Strain and screening: Optical properties of a small-diameter carbon nanotube from first principles

Christian Wagner, Jörg Schuster, and André Schleife

Phys. Rev. B 99, 075140 — Published 20 February 2019

DOI: 10.1103/PhysRevB.99.075140
I. INTRODUCTION

Carbon nanotubes (CNTs) possess interesting material properties: Their mechanical behavior is dominated by high stiffness and large rupture strain, they are chemically very stable, and show a sizable shift of electronic energy levels as a function of axial strain. This shift renders optical transitions sensitive to strain, as has been observed experimentally and explained theoretically. For this reason, CNTs are excellent candidates for electronic and optical strain sensing and optical strain characterization, which is a promising technology due to the practical ease of optical readout and such as indirect electronic characterization. In particular, optical strain sensors with extremely high, mechanically tunable sensitivity can be built in combined CNT/micro-opto-electro-mechanical systems (MOEMS). However, in order to achieve precise strain sensing based on CNTs, a thorough understanding of electronic and optical properties, as well as their strain dependence, needs to be developed. Quantitative insight is essential for the development of MOEMS, such as strain-tunable emitters based on CNTs or tunable optical sensors.

On a more fundamental level, CNTs are a well-suited test bed for obtaining deeper insight into the physics of the strain dependence of screening and, hence, the screened Coulomb electron-electron interaction W. Understanding this is important for modern many-body perturbation theory, since in GW approximation (GW) and Bethe-Salpeter equation (BSE) calculations, W plays a central role.
The optical response perpendicular to the CNT axis, i.e., along ϵ = k − k′, strongly direction dependent. In reciprocal space, spacial (3D) semiconductors with a dielectric constant as small as 1, this cannot \textit{a priori} be assumed for CNTs. Therefore, resolved dielectric function ϵ(r, r′) needed because the material response, i.e., screening, is restricted to the actual electron density of the CNT and is, thus, strongly direction dependent. In reciprocal space, spatial resolution corresponds to a dependence on q = k − k′, which means that ϵ(q = k − k′) must be considered instead of a constant ϵ. Dynamical screening is captured by the frequency-dependent dielectric function ϵ(q, ω), which is required when energy-dependent integrals occur.

Furthermore, as 1D materials, CNTs show negligible optical response perpendicular to the CNT axis, i.e., along the z direction. Hence, screening ϵ(q_z = k − k′) with q_z = q_e z and Brillouin zone (BZ) sampling are effectively 1D. This needs to be taken into account when using analytical model functions to describe dielectric screening since their q-dependence is fitted to three dimensional (3D) semiconductors with a dielectric constant ϵ_{r0} low-q limit. However, in CNTs the low-q (large distance) limit is vacuum screening. Therefore, the ϵ_{r0} dependence of ϵ and the emerging local-field effects must be calculated accordingly. Nevertheless, in many studies only the dielectric constant ϵ is used as a screening model for the description of excitons in CNTs, since it is a much simpler quantity. Wave functions are expanded into a plane-wave basis up to a cutoff energy of 550 eV (40 Ry). To ensure accuracy, we also tested a plane-wave cutoff of 1100 eV (80 Ry), for which total energies are converged up to 9 meV/electron (36 meV/atom). In both cases, the resulting DFT as well as QP gaps agree within 20 meV, which we include in our error bars for QP energy calculations (see below).

II. THEORETICAL APPROACH AND COMPUTATIONAL DETAILS

A. Ground-state properties

We use DFT30,31 to compute total energies and, via minimization of Hellman-Feynman forces, optimized ground-state geometries of a (8,0)-CNT in equilibrium as well as under axial strain. For these calculations the local-density approximation (LDA) is used to describe exchange and correlation34 and the electron-ion interaction is described using norm-conserving pseudopotentials based on the parametrization by von Barth and Car.35 Wave functions are expanded into a plane-wave basis up to a cutoff energy of 550 eV (40 Ry). To ensure accuracy, we also tested a plane-wave cutoff of 1100 eV (80 Ry), for which total energies are converged up to 9 meV/electron (36 meV/atom). In both cases, the resulting DFT as well as QP gaps agree within 20 meV, which we include in our error bars for QP energy calculations (see below).

