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Phase transitions at a finite (i.e. non-zero) temperature are typically dominated by classical correlations,
in contrast to zero temperature transitions where quantum mechanics plays an essential role. Therefore, it is
natural to ask if there are any signatures of a finite temperature phase transition in measures that are sensitive
only to quantum correlations. Here we study one such measure, namely, entanglement negativity, across finite
temperature phase transitions in several exactly solvable Hamiltonians and find that it is a singular function of
temperature across the transition. Our results also lead to a mean-field argument that shows that negativity can
distinguish spontaneous symmetry breaking with local order parameter at finite temperature from that in the
ground state. Along the way, we prove certain general results which simplify the calculation of negativity for
commuting projector Hamiltonians and as an aside, we also calculate the entanglement of formation exactly in
an interacting model.

I. INTRODUCTION

Interacting quantum systems with competing interactions
can exhibit phase transitions at both zero and non-zero tem-
peratures. Heuristically, the zero temperature phase tran-
sitions result due to quantum fluctutions while the finite
temperature phase transitions typically result from thermal
fluctuations1. As an example, consider the 2+1-D transverse
field Ising model on a square lattice: H = − ∑

<i,j>

ZiZj −

h
∑
i

Xi. Here the critical exponents associated with the zero

temperature phase transition belong to the three dimensional
Ising universality while those for the finite temperature phase
transition belong to the two dimensional Ising universality1,2.
That is, at any non-zero temperature, the universal critical
exponents are identical to those corresponding to the purely
classical Hamiltonian H = − ∑

<i,j>

ZiZj . Given this obser-

vation, it is natural to ask are there any singular correlations at
a finite temperature transition that are intrinsically quantum-
mechanical? For a pure state, von Neumann entanglement en-
tropy is a good measure of quantum correlations, but since we
are interested in finite temperature transitions, we need to con-
sider measures of mixed state entanglement. With this motiva-
tion, in this paper we will introduce certain quantum models
which exhibit finite temperature transitions, and we will an-
alytically study mixed state entanglement measures in these
models, with a particular focus on entanglement negativity3.

One way to motivate mixed state entanglement measures
is via the notion of ‘separable’ states - these are states that
can be prepared from any other state using only local oper-
ations and classical communications (LOCC), and therefore
are not entangled. A bipartite mixed state is separable if it
can be written as ρ =

∑
i pi ρA,i ⊗ ρB,i where pi > 0 while

ρA,i, ρB,i are valid density matrices4,5. For pure states, the
von Neumann entropy S = − tr (ρA log(ρA)), where ρA is
the reduced density matrix on Hilbert space A, is a faithful
measure of quantum correlations. However, S is rather in-
effective at capturing mixed state quantum correlations. For
example, even a thermal density matrix corresponding to a
purely classical Hamiltonian will have a rather substantial von
Neumann entropy S that equals the thermal entropy for region

A. Several measures of mixed state entanglement have been
proposed (see, e.g., Ref.6 for an overview) including entangle-
ment of formation, entanglement of distillation, entanglement
of purification, squashed entanglement and entanglement neg-
ativity. As yet, all of these measures, with the exception of
entanglement negativity, require optimizing a function over
all possible quantum states, making their calculation rather
challenging (see e.g.7). Therefore, below we will primarily
focus on the entanglement negativity with one exception; for
a specific many-body model we will also calculate the entan-
glement of formation.

The entanglement negativity (henceforth, just ‘negativ-
ity’ for brevity) is defined as follows3,8: given a bipar-
tite density matrix ρ acting on the Hilbert space HA ⊗
HB , one first performs a partial transpose only on the
Hilbert space HB to obtain a matrix ρTB . Explicitly,
if ρ =

∑
A,B,A′,B′

ρAB,A′B′ |A〉|B〉〈A′|〈B′|, then ρTB =∑
A,B,A′,B′

ρAB,A′B′ |A〉|B′〉〈A′|〈B|. The matrix ρTB is Her-

mitian but is not necessarily positive semi-definite. The neg-
ativity EN is defined as EN = log

(
||ρTB ||1

)
. As shown in

Ref.9 it is an entanglement monotone despite not being con-
vex. The utility of negativity becomes apparent when one no-
tices that it is zero for separable mixed states3,5,10–12. This is
because for separable states, ρTB is a valid density matrix, and
therefore, ||ρTB ||1 = 1. The main drawback of negativity is
that it can be zero even for non-separable states13. Heuristi-
cally, this means that although negativity is insensitive to clas-
sical correlations, it does not capture all quantum correlations.
As a proper entanglement measure for mixed states, negativ-
ity has been studied in various contexts including fermionic
systems14,15, disordered systems16, gapped one dimensional
models17, and one dimensional conformal field theories18. It
has also been applied to study the quantum dynamics in inte-
grable systems19.

Since we will also briefly discuss entanglement of forma-
tion, denoted as EF , let us also recall its definition. EF for a
bipartite mixed state ρAB is defined as follows20: decompos-
ing ρAB as a convex sum of pure states, ρAB =

∑
i pi|ψi〉〈ψi|

where pi > 0 with
∑
i pi = 1, EF is given by EF =

inf
∑
i piS(TrB |ψi〉〈ψi|) where S is the von Neumann en-

tropy. Therefore, EF is the least possible entanglement of any
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FIG. 1. The derivative of entanglement negativity dEN
dT

and the
derivative of entanglement of formation dEF

dT
corresponding to the

thermal state for a two site mean-field theory of the transverse field
Ising model, Eq.1 with h = 3.8 and z = 4. Inset: EN and EF for
the two site mean-field theory for the same problem. The vertical
dashed gray line in both plots indicates the location of the critical
temperature.

ensemble of pure states that realizes a given mixed state. In
contrast to negativity, EF is zero if and only if a state is sepa-
rable.

To begin with, we note one feature of negativity shared
by all Hamiltonians considered here, as well as in several
other lattice models (see, e.g., Refs.21–25) and continuum field
theories26,27: above a certain temperature, the negativity for
the corresponding thermal (Gibbs) state becomes exactly zero.
This temperature is called ‘sudden death temperature’ denoted
as Td. One of the central questions we will ask is the fol-
lowing. Consider an interacting system which exhibits spon-
taneous symmetry breaking below a critical temperature Tc.
Assuming that negativity EN is non-zero in the vicinity of the
transition (i.e. the condition Td > Tc is satisfied), isEN a sin-
gular function of the tuning parameter (e.g. the temperature)
across the transition?

We now state our main result. We find that in all models
considered in this paper, whenever negativity is non-zero in
the vicinity of the transition, it is always singular across the
transition. This result is at variance with expectations from
Ref.23 where numerical calculations on finite sized systems
for the 2+1-D quantum Ising model suggested that negativity
is analytic across the corresponding Tc. We will return to a
comparison with Ref.23 after discussing our results.

II. MEAN-FIELD MODELS

As a starting point, consider a single site mean-field Hamil-
tonian for the transverse field Ising model: HMF

1 site = −mzZ−
hX , where z is the coordination number. The correspond-
ing thermal state is indeed separable, which might lead one
to expect that perhaps negativity is always an analytic func-
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FIG. 2. Negativity as a function of temperature for the non-local
commuting projector model, Eq.2, for gx = 2, gz = 1. Inset: Tem-
perature dependence of the magnetization. The vertical dashed gray
line in both plots indicates the location of the critical temperature.

tion across finite temperature transitions. However, a single
site mean-field is too crude an approximation: within such a
mean-field approximation, even the ground state is unentan-
gled and shows no singularity in the quantum entanglement
across a T = 0 quantum phase transition (QPT), in contrast
to the known exact results (see, e.g., Refs.28–30). To improve
upon this, we next consider a two-site mean-field theory:

HMF
2 sites = −m(z−1) (Z1 + Z2)−Z1Z2−h (X1 +X2) (1)

and study the negativity for a bipartition that runs across the
two sites. A straightforward calculation shows that whenever
Td > Tc, the critical temperature for the phase transition, the
negativity is a singular function of the temperature across the
transition, see Fig.1. Incidentally, since an analytical expres-
sion for entanglement of formation EF is available for any
state acting on two qubits31, we calculate EF as well for this
mean-field model, and find that it is also singular across the
transition (Fig.1).

