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Many-body diffusion Monte Carlo is used to obtain first-principles momentum distribution and
Compton profile of vanadium dioxide. Our results for the Compton profile are in good agreement
with the experimental values, and we show that a good qualitative agreement in scaled Compton
profile difference across the monoclinic to rutile phase transition depends on an accurate description
of electron correlation. The electron momentum distribution enables new insights into the metal-
insulator phase transition. For example, the probability for electron scattering in the proximity of
the Fermi surface (forward scattering) is suppressed in the vanadium chain direction (rutile c-axis),
but enhanced in perpendicular directions. However, along the c-axis we observe an increase at ∼ 2kF
in the momentum distribution, which is characteristic for Friedel oscillations (back scattering). Our
analysis of the momentum distribution supports experimentally observed anisotropies and provides
an explanation for the anomalously low electronic thermal conductivity observed recently in the
metallic phase [Lee et al. Science 355, 371 (2017)]. Moreover, our results indicate non-Fermi liquid
behavior as well as quasi-1D Friedel oscillations in the metallic rutile phase, which is reminiscent of
a Tomanaga-Luttinger liquid with impurities.

I. INTRODUCTION

Vanadium dioxide (VO2) is an amphoteric oxide with
functional properties suitable for various solid state appli-
cations including glass optics, ceramic applications, data
storage, and fast optical shutters [1]. It has also become
known as a prototypical strongly correlated electron ma-
terial that challenges theoretical and computational mod-
eling [2–6]. For example, despite its success with various
materials, density functional theory (DFT) has not been
able to adequately capture the electronic and magnetic
structures of VO2 [7]. This is in part due to electronic
correlations that DFT does not capture accurately [8].
In 2015 Zheng and Wagner [9] demonstrated the need
for a higher accuracy many-body approach, i.e. quantum
Monte Carlo (QMC), to correctly describe the electronic
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and magnetic structures of VO2. Accurate spectral prop-
erties, however, have successfully been obtained by be-
yond DFT approaches such as dynamical mean field the-
ory (DMFT) [10–12] and many-body perturbation theory
(GW) [13, 14].

The wealth of interest for VO2 stems from its rich
phase diagram with desirable properties controllable,
e.g., by temperature, pressure and doping [15–22]. Here
we focus on the thermally induced metal to insulator
transition (MIT) from insulating monoclinic phase (M1,
T < Tc) into a metallic rutile phase (R, T > Tc) [23–25].
This tunable MIT is accompanied by a change in the un-
derlying crystal lattice structure, which at ambient pres-
sure occurs at Tc ≈ 341 K for pure unstrained VO2. This
transition has been very recently studied with Compton
profile measurements [26], which revealed a poor corre-
spondence between the experiments and theoretical DFT
results. Moreover, the high-temperature metallic phase
was observed recently to exhibit a peculiar non-Fermi
liquid character and anomalously low electronic thermal
conductivity [15]. Earlier experiments had already shown
a strong anisotropy in the metallic phase, with the con-
duction along the rutile c-axis suppressed compared to
the perpendicular directions [27]. We use the momen-
tum distribution n(k) and Compton profile J(q) to ad-
dress the transition, and the nature of the metallic R
phase: is it a normal Fermi liquid, and what signatures
do n(k) and J(q) reveal?

Both the momentum distribution and Compton profile
are powerful probes for understanding the ground state
properties of materials. The momentum distribution of
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the electrons can be experimentally studied by scatter-
ing methods such as Compton scattering, positron an-
nihilation, the (e, 2e) process and high energy electron
scattering [28–31]. In general, the differential cross sec-
tions can be related to the momentum distribution. For
Compton scattering this requires an assumption that the
transferred energy and momentum are high compared to
those characteristic to the ground state properties and
collective behavior. This assumption results in the “Im-
pulse Approximation” (IA) in which, e.g., the Compton
profile as well as the dynamical structure factor are pro-
portional to the projection of n(k) onto a scattering vec-
tor [32, 33]. Within the IA directional Compton profile
in z-direction is given as

J(q) =

∫∫
n(kx, ky, kz = q)dkxdky. (1)

The IA is especially appropriate for X-ray Compton scat-
tering from electronic systems [30, 32], and thus, it is ca-
pable of providing a unique perspective for understanding
the electronic structure of materials; the properties of the
bulk, in particular.

In normal Fermi liquids, the electron momentum dis-
tribution has a discontinuity at the Fermi momentum
kF . In three-dimensional systems this discontinuity de-
fines the shape of the Fermi surface, which is also related
to the screening properties of the electrons [34]. The
magnitude of the discontinuity at the Fermi surface, on
the other hand, quantifies the strength of a quasiparticle
excitation and is called the renormalization factor (Z)
[35, 36]. For strongly coupled systems Z tends to zero
as the coupling strength increases, which can be used
as a measure of electron correlations. In the case of su-
perfluidity or superconducting behavior the Fermi sur-
face actually disappears, and the discontinuity is absent
also in some semi-metals [32]. Interestingly, even the
smallest amount of interaction will destroy the disconti-
nuity in n(k) in one-dimensional chains according to the
Tomanaga-Luttinger theory [37–39]. Broadening of the
sharp drop at kF is also associated with the opening of a
band gap [40]. To this end, the momentum distribution
provides complementary, and possibly even more infor-
mative, knowledge to other characterizations of many-
body systems.