We construct a simulation cell that contains the (8,0)-CNT, oriented along the z axis and surrounded by vacuum in the other two directions. We choose a supercell size of 19.5 × 19.5 × 4.26 Å3, such that two periodic images of CNTs are separated by 13.2 Å. This is by far enough vacuum to obtain converged results and to suppress finite-size effects in DFT calculations for the neutral CNT. The geometry optimization is performed using a 1 × 1 × 20 Monkhorst-Pack (MP)37 k-point grid and all atoms are relaxed until the remaining forces are smaller than 0.01 eV/Å. All our results for relaxed atomic geometries can be found in the supplemental material at [URL will be inserted by publisher].

We then compare to calculations within the Vienna \textit{Ab-initio} Simulation Package.38,39 For these we use the generalized-gradient approximation by Perdew, Burke, and Ernzerhof40 and the projector-augmented wave method.41 The calculations are carried out using...
a plane-wave cutoff energy of 400 eV and the same \(k \)-point grid discussed above. Relaxed atomic geometries from both approaches differ only very slightly (GGA in-
roduces about 0.2\% strain, see supplemental material at [URL will be inserted by publisher]), which is reassuring for the comparison of excited-state properties below.

B. GW calculations

In order to describe QP effects on electronic single-particle energies, we use Hedin’s GW approximation for the electronic self-energy.\(^{32}\) We use the Yambo package\(^{42,43}\) to compute QP energies within one step of perturbation theory, i.e. without updating \(G \) or \(W \), which is known\(^{26}\) as \(G_0W_0 \) approach. The fully frequency-dependent dielectric response function \(\epsilon(q, \omega) \), that enters \(W \), is computed within random phase approximation (RPA) using\(^{50-59}\) real-axis integration. Local-field effects play an important role and are converged for a \(G \)-vector cutoff of 35 eV\(^{26}\) (\(\approx 2.4\) Ry), which results in less than 0.5\% change of the dielectric function at several \(q \)-points with respect to the extrapolated value or less than 20 meV change in the \(G_0W_0 \) gap (see Fig. 2 in the supplemental material at [URL will be inserted by publisher]). Converged calculations require a \(1 \times 1 \times 40 \) MP \(k \)-point grid\(^{47}\) (\(1 \times 1 \times 60 \) MP \(k \) points in case of Coulomb truncation) due to the sharper profile of \(\epsilon(q_g) \), see Ref. 21) and at least 256 bands, which is four times the number of occupied states. Thus, the default parameter set is 256 bands\(^{271}\) and 60 \(k \)-points for GW calculations, unless other values are explicitly given. In addition, the singularity of the Coulomb integral in \(k \) space has to be circumvented,\(^{274}\) which is achieved using the random-integration method\(^{275}\) (RIM) described by Marini et al.\(^{42}\) for GW calculations\(^{276}\).

While the vacuum size in our supercell calculations is sufficiently large to achieve convergence in DFT, a thorough unit cell convergence is not feasible for the screened Coulomb interaction \(W \), due to its long-range character.\(^{278}\) The slow decay of the Coulomb interaction with distance renders it impossible to eliminate artificial interactions\(^{279}\) between periodic images.\(^{43-46}\) This can be compensated,\(^{280}\) e.g. when calculating defect-formation energies, by subtracting the electrostatic contribution of all repeating cells.\(^{44}\) For converged calculations of \(W \), Coulomb truncation schemes were developed,\(^{21,43}\) the Yambo implementation of which is used in this work and described\(^{44}\) in Ref. 43. Using this scheme renders a lateral unit cell\(^{281}\) size of 19.5 Å and a truncation cylinder for the Coulomb interaction (radius 9.75 Å) sufficient. All details on convergence tests for \(k \) points, number of bands, cell size,\(^{286}\) and Coulomb truncation, including the non-trivial convergence studies with Yambo, are described in detail in the supplemental material at [URL will be inserted by publisher].

C. Bethe-Salpeter calculations

Excitonic effects are taken into account in the description of optical absorption by solving a BSE for the optical polarization function.\(^{33}\) For BSE calculations, the screened electron-hole interaction \(W \) is computed using the static limit of the response function and the same local-field effects as for GW calculations.\(^{42,47}\) Ten valence and ten conduction bands are included for the solution of the BSE. Convergence with respect to \(k \) points is achieved using a \(2 \times 2 \times 80 \) MP grid and the same lateral unit cell size of 19.5 Å is found to be sufficient. These convergence tests are discussed in detail in the supplemental material at [URL will be inserted by publisher]. The Yambo package (version 3.4.2) is used for all GW and BSE calculations.