III. A NON-LOCAL COMMUTING PROJECTOR MODEL

Motivated by the two-site mean-field result and the models
studied in Ref.32, we next consider a Hamiltonian which ex-
hibits a finite temperature transition, and where negativity is
calculable exactly in the thermodynamic limit. The model is
defined on a one-dimensional lattice with L sites where each
lattice site has four qubits:

H = − 1

4L

(∑
i

(Zi1Zi2 + Zi3Zi4)

)2

− gz
∑
i

Zi1Zi2Zi3Zi4

−gx
∑
i

(Xi1Xi2 +Xi3Xi4) . (2)
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The most notable feature of this Hamiltonian is that it is a
sum of commuting terms, and it supports a finite temper-
ature transition where the Ising symmetry corresponding to
Zi1Zi2 → −Zi1Zi2, Zi3Zi4 → −Zi3Zi4 gets spontaneously
broken. The first term in the Hamiltonian makes it non-
local and leads to a finite temperature Ising transition in the
mean-field universality class. Defining the order parameter
m = 〈Zi1Zi2〉 = 〈Zi3Zi4〉, one finds that in the thermody-
namic limit, the critical temperature is given by the solution
of the equation 2β = 1+ e−2βgz while the order parameter m
is determined via sinh(2βm)

cosh(2βm)+e−2βgz
= m which implies that

close to Tc, m = a
√
Tc − T , as expected. Next, we calculate

the negativity of this model for the bipartition that runs across
the four qubits on a chosen site, i.e., A = {iα, i < 0, α =
1, 2, 3, 4} ∪ {i = 0, α = 1, 3} and B = A where we have
chosen the cut across the site 0 for convention. One finds that
for all T ≥ Tc, and for 0 ≤ (Tc − T )/Tc � 1, the negativity
is given by EN = log(1 + F ), where

F =
eβgz sinh(2βgx) cosh(2βm)− e−βgz cosh (2βgx)

2 (cosh(βgx))
2
(eβgz cosh(2βm) + e−βgz )

(3)
assuming F > 0 (see Appendix B 1 for derivation); other-
wise negativity is zero which also yields an expression for
Td by setting F = 0. Since the critical temperature Tc de-
pends only on gz , one can always tune gx, so that the sudden
death temperature is higher than Tc. Since m is a singular
function of temperature so is negativity. In fact EN simply
inherits the cusp singularity of m across the phase transition,
i.e., dEN

dT |T=T−c
6= dEN

dT |T=T+
c

, see Fig.2 which also shows
the temperature dependence of negativity for all temperatures
including T < Tc.

One drawback of the model just discussed is that it is non-
local and relatedly, exhibits mean-field scaling exponents.
Therefore, it would be worthwhile to study negativity in ther-
mal states of local Hamiltonians that host a finite temperature
transition.

IV. LOCAL COMMUTING PROJECTOR MODELS

A. A General Result Regarding Negativity

Before considering local models, we notice a property spe-
cific to commuting projector models that will simplify our
subsequent discussion. Let’s decompose a commuting projec-
tor Hamiltonian as H = HA +HB +HAB so that HA(HB)
denotes the interaction between spins in A(B) and HAB de-
notes the interaction between A and B. We further denote the
Hilbert space of spins of region A(B) that interact with B(A)
by ∂A(∂B), and define A′ = A − ∂A,B′ = B − ∂B i.e.
spins strictly in the ‘bulk’ of A(B). Given a thermal density
matrix ρ = e−βH/Z, one can show that (see Appendix A 3
for derivation)

∥∥ρTB∥∥
1
=
∥∥ρ∂A,∂B∥∥1 (4)

where ρ∂A,∂B is a density matrix defined on ∂A
⋃
∂B:

ρ∂A,∂B = 1
Z

(
e−βHAB

)T∂B TrA′,B′ e
−β(HA+HB). This prop-

erty results from the fact that partial transpose affects opera-
tors only at the boundary (i.e. only in the factor e−βHAB in
the expression for ρ), and furthermore one can always find a
basis in which HA, HB and

(
e−βHAB

)T∂B can all be simul-
taneously diagonalized. If we further assume that{

e−βHAB
}T∂B

TrA′,B′ e
−β(HA+HB)

=
{
e−βHAB TrA′,B′ e

−β(HA+HB)
}T∂B

,
(5)

then one can show that the negativity between A and B is
exactly the same as the negativity between ∂A and ∂B:

∥∥ρTB∥∥
1
=
∥∥∥ρT∂B∂A,∂B

∥∥∥
1

(6)

where ρ∂A,∂B = 1
Z TrA′,B′ e

−βH =
1
Z e
−βHAB TrA′,B′ e

−β(HA+HB) is the reduced density
matrix for the boundary spins. Note that the assumption
Eq.5 fails only if there exist constraints between commuting
operators. For instance, given a two-dimensional (2D) toric
code on a torus33, the product of all plaquette (star) operators
is an identity operator. Consequently, TrA′,B′ e−β(HA+HB)

generates the plaquette and star operators supported on the
bipartition boundary, and Eq.5 does not hold true. If one
instead considers the 2D toric code on a plane, no constraint
among different commuting operators exists, and Eq.5 and
Eq.6 are correct. For the models considered in this paper, the
Eq.6 continues to hold, and we will report results on models
which violate this assumption elsewhere.

B. An Explicit Calculation of Negativity

With the aforementioned property specific to commuting
projector Hamiltonian , we now turn our attention to the neg-
ativity in a local Hamiltonian defined on a square lattice, with
two species of spins, a and b, on each lattice site:

H = −
∑
〈ij〉

ZiaZibZjaZjb − g
∑
i

XiaXib. (7)

This model exhibits a finite temperature phase transition in
the 2D Ising universality class, and due to the commuting pro-
jector property, the corresponding Tc is exactly same as the
Onsager’s solution34 to the classical Ising model on the square
lattice, H = −∑<i,j> sisj , irrespective of the value of g.
Let us first consider the negativity between one spin on a sin-
gle site, say, ‘a’ spin on site 0, and the rest of system. Since all
local commuting operators are independent, to calculate the
negativity, we only need the reduced density matrix for spins
at the boundary (as stated in Eq.6), which in this case are the
spins on sites 0 and four neighbors of site 0. For simplicity, we
present the result of the negativity only for a specific range of
g, namely, e−8β < tanh(βg) < e−4β where the calculation
is technically simpler, see Appendix B 2 for details. This is
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sufficient to illustrate the singular nature of negativity across
the finite temperature transition hinted above. One finds that
the negativity EN is given by:

EN = log
{
1− 4A

[
cosh(βg)e−4β − sinh(βg)e4β

]
(1 + 4c1+

2c2 + c3)} . (8)

where A−1 = 25 cosh(βg)(cosh4(β) +(
c1 +

1
2c2
)
sinh2(2β) + c3 sinh

4(β)) and {ci|i = 1, 2, 3}
are given by the expectation values of certain lo-
cal operators measured by the bulk density matrix
ρbulk ∼ exp{−β(HA +HB)} so that they are all sin-
gular functions of the tuning parameters g, T across the
critical point. Inheriting the singularity of ci, the negativity
between the single spin and the rest of the system is also
singular. Note that there is no symmetry reason for the
singularity to cancel out in the particular combination of ci’s
that enter the expression for A. To confirm this, we calculated
the coefficients ci within the mean field approximation and
checked that EN is indeed singular across the transition (see
Appendix B 2).