Here we will first motivate the use of our first-principles
approach, i.e., quantum Monte Carlo (QMC), and dis-
cuss computational details. Second, we will show that
our QMC results are in excellent qualitative agreement
with recent experimental data [26] on the scaled Comp-
ton profile difference across the MIT. Third, we will ad-
dress the origin of the quantitative discrepancy between
theory and experiment. Then we will consider the sub-
tle details of the momentum distribution across the MIT
and in individual phases (R phase in particular), and
explain possible implications to the underlying physics.
This analysis is further tied in with insights obtained
from post-processed electron densities of Ref. [8].

II. METHODS AND COMPUTATIONAL
DETAILS

Using continuum diffusion Monte Carlo (DMC) [41–
43] we are able to obtain the momentum distribution
function from first principles. This is accomplished by
evaluation of the expectation value

n(k) = Ω−1
N∑
j=1

〈∫
dsj

Ψ(R+ sj)

Ψ(R)
e−ik·sj

〉
|Ψ(R)|2

, (2)

where Ω is the volume containing N electrons, R includes
the coordinates of all the electrons, and sj is a displace-
ment vector acting on the jth electron. The DMC ap-
proach is known for its accuracy in solving ground state
electronic structure properties for both molecular and
solid state systems from first principles [9, 42, 44–46].
In particular, DMC straightforwardly and accurately in-
cludes electron correlations [47–49]. Importantly, in re-
cent years it has been demonstrated that the challenges
introduced by electron correlation and the description of
3d orbitals of transition metal oxides are overcome by
DMC [49–64]. Therefore, QMC is regarded as an ex-
cellent computational tool for validating and predicting
material properties. Use of QMC in periodic supercells
results in finite size effects, but unexpectedly, we find that
these are small for n(k) in VO2, which differs from past
experience with the homogeneous electron gas [36, 65].

Crystal structures for the M1 [66] and R [67] phases
were obtained from the Inorganic Crystal Structure
Database [68]. All calculations were performed with the
experimental lattice constants. In both phases, the vana-
dium atoms are arranged in quasi-1D chains and, as
in Ref. [9], an antiferromagnetic ordering was imposed
by fixing alternating up/down spin moments along the
chains. More details on the experimental lattice vectors
and atomic coordinates of the M1 and R crystal struc-
tures are given below regarding our density functional
theory (DFT) and quantum Monte Carlo (QMC) calcu-
lations. In addition, full simulation inputs and outputs
for all QMC and DFT calculations performed in this work
are available via the Materials Data Facility [69] (DOI:
provided upon acceptance).

A. Density functional theory

Our density functional theory (DFT) calculations were
performed in the antiferromagnetic (AFM) magnetic
primitive cell of VO2 (4 VO2 formula units for M1 and R).
We used experimental crystal structures [66, 67] from the
Inorganic Crystal Structure Database (ICSD). See Table
I for information on the axes and atomic positions. In
Table I we use V1 and V2 when referring to the different
magnetic orientations of the Vanadium atoms (spin up
and spin down, respectively). We used plane-wave energy
cutoffs of 350 Ry with 12×12×24 and 24×12×12 k-space
grid for R phase and M1 phase, respectively. The DFT
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FIG. 1. Finite-size effects on the momentum distribution con-
sidered as the difference between 72 atom and 48 atom as well
as 96 atom and 48 atom supercells.

calculations were performed with Quantum Espresso [70]
using hard norm-conserving pseudopotentials as in our
earlier study [8].

B. Quantum Monte Carlo

The quantum Monte Carlo simulations were carried
out with QMCPACK [43, 71] in a supercell contain-
ing 16 VO2 formula units, that is, 48 atom supercell.
The experimental crystal structures used in DFT calcu-
lations were tiled to give the supercells described in Ta-
ble II. For faster convergence to thermodynamic limit,
we used twist-averaged boundary conditions [72] with a
4×4×4 supercell twist angle grid instead of purely peri-
odic boundary conditions. This also results in better res-
olution for the momentum distribution. In order to esti-
mate the finite-size effects on the momentum distribution
we performed additional simulations for the R phase for
72 and 96 atom supercells. We find that the momentum
distribution is well converged already with our 48 atom
supercell. This can be seen in Fig. 1, where we show
the difference between the larger supercells and the 48
atom cell along the rutile c-axis. The differences show no
consistency to increase or decrease, and the magnitude is
small also; roughly zero within two standard deviations.

The trial wavefunction (ΨT ) used is of the standard
Slater-Jastrow [73, 74] type:

ΨT = det{ψ↑} det{ψ↓}eJ . (3)

The purpose of the trial wavefunction is to guide the
simulation both more accurately and more rapidly to the
ground state. A trial wavefunction with a better nodal
surface–arising from the sets of orbitals above–leads to a
more accurate diffusion Monte Carlo (DMC) result. A
trial wavefunction with a better Jastrow factor improves
the timestep and pseudopotential localization approxi-
mations made in DMC and also reduces the statistical
variance, making the calculations more efficient. Since
a good trial wavefunction is important in improving the
approximations made in DMC, we describe in more detail

below how we obtained an optimal wavefunction within
the Slater-Jastrow ansatz.