In order to better understand the influence of dielectric screening, we compare Yambo results to BSE calculations from a recent VASP-based implementation.\(^{38,49}\) These are carried out using the same parameters as for Yambo: \(2 \times 2 \times 80 \) MP \(k \) points, ten valence and ten conduction bands, as well as the same simulation cell size. Local-field effects are included up to 35 eV \(G \)-vector cutoff, as discussed above for GW calculations. This allows calculating exciton binding energies that are converged to within about 1\% with respect to the dielectric \(G \)-vector cutoff. This error estimate stems from the extrapolation of the estimated error of the dielectric function (see Fig. 2 in the supplemental material at [URL will be inserted by publisher]). An accurate extrapolation scheme is used to circumvent the Coulomb singularity.\(^{49}\) This BSE implementation currently does not support Coulomb truncation to remove the interaction between super cells, which is discussed in Sec. III E. In order to study the influence of the screened interaction \(W \), we compare the results using a dielectric constant to an analytical model dielectric function\(^{50}\) for screening. This comparison allows us to quantitatively discuss the interplay between Coulomb truncation, screening, and strain effects.

III. RESULTS AND DISCUSSION

A. Electronic structure of the unstrained (8,0)-CNT

In Fig. 1 band structures computed using DFT (scissor-shifted to 1.84 eV) and \(G_0W_0 \) are compared. Our \(G_0W_0 \) gap of 1.84±0.02 eV (1.81±0.02 eV when extrapolated to an infinite number of bands and \(k \)-points, see supplemental information [URL will be inserted by publisher]) agrees very well with early work by Spataru et al., who reported 1.75 eV,\(^{21}\) and later work by Lanziol et al., who reported 1.81 eV.\(^{51}\) The small difference to Spataru et al.\(^{21}\) can be explained by slightly different computational parameters: They used a plasmon-pole approximation to describe the \(\omega \)-dependence of the dielectric function and a slightly smaller 16 Å unit cell with
m

FIG. 1. (Color online.) G_0W_0 band structure (red dashed) is compared to scissor-shifted DFT results (black solid). Besides the scissor shift, the inset shows a linear dependence of QP shifts on KS eigenvalues. The fit shows that the GW valence band is stretched by about 1.15 and the GW conduction band by about 1.06 with respect to corresponding KS bands. The Fermi level of the GW band structure is chosen to be at zero energy.

Coulomb truncation beyond 7 Å cylinder radius.

The inset of Fig. 1 shows that G_0W_0 QP shifts depend approximately linearly on DFT Kohn-Sham (KS) eigenvalues: In addition to the scissor shift that opens the gap, band stretching parameters β describe the linear slope. We find that valence band (VB) and conduction band (CB) are stretched by $\beta_{\mathrm{cb}}=1.15$ and $\beta_{\mathrm{vb}}=1.06$. This implies a small correction of effective masses, $m_\mathrm{GW}=\sqrt{\beta}m_\mathrm{DFT}$, and needs to be taken into account when solving the BSE with much finer k-point sampling.

In order to calculate effective masses of the π bands, we use a hyperbolic fit that resembles the G_0W_0 bands as closely as possible. The expression stems from the tight binding (TB) zone folding approach together with the Dirac cone approximation for describing CNT band structures. The fit to DFT data yields effective masses of $m_\mathrm{CB}^{\mathrm{DFT}}=0.422 m_0$ for the conduction and $m_\mathrm{CB}^{\mathrm{DFT}}=0.310 m_0$ for the valence band. The effective masses of the respective G_0W_0 bands are $m_\mathrm{cb}=0.418 m_0$ and $m_\mathrm{vb}=0.278 m_0$ in quantitative agreement with band stretching.

B. Hybrid functional for approximate QP energies

The QP correction of the DFT gap within the G_0W_0 approach is sizable: The extrapolated shift is 1.21 ± 0.02 eV, compared to a DFT gap of 0.60 eV. This large shift is attributed to weak dielectric screening in the 1D CNT, clearly indicating the need for using a QP correction scheme. Unfortunately, the G_0W_0 approach is computationally expensive and becomes unaffordable, e.g., when a large number of CNTs or many different strained configurations are studied. For these cases, an approximate description of QP corrections is beneficial and using a hybrid exchange-correlation functional, such as the one by Heyd, Scuseria, and Ernzerhof (HSE06) has proven successful. It comes at much reduced computational cost, since no Coulomb truncation or expensive convergence with respect to empty states is needed. For the (8,0)-CNT, the reduction of cost is about a factor of 6.