C. A General Argument for Singularity in Negativity

By exploiting the general result in Eq.4, we can now argue
rather generally that negativity will be singular across a phase
transition in a commuting projector Hamiltonian for arbitrary
bipartition scheme. To begin with, we write the bulk Hamil-
tonian as HA +HB = −∑m αmPm, where {Pm} is the set
of local commuting operators supported only on A or B. For
brevity of the discussion, Pm is chosen from the Pauli group,
and is thus a tensor product of Pauli matrices over sites with
P 2
m = 1. To utilize the result from Eq.4, we first calculate the

following:

1

Z
TrA′,B′ e

−β(HA+HB)

=
1

Z
TrA′,B′

∏
m

(cosh(βαm) + Pm sinh(βαm))

=
1

Z

[∏
m

cosh(βαm)

] ∑
{τm}

TrA′,B′

[∏
m

(Pm tanh(βαm))
τm

]
,

(9)

where τm ∈ {0, 1} indicates whether Pm is present or not.
Due to the presence of the trace over the bulk region, among
all possible

∏
m P

τm
m , only those operators acting on the bulk

trivially survive, which we call {Qk}. Also note that Qk can
be expressed as tensor products of local commuting operators
{O′m} supported on the boundary region ∂A

⋃
∂B. There-

fore, Eq.4 gives

∥∥ρTB∥∥
1
=

∥∥∥∥∥(e−βHAB)T∂B∑
k

ckQk

∥∥∥∥∥
1

. (10)

The coefficients ck are proportional to the expectation value
of Qk with respect to the bulk density matrix ρbulk, and are

therefore a singular function of the tuning parameter across
Tc, similar to the coefficients c1, c2, c3 discussed above for
the case of a single site negativity appearing in Eq.8. Since the
matrix inside the one-norm from Eq.10 consists of commut-
ing operators O′m, its eigenvalues can be obtained by treating
them as numbers. Therefore, it follows that the negativity is

EN = log

(∑
k

ckfk

)
, (11)

where fk = g
∑
{O′m}

∣∣∣(e−βHAB)TB ∣∣∣Qk. Here the factor g
takes care of the possible degeneracy from tranforming the
trace in Hilbert space to summing commuting operators, i.e.
Tr∂A,∂B = g

∑
O′m

. Also, the summation over O′m should
take care of the potential constraints for O′m. For instance,
given a three dimensional toric code, summing each plaquette
operator cannot be treated independently since the product of
6 plaquette operators on a cubic unit cell is an identity opera-
tor.

A key observation from Eq.11 is that, in contrast to ck, the
coefficients fk are determined only by the matrix defined on
the boundary spins via the above expression, and are oblivi-
ous to the bulk criticality. Therefore, the negativity inherits
the singularity associated with the bulk criticality due to its
dependence on coefficients ck.

V. QUANTUM SPHERICAL MODEL

Finally, we consider a completely different class of models
which are also exactly solvable and in which one again finds
that the negativity is singular across the phase transition. In
particular, consider the quantum spherical model35:

H =
1

2
g

N∑
i=1

p2i −
1

2N

N∑
i,j=1

xixj + µ

[
N∑
i=1

x2i −
N

4

]
, (12)

where xi and pj satisfy the canonical commutation relation

[xi, pj ] = iδij , while the constraint
〈∑N

i=1 x
2
i

〉
= N

4 is im-
posed only on average via the Lagrange multiplier µ. The
above model shows a phase transition associated with spon-
taneously breaking of the Ising symmetry xi → −xi at tem-
perature β−1c determined via

√
gc = 1

2 tanh
(
1
2βc
√
gc
)
. In

the ordered phase, µ is pinned to 1/2. The negativity of this
model can be calculated analytically using the correlation ma-
trix technique of Ref.36. Dividing the system into two equal
halves, one finds that (see Appendix B 3) the negativityEN =
Max{0,− 1

2 log(ν)} where ν = 2
β
√
g coth

(
1
2β
√
g
)

in the or-

dered phase, while ν = 1
2

√
2µ−1
g coth

(
1
2β
√

(2µ− 1)g
)

in
the disordered phase where the chemical potential is given

by the equation
√

2g
µ = tanh

(
1
2β
√
2gµ

)
. Using these

equations, one finds that the first derivative of the negativ-
ity across the phase transition is discontinuous: ∂EN

∂g

∣∣∣
g+c

=
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1
2gc

+
β2
c

24

(
1− 8

4+βc−4βcgc

)
while ∂EN

∂g

∣∣∣
g−c

= 4+βc−4βcgc
16gc

.

As shown in Fig.3, the first derivative of EN clearly exhibits
a discontinuity at the thermal critical point.

VI. EXACT CALCULATION OF ENTANGLEMENT OF
FORMATION IN COMMUTING PROJECTOR MODELS

The models introduced in this paper allowed for a rather
straightforward evaluation of negativity while illustrating non-
trivial features. It is natural to wonder whether one can cal-
culate any other measures of mixed state entanglement for
similar models. To that end, we now present a result on the
entanglement of formation EF , a quantity which is generally
rather hard to calculate since it requires optimization over all
possible states. Consider the following Hamiltonian which is
closely related to the Hamiltonians in Eqs.2 and 7:

H = − 1

2L

(
L∑
i=1

Zi1Zi2

)2

− g
L∑
i=1

Xi1Xi2. (13)

This Hamiltonian exhibits a finite temperature phase transi-
tion at Tc = 1. For defining the entanglement of formation
EF , similar to our earlier discussion, we choose a bipartition
for the subsystem A and its complement B that cuts through
the two spins 1 and 2 on a chosen site s. For such a bi-
partition scheme, we prove that in the thermodynamic limit
(L → ∞), EF between A and B is exactly given by that be-
tween two spins in the mean-field density matrix defined as
ρMF ∝ e−βHs where Hs = −mZs1Zs2 − gXs1Xs2 and m
satisfies the mean-field equation tanh(βm) = m. Using the
exact result by Wooters on EF for two qubits31, this yields an
analytical expression for EF .

Our strategy is to find an upper bound and a lower bound
on EF that happen to match each other. Here we briefly out-

line the proof (see Appendix C for details). For calculating an
upper bound, we perform an Hubbard-Stratonovich transfor-
mation to decompose the density matrix ρ:

ρ =
1

Z
e−βH =

1

Z

√
βL

2π

∫
dme−

1
2βLm

2−β
∑L
i=1Hi(m),

(14)
where a local HamiltonianHi(m) for i-site of two spins is de-
fined as Hi(m) = −mZi1Zi2 − gXi1Xi2. By decomposing
the matrix e−βHi(m) =

∑
ki
wiki(m) |ki(m)〉 〈ki(m)|, one

can upper bound the entanglement of formationEF (A,B) be-
tweenA,B in ρ by the entanglement of formationEF (s1, s2)
between two spins s1, s2 in the mean-field density matrix
ρMF ∝ e−βHs :

EF (A,B) ≤ EF (s1, s2). (15)

For the lower bound, since any entanglement measure is non-
increasing under a partial trace37,EF (A,B) is bounded by the
entanglement of formation between two spins at site s from
below. By calculating the reduced density matrix on site s,
we show that

EF (s1, s2) ≤ EF (A,B), (16)

Combing Eq.15 and Eq.16, we complete the proof. Unfortu-
nately, in this model, the entanglement of formation exhibits a
sudden death temperature which is lower than Tc for all values
of g, and therefore, EF is zero in the vicinity of the transition.