The product of spin-up and spin-down determinants of
spatial orbitals arise from a single determinant of spin-
orbitals after fixing the electron spins, while the overall
state is a spin-unrestricted antiferromagnet [51]. The de-
terminants are composed of single particle orbitals taken
from spin-unrestricted LDA+U (via Quantum Espresso),
in which the correct magnetic structure was imposed by
initializing the magnetic moments in an antiferromag-
netic configuration along the V-V chains. Convergence
to the AFM state was further confirmed after the self-
consistent density functional theory calculations by anal-
ysis of the magnetic structure and spin-resolved Löwdin
charges.

In the Jastrow factor (eJ) we include terms up to two-
body (electron-electron) correlation functions, i.e.,

J =J1 + J2

=
∑
I,i

u1(|ri −RI |) +
∑
i<j

u2(|ri − rj |), (4)

where ri and RI refer to electron and ion coordinates,
respectively. The u1 and u2, correlation functions de-
pend, as appropriate, on both the ionic and spin species
involved. The functions u1 and u2 are parameterized in
terms of radial B-splines [75].

The Jastrow parameters were optimized by making use
of the variational principle as applied to the total en-
ergy and the energy variance. The optimization was per-
formed by minimizing a cost function containing a 95/5
ratio of energy and variance with the linear method [76],
which results in a good balance between improvements in
DMC pseudopotential localization approximation [77–79]
and the resulting variance of the local energy [80]. We
optimize the Jastrow part only with variational Monte
Carlo (VMC), which improves the description of particle-
particle correlations, but does not modify the nodal sur-
face. The orbitals are instead optimized directly with
DMC, though within the restricted variational freedom
afforded by LDA+U.

In DMC the operator exp[−τ(Ĥ − ET)] is used to
project out the lowest eigenstate that has non-zero over-
lap with the chosen fixed node / trial wave function [42],

where Ĥ is the many body Hamiltonian and ET is an
estimate of the ground state energy, which is updated
throughout the simulation. In our earlier work [8] the
DMC fixed node/phase error [81–83] was minimized by
using the Hubbard-U value as a variational parameter op-
timized directly in DMC, with U = 3.5 eV yielding the
lowest energy. In production runs, the DMC timestep
was set to 0.005 Ha−1, resulting in an acceptance ra-
tio greater than 99.6%. Non-local pseudopotentials were
handled in the DMC projector within the variational T-
moves scheme [79, 84].

Since DMC provides a “mixed” estimate of the mo-
mentum distribution (a mixture between the fixed node
estimate and the VMC one), we have corrected the mixed
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estimates by extrapolation to obtain “pure” estimates
of the momentum distribution, reflecting the fixed node
wave function (Φ) alone. This is a general property of
the DMC method for operators that do not commute
with the Hamiltonian. In order to obtain pure estimates
of the momentum distribution (n(k)), we used the ex-
trapolation formula [42]:

nextrap = 2nDMC,mixed − nVMC +O((Φ−ΨT )2). (5)

C. Momentum distribution and Compton profile

Momentum distribution n(k) is obtained by taking the
Fourier transform of the one-body density matrix:

n(k) =
N

Ω

∫
dRdr′1 e

i(r1−r′1)·kρ(r1, . . . , rN , r
′
1, . . . , rN )

=
N

Ω

∫
ds e−ik·sn(s),

where N is the number of electrons, R = {r1, . . . , rN},
s = r′1 − r1, and

n(s) =

∫
dR ρ(r1, . . . , rN , r1 + s, . . . , rN ).

In variational Monte Carlo (VMC) and diffusion Monte
Carlo (DMC)

n(s) =

∫
dR Ψ∗(r1, . . . , rN )Ψ(r1 + s, . . . , rN )

=

∫
dR |Ψ(R)|2 Ψ(R′)

Ψ(R)
,

which gives us

n(k) =

∫
dR |Ψ(R)|2N

Ω

∫
ds

Ψ(R′)

Ψ(R)
e−ik·s.

In practice, the above will be estimated through

n(k) =

〈
N

Ω

1

Ns

Ns∑
j=1

Ψ(R′)

Ψ(R)
e−ik·sj

〉
|Ψ(R)|2

, (6)

where Ns refers to the number of samples used in the
Monte Carlo integral for

∫
ds. Notice that the momen-

tum distribution normalizes to the number of electrons∑
k

n(k) = N =
Ω

(2π)d

∫
dk n(k) =

∫
dk ñ(k), (7)

in which a finite system and a system at the thermody-
namic limit are described by summation and integration,
respectively, and ñ(k) = (2π)−dΩn(k).