The HSE06 functional contains 25% of Hartree-Fock (HF) exact exchange and leads to a band gap of 1.06 eV for the (8,0)-CNT. Increasing the fraction of HF exchange to 66% reproduces the G_0W_0 band gap (see details in the supplemental material at [URL will be inserted by publisher]). Such a large fraction of HF exact exchange is not unusual for low-dimensional systems since screening is much weaker than in bulk materials, revealing almost bare electron-electron interaction. Clearly, using a hybrid exchange-correlation functional without adjusting the mixing parameter does not give correct band gaps for CNTs. As an example, the work of Matsuda et al. publishes a band gap of about 1.28 eV for the (8,0)-CNT, using the B3LYP functional without adapting the mixing parameter. Next, we investigate whether the same fixed fraction of HF exchange results in sufficiently precise strain-dependent band gaps for the (8,0)-CNT, compared to G_0W_0 results.

C. Electronic structure of the strained (8,0)-CNT

To investigate the strain dependence of the electronic structure, Fig. 2 shows fundamental gaps computed using DFT, modified HSE06, and G_0W_0, and band stretching parameters for several relative axial strains up to 6%. This illustrates the strong dependence of the fundamental gap on strain, which is significantly enhanced when QP effects are included, as seen from the different slopes of blue and green curves in the left panel of Fig. 2.

This effect can be understood by invoking strain-
dependent dielectric screening, in addition to strain-dependent shifts of KS eigenvalues computed in DFT (blue curve in Fig. 2): The smaller the band gap of the strained CNT, the stronger the dielectric screening, and, thus, the weaker is the electron-electron repulsion. Since QP shifts are small in a material with strong dielectric screening, the \(G_0W_0 \) gap of the CNT with the largest axial strain (smallest gap) is closer to the DFT gap than for less strained CNTs.

Figure 2 also illustrates that the band gap computed using the modified HSE06 functional with 66% exact exchange is very similar to the one computed using the \(G_0W_0 \) approach for all strains investigated here. The remaining difference is less than 0.1 eV, showing that axial strains up to \(\approx 6\% \) have no influence on the required amount of HF exchange.

We also note that while band stretching \(\beta \) differs between CB and VB, it only slightly changes with strain: \(\beta_{cb} \) is reduced from 1.06 to 1.00 at 6 \% strain and \(\beta_{cb} \) remains at a constant value of 1.15. The strain dependence of QP corrections modifies the strain-dependent effective mass of the CB by less than 3 \%. The VB is stretched by 15 \% (7 \% change of the effective mass), independent of the strain value. Overall, this means that the ratio of DFT and \(GW \) corrected effective mass is close to 1.0 and, thus, barely strain dependent. However, the absolute value of the effective mass (either from \(GW \) or from DFT) is strongly strain dependent as discussed in Sec. HIF (see Fig. 6).

D. Optical properties of the strained \((8,0)\)-CNT

We now discuss the strain dependence of the optical spectrum via strain-induced shifts of the transitions \(E_{11}, \ E_{22}, \ E_{33}, \) and \(E'_{11} \) as depicted in Fig. 3, where the index \(nn \) indicates allowed transition from the \(n^{th} \) \(\pi \)-VB to the \(n^{th} \) \(\pi \)-CB.\(^\text{28}\) The unprimed transitions denote first-order excitons, whereas the primed transition \(E'_{11} \) is a second-order exciton \((n=2) \) that originates from the same electronic bands as \(E_{11} \). This assignment relies on the numerical diagonalization of the exciton Hamiltonian, whose eigenstates are superpositions of non-interacting KS states. We analyzed these contributions for the different strained cases (see details in the supplemental14 material at [URL will be inserted by publisher]) and15 our assignment agrees with Spataru et al. for the un-46 strained case.\(^\text{21}\) In the following, results with and without Coulomb truncation are discussed and the origin of the excitation binding energy is investigated. The visual19ization of strain optical transitions in Fig. 4 shows that the first and second optical transition shift20 in opposite directions under strain. This is consistent22 with the most simple TB calculation of the CNT123 with the zone-folding method applied to124 (strained) graphene,\(^\text{8}\) which predicts a downshift of CNT125 bands with strain for odd transitions \((n=1, 3, \ldots) \) and126 upshifts of even CNT bands \((n=2, 4, \ldots) \).