VII. DISCUSSION AND SUMMARY

So far we have showed that finite temperature transitions in
quantum systems can show singular features in entanglement
negativity, despite the fact that the universal critical expo-
nents associated with these transitions are still given by clas-
sical statistical mechanics. Therefore, it is legitimate to ask
whether negativity can at all distinguish the spontaneous sym-
metry breaking at finite temperature with spontaneous sym-
metry breaking at zero temperature? The answer is in the affir-
mative. For concreteness, again consider the exactly solvable
model in Eq.2 although the argument is rather general. Below
Tc, and in the absence of an infinitesimal symmetry breaking
field, the partition function gets equal contribution from both
positive and negative values of the order parameter. On the
other hand, in the thermodynamic limit, and in the presence of
an infinitesimal symmetry breaking field, only one of the two
sectors contribute, and therefore, the thermal entropy with and
without field satisifies S(h = 0)−S(h = 0+) = log(2). This
is why the spontaneous symmetry breaking at a finite tem-
perature is an example of ergodicity breaking38 or relatedly,
a ‘self-correcting classical memory’39. Since this is a classi-
cal phenomenon, a faithful measure of quantum correlations
should be insensitive to it. One may now explicitly calculate
the negativity with and without infinitesimal symmetry break-
ing field for Hamiltonian in Eq.2, and show that EN (h =
0) = EN (h = 0+) (see Appendix B 1). Schematically, at
a mean-field level, ρ(h = 0) = (ρ(m∗) + ρ(−m∗)) /2 where
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m∗ is the mean-field value of the order parameter, and there-
fore |ρTB |1(h = 0) =

(
|ρ(m∗)TB |1 + |ρ(−m∗)TB |1

)
/2 =

|ρ(m∗)TB |1 = |ρTB |1(h = 0+). In strong contrast, for spon-
taneous symmetry breaking at T = 0, when h = 0, the
ground state wavefunction (and not the density matrix) is a
sum of the ground state wavefunctions corresponding to pos-
itive and negative order parameters (a ‘cat state’) while at
h = 0+, only one of the two sectors contribute. Therefore,
all measures of quantum entanglement, including von Neu-
mann entanglement entropy and in particular negativity sat-
isfy EN (h = 0)− EN (h = 0+) = log(2).

To summarize, we analytically demonstrated that negativity
is singular across finite temperature phase transitions for sev-
eral models. This may seem counterintuitive since the univer-
sal properties associated with transitions are controlled by a
purely classical Hamiltonian with the same symmetries. One
way to resolve this apparent tension is to note that negativ-
ity is sensitive to short-distance quantum correlations close to
the bipartition boundary. Since even local properties, such as
magnetization or energy density, are singular across the transi-
tion, one expects that the area-law associated with negativity
will generically pick up a singular contribution as well. In
contrast to our results, Ref.23, based on small scale numerics
(L . 10 sites), concluded that negativity for the 2+1-D quan-
tum Ising model has no singularity across the finite tempera-
ture transition. Although we don’t have any analytical results
for the negativity of 2+1-D quantum Ising model, for the gen-
eral reasons just mentioned, we suspect that negativity will be
singular in this model as well. As is evident from the insets
of Figs.1 and 3, it can be rather hard to detect the singularity
in negativity unless one has access to an analytical expres-
sion, or precise numerical data on very large system sizes. We

hope that our results will prompt further in-depth numerical
and field-theoretic calculations of entanglement negativity in
systems that exhibit finite temperature transitions.

The singularity in negativity for the local models discussed
in this paper is somewhat analogous to the singular area-law
contribution at a zero-temperature QPT discussed in Ref.29.
At the same time, the absence of finite temperature topologi-
cal order40 in our models suggests that unlike the zero tem-
perature case, there is no additional subleading O(1) con-
stant. If so, then one might be able to cancel out the sin-
gular contribution completely via an appropriate subtraction
scheme, perhaps similar to that in Ref.41. Relatedly, it would
be also interesting to find models where the singularity asso-
ciated with negativity cannot be canceled out in any subtrac-
tion scheme and is therefore related only to universal, long-
distance quantum correlations. On a more practical front, it
would be interesting to devise models where the singularity
in negativity can be measured experimentally, using quantum
state tomography42, or via swap-based methods on multiple
copies of a system43–45.
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Appendix A: General Results Regarding Commuting Projector Hamiltonians

1. Partial Transposition Preserves the Set of Eigenvectors

Consider a commuting projector Hamiltonian H = HA + HB + HAB , where HA and HB denote the part of H with
support only in real space region A and B, and HAB denotes the interaction between A and B. Define {Om} as the set of local
commuting operators, a commuting projector Hamiltonian can be written as H =

∑
m cmOm. The thermal density matrix,

ρ = e−βH/Z with Z = Tr e−βH , can be expanded as: ρ =
∑
α dαQα, where each {Qα} is a tensor product of operators from

the set {Om}. Since all operators in H commute, H , ρ, and {Om} share the same eigenvectors. Under the partial transpose over
the Hilbert space in B, one obtains ρTB =

∑
α dαQ

TB
α . If Qα only acts on A or B, then QTBα = Qα. Only when the support of

Qα involves A and B simultaneously is it possible for Qα to receive a minus sign under partial transpose. This implies that the
operators basis for ρTB is still {Qα}, and thus the eigenvectors of ρTB are exactly the same as those of ρ, and the eigenvalues
of ρTB can be obtained by replacing {Om} by their eigenvalues. In the argument above we implicitly assumed that all matrix
elements of {Qα} are real in the basis where we perform a partial transpose. If there exists complex matrix elements instead,
{Qα} might get a minus sign even when {Qα} acts only on A or B. Nevertheless, one can check that ρTB is still generated by
tensor products of {Om}, and therefore the conclusion remains the same.

2. Partial Trace Preserves the Set of Eigenvectors

Here we show that for commuting projector Hamiltonians, the thermal density matrix ρ and the reduced density matrix ρA
obtained by tracing out all the degrees of freedom in B share the same set of eigenvectors. As discussed above, ρ =

∑
α dαQα,

where {Qα} collects all possible operators from the product of commuting operators {Om}. By tracing out all the degrees of
freedom in B for ρ, basis operators in {Qα} which act non-trivially on B vanish. This implies that the operator basis of reduced
density matrix ρA is generated by the those operators in {Qα} which act on B trivially, and thus ρA commutes with all local
commuting operators.

3. Bipartite Negativity from a Density Matrix on Boundary

Here we show that the negativity between two spatial regions of a thermal density matrix of a commuting projector Hamil-
tonian is given by the negativity of a density matrix localized on the boundary of the bipartition. Following the notation in the
main text, we define ∂A(∂B) as collection of spins on the boundary of A(B) that interacts with B(A), and define A′(B′) as the
collection of spins in the bulk of A(B) that only couples to spins in A(B). The set of local commuting operators {Om} in the
Hamiltonian can be written as {Om} = {O∂m}

⋃{OAm}⋃{OBm} with O∂m supported on both ∂A, ∂B and OAm(OBm) supported
onA(B). We decompose a Hamiltonian asH = HA+HB+HAB , so thatHA(HB) involvingOAm(OBm) denotes the interaction
between the spins in A(B), and HAB involving O∂m denotes the interaction between the boundary spins in ∂A

⋃
∂B. For sim-

plicity, we also assume that the system is time reversal invariant, so that for ρ = e−βH/Z, the partial transpose over the Hilbert
space in B acts non-trivially only on HAB :

ρTB =
1

Z

(
e−βHAB

)T∂B
e−β(HA+HB). (A1)
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The one-norm of ρTB can be obtained via the replica trick∥∥ρTB∥∥
1
= lim
ne→1

Tr
(
ρTB

)ne
= lim
ne→1

1

Zne
Tr∂A,∂B

{[(
e−βHAB

)T∂B]ne
TrA′,B′ e

−neβ(HA+HB)
}
,

(A2)

where ne is first treated as an even integer, but is analytically continued to 1 at the end. Since the argument inside the trace
Tr∂A,∂B involves only commuting operators, we have Tr∂A,∂B = g

∑′
{Om}, where the prefactor g accounts for degeneracy and

the prime above the summation symbol restricts the summation over only Om supported on ∂A
⋃
∂B. Therefore,

∥∥ρTB∥∥
1
=
g

Z

′∑
{Om}

{∣∣∣(e−βHAB)T∂B ∣∣∣TrA′,B′ e−β(HA+HB)
}
. (A3)

This result implies that one can equivalently start from a density matrix ρ∂A,∂B = 1
Z

(
e−βHAB

)T∂B TrA′,B′ e
−β(HA+HB), and

show that ∥∥ρTB∥∥
1
=
∥∥ρ∂A,∂B∥∥1. (A4)

Suppose that TrA′,B′ e−β(HA+HB) does not involve local commuting operators across the bipartition boundary, i.e. operators in
{O∂m}, then {

e−βHAB
}T∂B

TrA′,B′ e
−β(HA+HB) =

{
e−βHAB TrA′,B′ e

−β(HA+HB)
}T∂B

. (A5)

This result implies that

∥∥ρTB∥∥
1
=
∥∥∥ρT∂B∂A,∂B

∥∥∥
1
, (A6)

where ρ∂A,∂B is the reduced density matrix from ρ on ∂A
⋃
∂B: ρ∂A,∂B = TrA′,B′ ρ. In other words, the negativity of two

spatial regions is given by the negativity between boundary spins.
In fact with a similar calculation, one can show that the above results (Eq.A4, Eq.A6) also hold true for any commuting

projector Hamiltonian without time reversal symmetry.

