝜔IJ⃗ ,

� 𝑒�c/³  

With 𝐶 and 𝐷 fitting constants. The frequencies and group velocities were calculated from DFPT 
IFCs and 𝐿 = 500 μm. For GaN C=1.17e-19 K-1s and D=85 K while for AlN C=1.4e-19 K-1s and 
D=200 K.  Calculated conductivity values were used to extract G from the superlattice 
experiments  [25]. 
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