In contrast to this TB picture, we observe an upshift for the third optical transition that we attribute to \(\sigma-\pi \)-hybridization. Since the curvature of the \((8,0)\)-CNT is large, \(\sigma \)- and \(\pi \)-bands hybridize and the respective band energies are lowered. This effect becomes stronger for higher bands and leads to reordering of the \(n=3 \) and \(n=4 \) states. As a consequence, the third optical transition shifts in the direction opposite to what is predicted by the zone-folding model, which does not include an effect of a curved CNT surface.

For the \((8,0)\)-CNT, the first optical transition \(E_{11} \), which is often observed in photo- or electroluminescence, appears in the infrared and shifts towards lower energies. For the unstrained CNT we observe \(E_{11} \) at \(1.51 \pm 0.03 \) eV.
which is nearly identical to 1.55 eV reported by Spataru et al.21 We explain the small difference with the slightly different gaps, the use of RPA instead of plasmon-pole approximation (PPA), and the slightly smaller unit cell.

Under strain, the $GW+BSE$ result for the E_{11} transition shows a downshift to 1.02 eV at 6\% tensile strain. Qualitatively, this trend follows the GW results, but the exciton binding energy E_B, defined as difference between GW (dashed black line in Fig. 4) and $GW+BSE$ transition (blue line with markers in Fig. 4), significantly reduces with strain. We explain this via the strain-induced increase of the dielectric constant, i.e. screening (see Fig. 6 and discussion in Sec. III F), that leads to a reduction of the exciton-binding energy.

The E_{22} and higher transitions are observed in optical absorption, photoluminescence (PL), and Rayleigh scattering, and via photocurrents due to absorption.62-64 Figure 3 illustrates that E_{22} and E_{33} each consist of a series of peaks. Their intensity-weighted average, depicted in Fig. 4, shows that E_{22} and E_{33} shift approximately linearly in energy with strain by a large value of about 200 meV/%. For larger strained armchair CNTs, such as (11,0) and (17,0), that show a reduced π-hybridization, this value is only about 150 meV/%.19

Since these CNTs should possess about the same strain dependence within the TB model with the zone folding scheme, it appears that the σ-π-hybridization itself is strain dependent. This leads to an enhanced strain sensitivity of electronic bands and corresponding optical transitions of the $(8,0)$-CNT.

E. Exciton binding energies and long-range Coulomb interaction

In order to understand the physics of screening in strained CNTs, we compare BSE results with and without the Coulomb truncation scheme used for eliminating artificial Coulomb interactions of CNTs in adjacent super cells. We use Yambo and the RIM to solve the BSE for the untruncated case and compare to the truncated case in Fig. 5. We also compare to the VASP-BSE implementation, which uses a different solver49 and find that both codes agree almost perfectly, as documented in the supplemental material [URL will be inserted by the publisher].

Figure 5 shows that optical transitions appear at lower energies when the Coulomb interaction is truncated, which means that corresponding exciton binding energies are larger. While in the untruncated case the electron-hole interaction is (artificially) affected by periodic images over long distances, in the truncated case, no periodic images are present and only the much smaller vacuum screening contributes. Thus, the truncation affects the low-q_z behavior of $\epsilon(q_z)$, which determines the screening of the electron-hole interaction in the long-range limit. The reduction of screening for low q_z due to Coulomb truncation explains the enhancement of exciton binding energies. Next, we establish detailed, quantitative insight into the scaling of exciton-binding energies with strain.

F. Scaling of the exciton binding energy with strain

Figure 5 also illustrates that the energies of optical transitions for untruncated and truncated cases depend on strain and approach each other for large strain. The reason is that the band gap is reduced with increasing strain, leading to increased screening that even becomes metallic for about 9\% strain. In the metallic case, the truncation has almost no effect on the, then very large, screening.21

This effect of strain-dependent screening on exciton binding energy and GW gap does not just occur in 1D materials such as CNTs: The exciton binding energy in bulk ZnO decreases from approximately 70 meV to 55 meV between +2\% and −2\% strain due to different screening, see Ref. 65. The effect is smaller in bulk, compared to low-dimensional systems, since screening is much stronger in 3D. For various 2D materials with band gaps less than about 2 eV, where screening effects are almost as strong as in CNTs, Zhang et al. showed that there is a simple, almost linear dependence of the exciton binding energy on the fundamental band gap.66 They also showed that the absolute exciton binding energy is about 50\% of the band gap and reported that it changes as the band gap changes, e.g. due to strain.