Appendix B: Calculational details of negativity for various models discussed in the main text

1. Infinite-Range Commuting Projector Hamiltonian

Consider a one-dimensional lattice of size L where each lattice site has four qubits, the model Hamiltonian is

H =− 1

4L

(
L∑
i=1

(Zi1Zi2 + Zi3Zi4)

)2

− gz
L∑
i=1

Zi1Zi2Zi3Zi4 − gx
L∑
i=1

(Xi1Xi2 +Xi3Xi4) . (B1)

The density matrix at inverse temperature β is ρ = 1
Z e
−βH with Z = Tr e−βH . Since every local term commutes, we can

perform Hubbard-Stratonovich transformation for e−βH :

e−βH =

√
βL

π

∫
dme−βLm

2−β
∑L
i=1Hi(m), (B2)

where a local Hamiltonian Hi(m) for i-site of four spins is defined as :

Hi(m) = −m(Zi1Zi2 + Zi3Zi4)− gzZi1Zi2Zi3Zi4 − gx (Xi1Xi2 +Xi3Xi4) . (B3)

Eq.B2 implies that all sites are separable since ρ manifestly takes the form ρ =
∑
k pkρ

1
k ⊗ · · · ⊗ ρLk where pk ≥ 0, ρik is a local

density matrix on i-th site. As a result, to have non-zero negativity, an entanglement cut should be made across one of the sites
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(say s-th site) such that four spins on s-th site are not in the same subsystem. In the following calculation, A comprises all the
lattice sites with site index i < s and two spins labelled by 1, 3 on s-th site while B comprises all the lattice sites with site index
i > s and two spins labelled by 2, 4 on s-th site. The negativity EN can be calculated via a replica trick:

EN = log
∥∥ρTB∥∥

1
= lim
ne→1

Tr
[(
(e−βH)TB

)ne]
Tr [e−βH ]

. (B4)

Notice that ne is an even number as performing trace, but analytic continuation ne → 1 is taken in the end. First we calculate
the thermal partition function:

Z = Tr
{
e−βH

}
=

(
βL

π

) 1
2
∫
dme−βLm

2

Tr
{
e−β

∑L
i=1Hi(m)

}
=

(
βL

π

) 1
2
∫
dme−βLf(m) (B5)

where

βf(m) = m2 − log
[
eβgz cosh(2βm) + e−βgz

]
− log

[
8 cosh2(βgx)

]
. (B6)

The integral over m is dominated by the saddle point m∗, which satisfies ∂f(m)
∂m

∣∣∣
m∗

= 0:

sinh(2βm∗)

cosh(2βm∗) + e−2βgz
= m∗. (B7)

The critical behavior of m∗ can be determined by expanding Eq.B7 to O(m∗3):

2βm∗

1 + w
+

4(w − 2)

3 (1 + w)
2 β

2m∗3 = m∗, (B8)

where w(β) ≡ e−2βgz . Define βc ≡ 1+w(βc)
2 , for β > βc, we can have non-zero solution for m∗ = ±m0:

m0 =

√
3βc (β − βc)
β3 (3− 2βc)

∼
√
Tc − T (B9)

while for β < βc, m∗ = 0 is the only allowed solution. Notice that the critical inverse temperature βc is determined by solving
the transcendental equation:

2βc = 1 + e−2βcgz . (B10)

On the other hand, for the calculation of Tr
[(
(e−βH)TB

)ne], since each site are separable, taking partial transpose over B
amounts to only taking the partial transpose on the two spins labelled by 2, 4 on the s-th site:

[
e−βH

]TB
=

√
βL

π

∫
dme−βLm

2−β
∑
i6=sHi(m)

[
e−βHs(m)

]TB
. (B11)

By introducing ne replicas, we have

Tr
{[(

e−βH
)TB]ne}

=

(
βL

π

)ne
2
∫ ne∏

a=1

dmae
−βL

∑ne
a=1m

2
a Tri6=s

{
e−β

∑ne
a=1

∑
i6=sHi(ma)

}
Trs

{
ne∏
a=1

[
e−βHs(ma)

]TB}

=

(
βL

π

)ne
2
∫ ne∏

a=1

dmae
−βLFne ({ma})

Trs

{∏ne
a=1

[
e−βHs(ma)

]TB}
Trs

{∏ne
a=1 e

−βHs(ma)
}

(B12)

where

βFne({ma}) =
n∑
a=1

m2
a − log

[
eβnegz cosh

(
2β

ne∑
a=1

ma

)
+ e−βnegz

]
− log

[
8 cosh2(βnegx)

]
. (B13)
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This multi-dimensional integral is again dominated by saddle points {m∗a|a = 1, 2, · · · , ne}, which can be obtained from
∂Fne ({ma})

∂ma

∣∣∣
m∗a

= 0:

sinh(2β
∑ne
a=1m

∗
a)

cosh(2β
∑ne
a=1m

∗
a) + e−2βnegz

= m∗a ∀a. (B14)

Assuming replica symmetry is preserved, we have m∗ne = m∗a ∀a with

sinh
(
2neβm

∗
ne

)
cosh

(
2neβm∗ne

)
+ e−2βnegz

= m∗ne . (B15)

As ne → 1, the above equation is exactly the saddle point equation for the thermal partition function (Eq.B7). This implies
limne→1m

∗
ne = m∗. By plugging Eq.B5 and Eq.B12 into Eq.B4, one finds

∥∥ρTB∥∥
1
=

∫
dme−βLf(m,gz,gx)

∥∥ρTBs (m)
∥∥
1∫

dme−βLf(m,gz,gx)
, (B16)

where

ρs(m) ≡ e−βHs(m)

Trs
{
e−βHs(m)

} . (B17)

For T > Tc, there is an unique saddle point m∗, and

∥∥ρTB∥∥
1
=
∥∥ρTBs (m∗)

∥∥
1

∫
dme−βLf(m,gz,gx)∫
dme−βLf(m,gz,gx)

=
∥∥ρTBs (m∗)

∥∥
1
. (B18)

For T < Tc, there are two saddle points m∗ = ±m0, and thus we arrive at

∥∥ρTB∥∥
1
=

∥∥ρTBs (m0)
∥∥
1

∫
around m0

dme−βLf(m,gz,gx) +
∥∥ρTBs (−m0)

∥∥
1

∫
around −m0

dme−βLf(m,gz,gx)∫
around m0

dme−βLf(m,gz,gx) +
∫

around −m0
dme−βLf(m,gz,gx)

. (B19)

Since
∥∥ρTBs (m0)

∥∥
1

=
∥∥ρTBs (−m0)

∥∥
1
, we have ∥∥ρTB∥∥

1
=
∥∥ρTBs (m∗)

∥∥
1
. (B20)

This result implies that to calculate the bi-partite negativity between A and B, it is sufficient to calculate the reduced density
matrix for s-th site (ρs) where we made an entanglement cut. Incidentally, the above calculation explicitly demonstrates the claim
EN (h = 0) = EN (h = 0+) mentioned in the main text where EN (h = 0) is the negativity in the absence of an infinitesimal
symmetry breaking field (so that it receives contribution from both m0 and −m0) while EN (h = 0+) is the negativity in the
presence of such a field so that it receives contribution only from one saddle point (say, m0). From now on, we suppress lattice
site index s in the calculation since only four qubits on a single site is relevant. Meanwhile, m will replace m∗ as the mean-field
order parameter for brevity. The local density matrix is

ρs =
1

Zs
e−βHs =

1

Zs
eβm(Z1Z2+Z3Z4)+βgzZ1Z2Z3Z4+βgx(X1X2+X3X4), (B21)

where the partition function Zs is

Zs = Tr e−βHs = 8 (cosh(βgx))
2 (
eβgz cosh(2βm) + e−βgz

)
(B22)

By taking partial transpose over {2, 4} ∈ B, we have(
e−βHs

)T24
= eβgzZ1Z2Z3Z4

[
(cosh(βgx))

2eβm(Z1Z2+Z3Z4) + (sinh(βgx))
2e−βm(Z1Z2+Z3Z4)X1X2X3X4

]
+

1

2
sinh(2βgx)e

−βgzZ1Z2Z3Z4

[
eβm(−Z1Z2+Z3Z4)X1X2 + eβm(Z1Z2−Z3Z4)X3X4

]
.