The Compton profile is obtained as an integral of the
momentum distribution [30]. For example, the direc-
tional Compton profile in the z-direction is given as

J(q) =

∫
dkxdky ñ(kx, ky, kz = q). (8)

In the spherically symmetrized (or isotropic) case we have

J(q) =
1

2

∫ ∞
|q|

dk
1

k
I(k)

=
1

2

∫ ∞
|q|

dk
1

k
4πk2ñ(k)

= 2π

∫ ∞
|q|

dk kñ(k) (9)

with I(k) = 4πk2ñ(k). Also the Compton profile nor-
malizes to the number of electrons, i.e.,∫ ∞

−∞
dqJ(q) = N. (10)

In practice with periodic simulations we need to re-
sort to a finite number of k-points in which we describe
the momentum distribution. This introduces a cut-off
(kc) into our k-grid. Let’s consider this in the case of
spherically symmetric (or angular averaged) momentum
distribution and the related Compton profile. According
to Eq. (7) we can write

N =

∫
dk ñ(k)

=

∫ kc

0

dk 4πk2ñ(k) + ∆N. (11)

Considering large enough kc we can approximate the tail
by a decaying function such as A exp(−Bk)/k, and thus,

∆N =

∫ ∞
kc

dk 4πk2ñ(k)

≈
∫ ∞
kc

dk 4πkAe−Bk

=
4πA

B2
[1 +Bkc] e

−Bkc . (12)

Therefore, in optimizing the coefficients for the tail it is
also possible to use the accuracy in ∆N as a constraint
in addition to the few points at the tail.

For the “isotropic” Compton profile this yields

J(q) = 2π

∫ ∞
|q|

dk kñ(k) = 2π

∫ kc

|q|
dk kñ(k) + ∆J, (13)

where

∆J = 2π

∫ ∞
kc

dk kñ(k) ≈ 2πA

B
e−Bkc . (14)

Notice that for q ≥ kc the tail of the “isotropic” Compton
profile can be approximated by Eq. (14). This can be
used in the calculation of the norm of the Compton profile
in the range (−∞,∞):

N =

∫ ∞
−∞

dqJ(q) = 2

∫ qc

0

J(q) + 2∆N, (15)
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where the “correction term” (∆N) to the norm is given
by

∆N =

∫ ∞
kc

dq∆J ≈ 2πA

B2
e−Bkc . (16)

Another aspect arising from periodic simulations might
be harder to notice, but it can be dealt with by con-
verging the trial wave function with a set of k-points
that include your desired k-grid. That is, already at
the DFT level the SCF calculation should include the
k-points that will be used in the NSCF calculation for
the trial wave function. Failing to do this would lead to
some sort of “interpolation” between the k-points of the
SCF calculation, which can introduce subtle, but notice-
able, inconsistencies—at least in the momentum distri-
bution. In Compton profile these small inconsistencies
would, however, be suppressed due to the integration,
and thus, the Compton profile would be less affected by
this.

D. Einstein-like approximation for phonon
contribution

Let us consider a model where the electron orbital on
a site fluctuates with noise charaacterized by a Gaussian
distribution. Then the modified orbital is given as

Φ̃νk(r) =

∫
dxΦνk(r + x)f(x), (17)

where f(x) = (2πα)−3/2 exp(− x2

2α ), ν is the band index,
and Φνk(r) is the original wave function. Taking the
Fourier transform and making a change of variable, r′ =
r + x, we get

Φ̃νk =

∫
drΦ̃νk(r)e−ik·r

=

∫
dr′Φνk(r′)e−ik·r

′
∫
dxf(x)eik·x

= Φνke
−αk2/2. (18)

Therefore, the modified momentum distribution will

be n(k)e−αk
2

, since
∑
ν |Φ̃νk|2 =

∑
ν |Φνke−αk

2/2|2 =∑
ν |Φνk|2e−αk

2

= n(k)e−αk
2

. The sum over ν only in-
cludes occupied orbitals.

III. RESULTS AND DISCUSSION

As expected due to the prior success of QMC in VO2,
our results yield good agreement with the experimental
Compton profile data [1]. For example, at q = 0 our
values including the Hartree-Fock core contribution [85]
are 10.456(4) ea−1

0 and 10.444(4) ea−1
0 for R phase and

M1 phase, respectively. For the M1 phase an experimen-
tal value of 10.102(22) ea−1

0 and DFT-LCAO value of
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FIG. 2. Scaled Compton profile difference across the phase
transition. Experimental data [26] in green have been multi-
plied by five in order to account for the quantitative difference
in the scaled difference profile. Quantum Monte Carlo with
1σ statistical error is shown in blue (on top of the experi-
ment), and DFT of this work (LDA+U with DMC optimized
U value, U = 3.5 eV) as black dashed line. In the figure we
concentrate on the region in which DFT, QMC and the exper-
iments have noticeable differences, i.e., the region of valence
electron contributions.