(B23)
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Due to the simple form of
(
e−βHs

)T24 , we are able to obtain all the eigenvalues of ρT24
s , and exploit the following formula to

calculate the negativity:

EN = log

[∑
i

|νi|
]
= log

[
1− 2

∑
νi<0

νi

]
, (B24)

where {νi} denotes eigenvalues of ρT24
s . Since Z1Z2, Z3Z4, X1X2, X3X4 commute with each other, the corresponding

eigenvalues of these operators z12, z34, x12, x34 = ±1 completely specify an eigenvector of
(
e−βHs

)T24 , which takes the
following form

|ψ〉 = 1

2
(|s1, s2〉 ± |−s1,−s2〉)⊗ (|s3, s4〉 ± |−s3,−s4〉) . (B25)

with si = ±1 for i = 1, 2, 3, 4. With this observation, the eigenvalues of
(
e−βHs

)T24 can be obtained by replacing operators by
their eigenvalues:

λ(z12, z34, x12, x34) =e
βgzz12z34

[
(cosh(βgx))

2eβm(z12+z34) + (sinh(βgx))
2e−βm(z12+z34)x12x34

]
+

1

2
sinh(2βgx)e

−βgzz12z34
[
eβm(−z12+z34)x12 + eβm(z12−z34)x34

]
.

(B26)

For T > Tc, m = 0, one finds

λ(z12, z34, x12, x34) =e
βgzz12z34

[
(cosh(βgx))

2 + (sinh(βgx))
2z12z34

]
+

1

2
sinh(2βgx)e

−βgzz12z34 [x12 + x34] . (B27)

When {
z12 = 1, z34 = −1, x12 = −1, x34 = −1
z12 = −1, z34 = 1, x12 = −1, x34 = −1, (B28)

we can have negative λ:

λ = e−βgz cosh (2βgx)− eβgz sinh(2βgx). (B29)

Thus, for T > Tc, the two-fold degenerate negative eigenvalue of ρT24
s is

ν =
e−βgz cosh (2βgx)− eβgz sinh(2βgx)

16 (cosh(βgx))
2
cosh (βgz)

, (B30)

and the negativity can be obtained by using Eq.B24 :

EN = log

[
1 + max

{
0,
eβgz sinh(2βgx)− e−βgz cosh (2βgx)

4 (cosh(βgx))
2
cosh (βgz)

}]
. (B31)

Note that at Tc, one requires

e−2βcgz < tanh(2βcgx) (B32)

to have non-zero negativity. This is always achievable by tuning gx since βc is only determined by gz . For T < Tc, depending on
the values ofm, there could be more choices of (z12, z34, x12, x34) that can give negative eigenvalues of ρT24

s . For simplicity, we
consider T → T−c , where m ∼ √Tc − T → 0+, and only the configurations in Eq.B28 can possibly give negative eigenvalues.
This is sufficient for our purpose since we only concern the possibly non-analytic behavior of the negativity. Therefore, as
T → T−c , the two-fold degenerate negative eigenvalue of ρT24

s is

ν =
e−βgz cosh (2βgx)− eβgz sinh(2βgx) cosh(2βm)

8 (cosh(βgx))
2
(eβgz cosh(2βm) + e−βgz )

. (B33)
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Finally, the negativity valid for T > T−c is given by

EN = log

[
1 + max

{
0,
eβgz sinh(2βgx) cosh(2βm)− e−βgz cosh (2βgx)

2 (cosh(βgx))
2
(eβgz cosh(2βm) + e−βgz )

}]
(B34)

Due to the singular behavior of m(T ):

m =

{
a
√
Tc − T for T → T−c

0 for T > Tc,
(B35)

the negativity EN is also a singular function across Tc.

2. Two dimensional Commuting Projector Hamiltonian

Consider a two dimensional lattice, where each sites has two spins labelled by ‘a’ and ‘b’ respectively, the model Hamiltonian
is

H = −
∑
〈ij〉

z̃iz̃j − g
∑
i

x̃i, (B36)

where z̃i ≡ ZiaZib, x̃i ≡ XiaXib. Consider a thermal density matrix ρT ∼ exp{−βH}, here we present the calcualtion of
the negativity between one spin on a single site, say, ‘a’ spin in site 0 (subsystem A), and its complement (subsystem B). As
discussed above, to calculate the negativity, we only need the reduced density matrix for spins at the boundary which in this case
are the spins at site 0 and its neighboring sites (labelled as 1,2,3,4 clockwise). The corresponding reduced density matrix on
these five sites is

ρ =A′e−βg(x̃1+x̃2+x̃3+x̃4)

[
cosh(βg)eβz̃0(z̃1+z̃2+z̃3+z̃4) + sinh(βg)eβz̃0(z̃1+z̃2+z̃3+z̃4)x̃0

]
[1 + c1 (z̃1z̃2 + z̃2z̃3 + z̃3z̃4 + z̃4z̃1) + c2 (z̃1z̃3 + z̃2z̃4) + c3z̃1z̃2z̃3z̃4] .

(B37)

Here A′ is determined by demanding Tr ρ = 1 and c1 = 〈z̃j z̃j+1〉; c2 = 〈z̃j z̃j+2〉; c3 = 〈z̃1z̃2z̃3z̃4〉, where the expectation
values are taken with respect to the bulk thermal density matrix ρbulk ∼ exp{−β(HA +HB)}. In fact, due to the property of
commuting local terms, ci can be obtain by considering the thermal state of a bulk classical Hamiltonian,i.e. g = 0, with one
spin per site, and one just need to replace the composite operator z̃i by a Pauli Z operator at site i (i.e. Zi). For instance,

c1 = 〈z̃j z̃j+1〉 =
Tr
{
z̃j z̃j+1e

β
∑
〈ij〉 z̃iz̃j +βg

∑
i x̃i
}

Tr eβ
∑
〈ij〉 z̃iz̃j +βg

∑
i x̃i

=
Tr
{
ZjZj+1e

β
∑
〈ij〉 ZiZj

}
Tr eβ

∑
〈ij〉 ZiZj

(B38)

Under the partial transposition over B, the density matrix is

ρTB =A′e−βg(x̃1+x̃2+x̃3+x̃4)

[
cosh(βg)eβz̃0(z̃1+z̃2+z̃3+z̃4) + sinh(βg)e−βz̃0(z̃1+z̃2+z̃3+z̃4)x̃0

]
[1 + c1 (z̃1z̃2 + z̃2z̃3 + z̃3z̃4 + z̃4z̃1) + c2 (z̃1z̃3 + z̃2z̃4) + c3z̃1z̃2z̃3z̃4] ,

(B39)

The eigenvalues of ρTB can be obtained by just replacing x̃i, z̃i by ±1. In fact, e−βg(x̃1+x̃2+x̃3+x̃4) is irrelevant since it just
provides a multiplicative factor when summing negative eigenvalues, which got cancelled out by the normalization factor. Ef-
fectively, it is sufficient to consider the eigenvalues

λ =A

[
cosh(βg)eβz̃0(z̃1+z̃2+z̃3+z̃4) + sinh(βg)e−βz̃0(z̃1+z̃2+z̃3+z̃4)x̃0

]
[1 + c1 (z̃1z̃2 + z̃2z̃3 + z̃3z̃4 + z̃4z̃1) + c2 (z̃1z̃3 + z̃2z̃4) + c3z̃1z̃2z̃3z̃4] ,

(B40)

where x̃0 and each z̃i takes ±1, which gives 26 = 64 eigenvalues, and A is chosen such that the sum of these 64 eigenvalues
remains unity. [1 + c1 · · · ] part is always non-negative since it is obtained by performing partial trace for a density matrix (
positive semidefinite ). As a result, λ can be negative only when x̃0 = −1 and e2βz̃0(z̃1+z̃2+z̃3+z̃4) < tanh(βg). For a given g,
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there are many choices of z̃i that can result in negative eigenvalues. As our purpose is to check whether the negativity picks up
an singularity at a thermal critical point, it is sufficient to restrict g in a range such that only a few eigenvalues are negative. We
set g in the range e−8β < tanh(βg) < e−4β , and there are only two negative eigenvalues given by

{
z̃0 = 1, z̃1 = z̃2 = z̃3 = z̃4 = −1
z̃0 = −1, z̃1 = z̃2 = z̃3 = z̃4 = 1.