9.761 are reported in Ref. [1], and in Ref. [26] a value
of 10 ea−1

0 was used for JR(0). However, in general a
more accurate measure both experimentally and com-
putationally is given by considering differences between
the phases since, e.g., the core contributions as well as
some experimental uncertainties will cancel. Considering
the subtle changes across the transition in a scaled dif-
ference profile [26], i.e., [JR(q) − JM1(q)]/JR(0) × 100%,
we find only a good qualitative correspondence. This is
shown in Fig. 2. The change in the scaled difference
profile is very delicate; for all q the scaled difference
in J(q) between the M1 and R phases remains below
0.2%. The related experimental data in Fig. 2 is multi-
plied by a factor of five (as in Ref. [26]) in order to obtain
good quantitative correspondence in the scaled difference
profile between theory and experiment. As argued by
Ruotsalainen et al.[26], this effect is believed to derive
from the electron-phonon coupling, which would indicate
small uneven changes in the Compton profile values for
the high-temperature and low-temperature phases. The
change would need only to be less than 0.1% in order
to account for the observed quantitative difference. Us-
ing our a simple Einstein solid-like picture we derived an
on-site approximation for the electron wave function in-
fluenced by nuclear motion. Within this harmonic model
the momentum distribution would include an additional
phonon-related term, i.e., n(k) −→ n(k) exp(−αk2), in
which α is the variance of a Gaussian distribution in po-
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FIG. 3. Supercell crystal structures of R and M1 phases spec-
ifying directions used in the analysis. The vanadium chain
direction (rutile c-axis in general) is out of plane. Subtle
structural changes can be seen, e.g., the misalignment of the
V atoms along the chain direction (zig-zag “chain”). On the
right we show the momentum distribution in R phase along
the vanadium chain direction. The statistical error bars are
smaller than the line width. Vertical lines are estimates for
the Fermi momentum kF and 2kF obtained from angular av-
eraged “isotropic” momentum distribution.

sition space. Already αR − αM1 ≈ 0.0001a2
0 would be

enough to remove the quantitative discrepancy between
theory and experiment. Therefore, a slight increase in
the thermal motion and/or softening of phonon modes
when going from M1 to R phase is a likely explanation
for the factor of five in the difference profile. The soften-
ing of the phonon modes has been reported for example
in Ref. [22]. It should be pointed out that this simple
model removes the quantitative discrepancy only for a
limited range, i.e., roughly |q| < 1.0a−1

0 .

In Ref. 26 it was shown that density functional theory
(DFT) within LDA+U/LDA approaches results in neg-
ative scaled Compton profile differences for small mo-
mentum transfer values. In our previous study [8] we
optimized the Hubbard U of LDA+U with DMC. This
procedure finds the optimal U-value for trial wave func-
tion within our fixed-node DMC approach that provides a
rigorous upper bound for the total energy. Interestingly,
we find that this procedure also results in an improved
agreement with experiments already at the DFT level, by
increasing the small momentum values of ∆J(q)/JR(0)
close to zero on the positive side. The agreement is
further enhanced with the more accurate correlation de-
scription provided by QMC, as shown in Fig. 2, where we
show the challenging region. Outside the limits of this
region all the curves are in very good agreement with
each other.

In Fig. 3 we show our supercell crystal structures of
the two phases and define the general directions used
in the analysis of the momentum distributions. There
the vanadium chain direction (or rutile c-axis) is out of
plane. Subtle structural changes can be seen, e.g., the
misalignment of the V atoms along the chain direction
in M1 phase. There the vanadium atoms are arranged
in a “zig-zag” type chain structure. Raising the tem-
perature above the transition temperature will lead to a
perfectly aligned chain along the V chain direction, and
complementary changes also in the V-V and V-O direc-
tions shown in Fig. 3. In addition, in the R phase along
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FIG. 4. Anisotropies of the momentum distribution on two
different planes. Plane 1: V chain direction (y-axis) – V-O
direction (x-axis) (a) R phase and (b) M1 phase. Plane 2: V
chain direction (y-axis) – V-V direction (x-axis) (c) R phase
and (d) M1 phase. Smaller circle is an estimate of Fermi
momentum kF from angular averaged “isotropic” momentum
distribution, and larger circle is at ∼ 2kF.

the V chain direction the vanadium atoms are evenly
spaced in contrast to the M1 phase, which increases the
electron hopping amplitude along the chain [86].

On the right in Fig. 3 we show the momentum distri-
bution in the metallic R phase along the vanadium chain
direction. The statistical errorbars are smaller than the
width of the line, and the vertical lines are estimates
of the Fermi momentum kF and 2kF. Due to the ab-
sence of a clear discontinuity the Fermi momentum is
estimated by the position of the minimum value in the
first derivative of the angular averaged momentum dis-
tribution. Importantly, this absence of a discontinuity
indicates non-Fermi liquid behavior in the metallic rutile
phase. Our result agrees with recent experimental find-
ings [15], where the violation of the Wiedemann-Franz
law was attributed to the formation of a strongly cor-
related, incoherent non-Fermi liquid. There the charge
and heat was considered to be transported by distinct
diffusive modes instead of long-lived quasiparticles. For
a more detailed view on the possible source for this non-
Fermi liquid behavior, we will next look into the direc-
tional characteristics of the momentum distribution in
both phases and also across the transition.

In Fig. 4 we present DMC anisotropies in the momen-
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FIG. 5. Difference in the momentum distribution across the phase transition on the same two planes as in Fig. 4: (a) V chain
direction (y-axis) – V-O direction (x-axis), and (b) V chain direction (y-axis) – V-V direction (x-axis). Smaller circle is an
estimate of Fermi momentum kF from angular averaged “isotropic” momentum distribution, and larger circle is at ∼ 2kF. In
figure (c) the differences are given in four different directions and also for the angular averaged momentum distributions. In
figure (c) the V-V 1 direction corresponds to the x-axis of figure (b), and V-V 2 is the direction straight up in Fig. 3, i.e.,
perpendicular to V-V 1.

tum distribution in two different planes for both phases:
(a) R phase and (b) M1 phase are on a plane given by
the rutile c-axis (V chain direction) and the V-O direc-
tion, whereas (c) R phase and (d) M1 phase are on a
plane given by the rutile c-axis and the V-V direction in-
dicated in Fig. 3. As a measure of anisotropy we use the
difference n(k)−n̄(k), where n̄(k) is the angular averaged
momentum distribution. Comparing Figs. 4(a) and (b)
we can see that the anisotropy is in general stronger in
the R phase than in the M1 phase. This is rather counter-
intuitive considering the differences in crystal structures
of the two phases; on the other hand, it is indicative
of the effects of electron-electron interactions and elec-
tron correlations. Interestingly, based on quasiparticle
wave functions GW approach would indicate electroni-
cally more isotropic R phase [13]. The Seebeck coefficient
measurements of Ref. [27], however, agree with our ob-
servations of noticeably larger anisotropy in the R phase.
The negative Seebeck values indicate that the dominant
current carriers are electrons, but according to the sim-
ple model in Ref. [27] the anisotropy can be explained if
more than one type of current carrier with different and
anisotropic mobilities are present. However, as we see
here, the large anisotropy is present already at the elec-
tronic level. The most noticeable differences in Fig. 4 (a)
and (b) are manifested along the c-axis where the R phase
appears isotropic up to ∼ kF, with a large anisotropic
contribution at ∼ 2kF. In the V chain – V-V plane,
Figs. 4(c) and (d), the anisotropy is stronger along the
“x”-axis than in Figs. 4(a) and (b). Moreover, apart from
the chain direction the anisotropies between the planes
are of different sign close to the Fermi momentum. Ex-
pressed in a similar percentage measure as the Compton
profile difference in Fig. 2, i.e. [n− n̄]/nmax×100%, these
anisotropies would yield values up to ∼ 10%, which is
significantly larger than the anisotropies in the Compton

profile (< 1.2% in Ref. [1]). Therefore, the anisotropies
should give a clear signal in the experimental momentum
distributions obtainable, e.g., through triple-differential
cross section measurements [31].

In Fig. 5(a) and (b) we consider the momentum distri-
bution across the phase transition on the same two planes
as earlier in Fig. 4, whereas in Fig. 5(c) we show the dif-
ference along a few different directions as well as for the
angular average. In both (a) and (b) we see that below
k < kF the momentum distribution (and therefore also
the average electron momentum) along the “x”-axis is
enhanced while along the vanadium chain direction (“y”-
axis) it is suppressed. Moreover, similar characteristics
as for the anisotropies can be seen at 2kF along the V-
chain direction; however, in Fig. 5(b) this is more spread
out than in Fig. 4. The ∼ 2kF character across the phase
transition can be related to an increase in Friedel oscilla-
tions as a result of back scattering, in which an electron is
scattered to the opposite side of the Fermi surface; this
is typical, e.g., in the context of Luttinger liquid the-
ory, spin density waves, and electron-phonon scattering
[34, 37–39]. The spatial period for Friedel oscillations
would, however, be rather small to be observed, i.e., of
the order of π/kF ≈ 2.5a0, but its major contribution
would be in the vanadium chain direction. In general,
the 2kF back scattering can lead to degradation of both
the electrical and thermal currents, and is thus a likely
reason for the observed anomalously low electronic ther-
mal conductivity found fairly recently for the R phase
[15]. But where does this 2kF character derive from and
why is it mainly observable in the V chain direction? In
the Luttinger liquid model a short-range impurity will
lead to Friedel oscillations that are scaled by a term in-
cluding the interaction strength. Due to the absence of
impurity atoms in our simulations the interactions be-
tween the rutile c-axis and directions perpendicular to it
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are expected to induce “impurities” [87] resulting in the
quasi-1D ∼ 2kF character of these oscillations. In a rough
picture this would be formed of linked one dimensional
chains–essentially comprising an anisotropic component
of the broader 3D electronic structure–where the links
are responsible for the impurity effects. This picture
is supported by the electron density considerations ad-
dressed below. The quasi-1D behavior has also been re-
ported earlier based on GW calculations considering the
role of crystal local-field and excitonic effecs [14], where
the quasi-1D nature was shown to influence the optical
properties of VO2. The increased probabilities and the
anisotropies observed here also support the experimental
results for the Seebeck coefficients [27], which indicate a
∼ 9% smaller conductivity along the rutile c-axis com-
pared to the directions perpendicular to it. Importantly,
Fig. 5 describes the electron momentum transfer in the
MIT, thus providing new complementary knowledge also
of phase transition.