(B41)

Finally, as

e−8β < tanh(βg) < e−4β , (B42)

we obtain the expression of the negativity:

EN = log
{
1− 4A

[
cosh(βg)e−4β − sinh(βg)e4β

]
(1 + 4c1 + 2c2 + c3)

}
. (B43)

A−1 = 25 cosh(βg)

[
cosh4(β) +

(
c1 +

1

2
c2

)
sinh2(2β) + c3 sinh

4(β)

]
(B44)

Due to the singularity of ci at the thermal critical point, the negativity EN is expected to be singular. To confirm this intuition,
we now adopt a mean-field approach to calculate the coefficient c1, c2, c3. The exact nature of singularities associated with ci
for our model would of course be determined by the critical exponents of the 2D Ising model. As shown in Eq.B38, ci is exactly
given by the corresponding classical Hamiltonian with one spin per site. As a result, we consider the mean-field Hamiltonian

H = −(3m+ Z0) (Z1 + Z2 + Z3 + Z4) , (B45)

we determine m from m = 〈Zi〉 = Tr{ρZi} for i = 1 to 4, where ρ is a density matrix associated with H . It is straightforward
to obtain the mean-field equation for m:

m =
cosh4(β(3m+ 1)) tanh(β(3m+ 1)) + cosh4(β(3m− 1)) tanh(β(3m− 1))

cosh4(β(3m+ 1)) + cosh4(β(3m− 1))
. (B46)

Tc can be determined from this equation, and it is straightforward to show that m = 0 as T → T+
c , and m ∼ √Tc − T as

T → T−c . Finally, c1, c2, c3 can be obtained:

c1 = c2 = 〈Z1Z2〉 =
cosh2(β(3m+ 1)) sinh2(β(3m+ 1)) + cosh2(β(3m− 1)) sinh2(β(3m− 1))

cosh4(β(3m+ 1)) + cosh4(β(3m− 1))

c3 = 〈Z1Z2Z3Z4〉 =
sinh4(β(3m+ 1)) + sinh4(β(3m− 1))

cosh4(β(3m+ 1)) + cosh4(β(3m− 1))

(B47)

Plug the coefficients into Eq.B43, and expand it for small m,

EN = log

{
1− 4

[
cosh(βg)e−4β − sinh(βg)e4β

]{ 16 cosh(4β)

1 + 4 cosh(4β + cosh(8β))
+

1728β2 [1 + 6 cosh(4β) + cosh(8β)]m2

[1 + 4 cosh(4β + cosh(8β))]
2

}}
.

(B48)
There the negativity EN is manifestly singular at Tc due to the singularity from m.

3. Quantum Spherical Model

Consider the Hamiltonian for a quantum spherical model: H = 1
2g
∑N
i=1 p

2
i − 1

2N

∑N
i,j=1 xixj + µ

[∑N
i=1 x

2
i − N

4

]
where

[xi, pj ] = iδij . µ is chosen so that
〈∑N

i=1 x
2
i

〉
= N

4 where the expectation value is taken with respect to the thermal den-

sity matrix. Define xk = 1√
N

∑
j e
ikjxj , pk = 1√

N

∑
j e
ikjpj and introduce ak, a

†
k: pk = −i

√
ωk
2g

(
ak − a†−k

)
,xk =√

g
2ωk

(
ak + a†−k

)
the Hamiltonian can be diagonalized:

H =
∑
k

ωk

(
a†kak +

1

2

)
− µ

4
N, (B49)
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where the single particle energy ωk is

ωk =

{
ω0 =

√
2g(µ− 1

2 ) for k = 0

ω1 =
√
2gµ for k 6= 0,

(B50)

Note that in order to have a stable theory , µ ≥ 1
2 . From Eq.B49, the free energy density f can be calculated:

f =
1

Nβ
log

[
2 sinh

(
1

2
βω0

)]
+
N − 1

Nβ
log

[
2 sinh

(
1

2
βω1

)]
− µ/4. (B51)

µ is determined from
〈∑N

i=1 x
2
i

〉
= N

4 , which is equivalent to ∂f
∂µ = 0:

1

2N

√
g

2(µ− 1
2 )

coth

(
1

2
β

√
2g(µ− 1

2
)

)
+
N − 1

2N

√
g

2µ
coth

(
1

2
β
√
2gµ

)
=

1

4
. (B52)

In the thermodynamic limit N →∞, µ is a singular function of β, g. For 2
√
g coth

(
1
2β
√
g
)
> 1, the system is in a disordered

phase, with µ determined from

√
g

2µ
coth

(
1

2
β
√
2gµ

)
=

1

2
, (B53)

while the condition 2
√
g coth

(
1
2β
√
g
)
< 1 gives the ordered phase, and µ is pinned to 1

2 . Here we brief describe the covariance
matrix formalism for calculating the negativity of a Gaussian state ρ for N degrees of freedom. First we calculate the covariance
matrix in displacements (γx)ij = 〈{xi − xi, xj − xj}〉 and the covariance matrix in momenta (γp)ij =

〈
{pi − pi, pj − pj}

〉
,

where xi = tr{ρxi}, pi = tr{ρpi}, and {A,B} = AB + BA is the anticommutator. Define the subsystem A composed by
degrees of freedom for site i = 1, 2, · · · , NA and the complement B composed by the rest of sites, we calculate γ̃ = γxRγpR,
where R is diagonal matrix with 1 for the first NA diagonal entries and −1 for the rest of the diagonal entries. By diagonalizing
γ̃, we obtain its eigenvalues {νi|i = 1, 2, · · · , N}, from which the negativity EN can be calculated

EN (ρ) =

N∑
i=1

max{0,−1

2
log νi}. (B54)

For the thermal state of the spherical model, a straightforward calculation shows that

(γx)ij = 2 〈xixj〉 = mx + δijdx

(γx)ij = 2 〈pipj〉 = mp + δijdp,
(B55)

with

mx ≡
1

N

[√
g

2µ− 1
coth

(
1

2
β
√

(2µ− 1)g

)
−
√

g

2µ
coth

(
1

2
β
√
2µg

)]
dx ≡

√
g

2µ
coth

(
1

2
β
√

2µg

)
mp ≡

1

N

[√
2µ− 1

g
coth

(
1

2
β
√

(2µ− 1)g

)
−
√

2µ

g
coth

(
1

2
β
√
2µg

)]
dp ≡

√
2µ

g
coth

(
1

2
β
√
2µg

)
.

(B56)

Thus we have

γ̃ = γxRγpR = dxdp1N +mxdpJN +mpdx

(
JN/2 −JN/2
−JN/2 JN/2,

)
(B57)
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where we define JN as an N × N all-ones matrix. All three matrices on the R.H.S. commute with each other so they can
be diagonalized with the same set of eigenvectors. Since both the second and the third matrix are rank-1 matrix, it is easy to
calculate the eigenvalues. Finally, the eigenvalues of γ̃ are

νk =


dxdp =

[
coth

(
1
2β
√
2µg

)]2
for k = 1, 2, · · ·N − 2

dxdp +Nmxdp =
√

2µ
2µ−1 coth

(
1
2β
√

(2µ− 1)g
)
coth

(
1
2β
√
2µg

)
for k = N − 1

dxdp +Nmpdx =
√

2µ−1
2µ coth

(
1
2β
√

(2µ− 1)g
)
coth

(
1
2β
√
2µg

)
for k = N

(B58)

One can check that νk > 1 for k = 1, 2, · · · , N − 1 for all values of parameters in the model, and only νN can be less than 1 to
contribute to the entanglement negativity:

EN = Max{0,−1

2
log ν} (B59)

where

ν ≡ νN =

√
2µ− 1

2µ
coth

[
1

2
β
√
(g(2µ− 1))

]
coth

[
1

2
β
√
2gµ

]
. (B60)

By using Eq.B53 in the disordered phase, and µ = 1
2 in the ordered phase, ν can be further simplified:

ν =


2

β
√
g coth

(
1
2β
√
g
)

for ordered phase
1
2

√
2µ−1
g coth

(
1
2β
√
(2µ− 1)g

)
for disordered phase.

(B61)

To study the singularity of EN at the critical point, we calculate the first derivative of EN with respect to g to observe its
discontinuity at a critical point:

∂EN
∂g

∣∣∣∣
g+c

=
1

2gc
+
β2
c

24

(
1− 8

4 + βc − 4βgc

)
∂EN
∂g

∣∣∣∣
g−c

=
4 + βc − 4βcgc

16gc
,

(B62)

Appendix C: Entanglement of Formation in a Infinite-Range Commuting Projector Hamiltonian

To begin with, we recall the definition of the entanglement of of formation: a density matrix ρ acting on a bipartite Hilbert
space H = HA ⊗HB can be decomposed as a convex sum of pure states

ρ =
∑
k

Pk |k〉 〈k| , (C1)

and for each |k〉, we can calculate the reduced density matrix on A: ρAk = TrB |k〉 〈k|, from which the entanglement entropy
SA(|k〉) is obtained: SA(|k〉) = −TrA ρ

A
k log ρAk . The entanglement of formation EF (A,B) is defined as

EF (A,B) = min
∑
k

PkSA(|k〉), (C2)

where minimization over all possible pure state decomposition is taken. Here we provide a model, where the entanglement of
formation can be calculated analytically by showing its upper and lower bound coincide in the thermodynamic limit. Consider a
one-dimensional lattice of size L where each lattice site has two qubits, the model Hamiltonian is

H = − 1

2L

(
L∑
i=1

Zi1Zi2

)2

− g
L∑
i=1

Xi1Xi2. (C3)

The density matrix at inverse temperature β is ρ = 1
Z e
−βH with Z = Tr e−βH . We make an entanglement cut across one of the

sites (say s-th site) such that the two spins on s-th site are not in the same subsystem. In the following calculation, A comprises
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all the lattice sites with site index i < s and the spin labelled by 1 on s-th site while B comprises all the lattice sites with site
index i > s and the spin labelled by 2 on s-th site. For such a bipartition scheme, we prove that the entanglement of formation
EF between A and B is exactly that from a mean-field density matrix for just two spins, where a closed form expression for EF
is available. Our strategy is to find an upper bound and a lower bound on EF that happen to match each other.

Upper Bound
Entanglement of formation EF requires a minimization scheme over all possible pure state decompositions. By considering a
particular way of decomposition, we thus give an upper bound for EF . First we perform the Hubbard-Stratonovich transforma-
tion for ρ:

ρ =
1

Z
e−βH =

1

Z

√
βL

2π

∫
dme−

1
2βLm

2−β
∑L
i=1Hi(m), (C4)

where a local Hamiltonian Hi(m) for i-site of two spins is defined as :

Hi(m) = −mZi1Zi2 − gXi1Xi2. (C5)

Each e−βHi(m) can be decomposed: e−βHi(m) =
∑
ki
wiki(m) |ki(m)〉 〈ki(m)|. As a result,

ρ =
∑
{ki}

∫
dm

1

Z

√
βL

2π
e−

1
2βLm

2

(∏
i

wiki(m)

)
|k1, · · · , kL〉 〈k1, · · · , kL| (C6)

The entanglement entropy betweenA andB in |k1, · · · , kL〉 〈ki, · · · , kL| is given by the entanglement entropy between just two
spins at site s due to the product state structure for different sites. Therefore,

EF (A,B) ≤ min
{ki}

∑
{ki}

∫
dm

1

Z

√
βL

2π
e−

1
2βLm

2

(∏
i

wiki(m)

)
Ss1(|ks(m)〉), (C7)

where Ss1(|ks(m)〉) is the entanglement entropy between spins at s1 and s2 in the state |ks(m)〉, and the minimum is taken
among all possible pure state decomposition of e−βHi(m). Since Ss1(|ks〉) is independent of how we decompose e−βHi for
i 6= s. The summation over ki ∀i 6= s can be performed on wiki :∑

{ki|i6=s}

∏
i 6=s

wiki =
(
Tri e

−βHi(m)
)L−1

= e−β(L−1)f(m), (C8)

where f(m) is a mean-field free energy density. Consequently,

EF (A,B) ≤ min
ks

∫
dme−βLf(m)

∑
ks

1
Zs
wsks(m)Ss1(|ks(m)〉)∫

dme−βLf(m)
, (C9)

with Zs ≡ Trs e
−βHs(m). In L→∞ limit, the argument inside the summation over ks is dominated only by saddle points, and

thus

EF (A,B) ≤ min
∑
ks

1

Zs
wsks(m

∗)Ss1(|ks(m∗)〉), (C10)

where m∗ is a saddle point obtained by minimizing f(m). Define the mean field density matrix on a single site of two spins:

ρs(m
∗) =

1

Zs
e−βHs(m

∗), (C11)

we show

EF (A,B) ≤ EF (s1, s2), (C12)
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i.e., the entanglement of formation between A and B is upper bounded by the entanglement of formation between two spins in
the mean field density matrix.

Lower Bound
As a bona fide entanglement measure, entanglement of formation is non-increasing under a partial trace. This implies that
EF (a, b) ≤ EF (A,B), where a and b denote a subsystem in A and B respectively. Here we choose two spins at the sites s as a
and b. A calculation shows that the reduced density matrix at site s is

ρs =
1

Z
Tri6=s e

−βH =

∫
dme−βLf(m) 1

Zs
e−βHs(m)∫

dme−βf(m)
=

∫
dme−βLf(m)ρs(m)∫

dme−βf(m)
(C13)

where f(m) = − 1
β logZs = − 1

β log Trs e
−βHs(m) being the free energy density. In L → ∞ limit, ρs is exactly given by

ρs(m
∗) where the saddle point m∗ is the location of the global minimum of f(m). One way to see this is to expand ρs in a

complete operator basis on site s, and show that expectation value of any operator on site s is precisely given by ρs(m∗). This
calculation shows that

EF (s1, s2) ≤ EF (A,B). (C14)

By combining Eq.C12 and Eq.C14, one finds that the bi-partite entanglement of formation between A and B is exactly that
between two spins in the mean field density matrix which can be calculated analytically using the result of Ref.31.


	Singularity in Entanglement Negativity Across Finite Temperature Phase Transitions
	Abstract
	Introduction
	Mean-Field Models
	A Non-local Commuting Projector Model
	Local Commuting Projector Models
	A General Result Regarding Negativity
	An Explicit Calculation of Negativity
	A General Argument for Singularity in Negativity

	quantum spherical model
	Exact Calculation of Entanglement of Formation in Commuting Projector Models
	Discussion and Summary
	Acknowledgments
	References
	General Results Regarding Commuting Projector Hamiltonians
	Partial Transposition Preserves the Set of Eigenvectors
	Partial Trace Preserves the Set of Eigenvectors
	Bipartite Negativity from a Density Matrix on Boundary

	Calculational details of negativity for various models discussed in the main text
	Infinite-Range Commuting Projector Hamiltonian
	Two dimensional Commuting Projector Hamiltonian
	Quantum Spherical Model 

	Entanglement of Formation in a Infinite-Range Commuting Projector Hamiltonian