To this end, Fig. 5 shows a considerable anisotropic
shift in the momentum distribution function and change
in its character: along the V-V1, V-V2, and also V-O
directions there is a shift of weight towards momenta
slightly larger than kF, consistent with the formation of
a more metallic-like Fermi surface in these directions. In
contrast, the momentum distribution along the V-chain
axis depletes weight from below the kF and adds consid-
erable weight out towards 2kF. This is indicative both of
a large “smearing” of the momentum distribution func-
tion, as well as Friedel oscillations at 2kF, both consistent
with a non-Fermi liquid like behavior along the V-chain
axis. In Fig. 6 we plot electron density isoconcentration
surfaces: R phase in (a) and (b), M1 phase in (c) and
(d). Clear 1D chain-like isoconcentration surfaces along
the V-chain directions are observed with real-space os-
cillations corresponding to the momentum distribution
peak near 2kF. These plots are also consistent with 1D
non-Fermi liquid-like behavior along the V-chain direc-
tion. These observations lead to the following picture:
in the insulating M1 phase, dimerization along the V
chains driven by correlations prevents the formation of
metallicity, and the system is insulating. As the MIT is
approached from the M1 phase, correlation energy dimin-
ishes (relative to other energies), allowing the formation
of a Fermi surface. However, a remnant of strong corre-
lations along the V-chain axis leads to non-Fermi-liquid
like behavior along this direction. It is also insightful
to consider the MIT from the metallic side. Strong cor-
relations along the V-chain axis prevents the formation
of a clear Fermi surface in those directions, leading to
non-Fermi liquid-like behavior along the V-chains. As
the MIT is approached from the R phase, correlation
strengths increase leading to dimerization and the in-
sulating M1 phase. In other words, the MIT is driven
primarily by electronic correlations, not by structural in-
stabilities.

In the R phase the oscillations in the electron den-
sity for the “1D chains” are identical whereas in the M1

(a) (b)

(c) (d)

FIG. 6. Electron density isosurfaces (atomic units, e/a30):
(a) R phase with isovalue 0.06, (b) R phase with isovalue
0.08, (c) M1 phase with isovalue 0.06, and (d) M1 phase with
isovalue 0.08. Quantum Monte Carlo electron densities are
from Materials Data Facility related to Ref. 8. For clarity the
atoms are not shown in (b) and (d). These figures have been
made with XCrysden [88, 89].

phase they are not. Actually, in the M1 phase a nearest
neighbor “1D chain” has a phase shift of half the period,
which changes the positions of the maxima and minima.
Slightly increasing the isovalue, i.e. going from (a) to (b),
we see a formation of “links” between the chains. In the
R phase the amount of these links is larger than in the M1
phase with the same isovalue. This is likely related to the
enhancement of back-scattering seen in the MIT, and fur-
ther supports the Luttinger picture of connected/linked
“1D chains” introduced earlier.

IV. CONCLUSIONS

In this study we used first-principles quantum Monte
Carlo to obtain the momentum distribution and Comp-
ton profiles for the R and M1 phases of vanadium dioxide.
A good qualitative agreement with the experimental data
was shown for the Compton profile differences across the
metal-insulator transition. The quantitative differences
are considered to arise from electron-phonon coupling
based on a simple theoretical model and experimental ob-
servations [26]. Analysis of the momentum distribution
reveals the signature of the non-Fermi liquid character
of the metallic R phase proposed by recent experiments
[15]. Moreover, we observe that Friedel oscillations in the
R phase are mainly confined in one-dimension, which to-
gether with the observed ∼ 2kF characteristics are rem-
iniscent of a Luttinger liquid type metal with impuri-
ties. These impurities could emerge as a consequence of
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the transverse dimensions. In addition, we believe that
our findings provide an explanation for the experimen-
tally observed anomalously low electronic thermal con-
ductivity [15], as we observe back scattering characteris-
tics within the momentum distribution.
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TABLE I. Primitive cell axes and atomic positions in Å used in density functional theory calculations. These are experimental
structures: for M1 phase we use the ICSD collection code entry 34033, and for R phase the ICSD entry 1504. Vanadium sites
with up/down magnetic moment are labeled V1/V2.

M1 phase (P21/c) R phase (P42/mnm)
x y z x y z

a 5.752000000 0.000000000 0.000000000 4.554600000 0.000000000 0.000000000
b 0.000000000 4.537800000 0.000000000 0.000000000 4.554600000 0.000000000
c -2.903573350 0.000000000 4.532170350 0.000000000 0.000000000 5.705600000

V1 1.300602890 4.442233932 0.119921229 0.000000000 0.000000000 0.000000000
V2 1.547823771 0.095566070 4.412249122 0.000000000 0.000000000 2.852799999
V1 -0.151183780 2.364466069 2.386006401 2.277299999 2.277299999 1.426399997
V2 2.999610442 2.173333934 2.146163949 2.277299999 2.277299999 4.279200001
O 0.005176999 0.961559820 0.945410729 1.366835461 1.366835461 0.000000000
O 2.843249652 3.576240182 3.586759611 3.187764536 3.187764536 0.000000000
O -1.446609671 1.307340179 3.211495912 3.644135460 0.910464538 1.426399997
O 4.295036333 3.230459824 1.320674439 0.910464538 3.644135460 1.426399997
O 1.436088279 3.188258280 1.354212500 1.366835461 1.366835461 2.852799999
O 1.412338372 1.349541722 3.177957851 3.187764536 3.187764536 2.852799999
O -0.015698391 3.618441721 3.620297683 3.644135460 0.910464538 4.279200001
O 2.864125042 0.919358281 0.911872668 0.910464538 3.644135460 4.279200001
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TABLE II. Supercell axes and atomic positions in Å used in quantum Monte Carlo simulations.

M1 phase R phase
x y z x y z

a 11.50400000 0.00000000 0.00000000 4.55460000 -4.55460000 0.00000000
b 2.90357335 4.53780000 -4.53217035 4.55460000 4.55460000 0.00000000
c -2.90357335 4.53780000 4.53217035 0.00000000 0.00000000 11.41120000

V1 1.30060289 4.44223393 0.11992123 0.00000000 0.00000000 0.00000000
V2 4.45139712 4.63336607 -0.11992123 0.00000000 0.00000000 2.85280000
V1 2.75238957 6.90226607 -2.14616395 4.55460000 0.00000000 0.00000000
V2 2.99961044 2.17333393 2.14616395 4.55460000 0.00000000 2.85280000
V1 7.05260289 4.44223393 0.11992123 0.00000000 0.00000000 5.70560000
V2 10.20339712 4.63336607 -0.11992123 0.00000000 0.00000000 8.55840000
V1 8.50438957 6.90226607 -2.14616395 4.55460000 0.00000000 5.70560000
V2 8.75161044 2.17333393 2.14616395 4.55460000 0.00000000 8.55840000
V1 4.20417624 4.44223393 -4.41224912 2.27730000 2.27730000 1.42640000
V2 1.54782377 4.63336607 4.41224912 2.27730000 2.27730000 4.27920000
V1 2.75238957 2.36446607 -2.14616395 2.27730000 -2.27730000 1.42640000
V2 2.99961044 6.71113393 2.14616395 2.27730000 -2.27730000 4.27920000
V1 9.95617624 4.44223393 -4.41224912 2.27730000 2.27730000 7.13200000
V2 7.29982377 4.63336607 4.41224912 2.27730000 2.27730000 9.98480000
V1 8.50438957 2.36446607 -2.14616395 2.27730000 -2.27730000 7.13200000
V2 8.75161044 6.71113393 2.14616395 2.27730000 -2.27730000 9.98480000
O 0.00517700 0.96155982 0.94541073 1.36683546 1.36683546 0.00000000
O 5.74682300 8.11404018 -0.94541074 3.18776454 3.18776454 0.00000000
O 1.45696368 5.84514018 -1.32067444 3.64413546 0.91046454 1.42640000
O 4.29503633 3.23045982 1.32067444 5.46506454 -0.91046454 1.42640000
O 1.43608828 3.18825828 1.35421250 1.36683546 1.36683546 2.85280000
O 4.31591172 5.88734172 -1.35421250 3.18776454 3.18776454 2.85280000
O 2.88787496 8.15624172 -0.91187267 3.64413546 0.91046454 4.27920000
O 2.86412504 0.91935828 0.91187267 5.46506454 -0.91046454 4.27920000
O 5.75717700 0.96155982 0.94541073 5.92143546 1.36683546 0.00000000
O 11.49882300 8.11404018 -0.94541074 3.18776454 -1.36683546 0.00000000
O 7.20896368 5.84514018 -1.32067444 3.64413546 -3.64413546 1.42640000
O 10.04703633 3.23045982 1.32067444 0.91046454 -0.91046454 1.42640000
O 7.18808828 3.18825828 1.35421250 5.92143546 1.36683546 2.85280000
O 10.06791172 5.88734172 -1.35421250 3.18776454 -1.36683546 2.85280000
O 8.63987496 8.15624172 -0.91187267 3.64413546 -3.64413546 4.27920000
O 8.61612504 0.91935828 0.91187267 0.91046454 -0.91046454 4.27920000
O 0.00517700 5.49935982 0.94541073 1.36683546 1.36683546 5.70560000
O 5.74682300 3.57624018 -0.94541074 3.18776454 3.18776454 5.70560000
O -1.44660967 5.84514018 3.21149591 3.64413546 0.91046454 7.13200000
O 7.19860968 3.23045982 -3.21149591 5.46506454 -0.91046454 7.13200000
O 4.33966163 3.18825828 -3.17795785 1.36683546 1.36683546 8.55840000
O 1.41233837 5.88734172 3.17795785 3.18776454 3.18776454 8.55840000
O 2.88787496 3.61844172 -0.91187267 3.64413546 0.91046454 9.98480000
O 2.86412504 5.45715828 0.91187267 5.46506454 -0.91046454 9.98480000
O 5.75717700 5.49935982 0.94541073 5.92143546 1.36683546 5.70560000
O 11.49882300 3.57624018 -0.94541074 3.18776454 -1.36683546 5.70560000
O 4.30539033 5.84514018 3.21149591 3.64413546 -3.64413546 7.13200000
O 12.95060968 3.23045982 -3.21149591 0.91046454 -0.91046454 7.13200000
O 10.09166163 3.18825828 -3.17795785 5.92143546 1.36683546 8.55840000
O 7.16433837 5.88734172 3.17795785 3.18776454 -1.36683546 8.55840000
O 8.63987496 3.61844172 -0.91187267 3.64413546 -3.64413546 9.98480000
O 8.61612504 5.45715828 0.91187267 0.91046454 -0.91046454 9.98480000