Next, we interpret the strain dependence of the exciton-binding energy via a scaling relation: Perebeinos et al.29 derived this for CNTs, using a TB Hamiltonian together with an Ohno potential in order to solve the BSE. By introducing a single parameter α, they extended the well-known exciton scaling relation in homo-
geneous, isotropic materials, \(E_B \sim \mu_{\text{eff}} \varepsilon^{-2} \), to

\[
E_B \approx A_B \mu^{\alpha-1} \varepsilon^{-\alpha} r_{\text{CNT}}^{-2}, \quad (1)
\]

where \(A_B \) is the exciton-binding energy in a reference state, \(r_{\text{CNT}} \) is the CNT radius, \(\mu \) the reduced mass of electron and hole, and \(\varepsilon \) is the dielectric constant. \(\alpha \) was found to be \(\alpha = 3.0 \pm 0.6 \). An independent confirmation of the parameter is given by Perebeinos et al., who predicted a scaling of \(E_B \sim r_{\text{CNT}}^{-0.6} \) using a variational approach for wave functions on a cylinder surface and homogeneous, background dielectric screening. This result corresponds to the same value of \(\varepsilon = 1.40 \) and \(\alpha = 1.4 \) and \(r_{\text{CNT}}^{-2} \). While the above relations were developed for a background dielectric screening, we now show that this screening (i.e., no Coulomb truncation) and local fields (i.e., with Coulomb truncation) are related.

To analyze the validity of this scaling relation for CNTs under strain, we depict our first-principles results for the three materials parameters that enter Eq. (1) in Fig. 6. The dielectric constant is obtained from RPA calculations using Yambo and the reduced effective mass results from our \(G_0W_0 \) data. This figure shows that the CNT radius depends only weakly on strain; the Poisson ratio is about 0.2, leading to a shift in the exciton binding energy of about 0.7% at 6% tensile strain. Conversely, the electronic structure is much more sensitive, leading to significant changes of effective masses and, via the fundamental gap, of the dielectric constant. The two parameters \(\mu \) and \(\varepsilon \) are, thus, the influence of strain on the exciton binding energy via Eq. (1).

In order to compare this to our BSE results, we depict the strain-dependent exciton-binding energy of the \(E_{11} \) transition in Fig. 7. This data is computed using the strain-dependent dielectric function \(\varepsilon(q_z) \) for screening of the electron-hole interaction and we compare results based on Coulomb truncation (see Fig. 8) to those computed without the truncation scheme. As expected, the resulting exciton binding energies differ in magnitude, since the underlying screening models deviate between truncated and non-truncated case, especially for low \(q_z \) (see supplemental material [URL will be inserted by publisher]).

More importantly, Fig. 7 illustrates that the scaling relation, Eq. (1), holds: Fitting to results without Coulomb truncation yields a value of \(\alpha \approx 1.29 \pm 0.03 \) and shows almost perfect agreement with our data, despite the fact that BSE calculations take local-field effects into account, whereas Eq. (1) was derived under the assumption of a constant, homogeneous dielectric screening. Since there may be a significant influence from strong \(\sigma-\pi \) hybridization due to CNT curvature, it is not surprising that the value of \(\alpha \) slightly differs from 1.40 given by Perebeinos. We note that the data in Fig. 7 was computed using Yambo; VASP data is shown in the supplemental material at [URL will be inserted by publisher].

Fitting to data with Coulomb truncation, yields a slightly different value of \(\alpha \approx 1.21 \pm 0.03 \), since local-field effects with Coulomb truncation are not captured by the static, homogeneous screening entering the TB models used by Pedersen or Perebeinos. While this difference in \(\alpha \) is, thus, not a surprise, it is remarkable that the scaling relation also holds in the Coulomb-truncated case, and we explore this in more detail in the next section.

We point out that for this fit, we used the dielectric constant from the untruncated case (see Fig. 6) to mimic background screening, since Coulomb truncation would imply \(\varepsilon = 1.0 \). This is also addressed in the next section, where we introduce a geometry-dependent parameter \(C_1 \) to substitute \(\varepsilon \) in the scaling relation. It characterizes the inhomogeneity and describes screening for confined carriers in the truncated geometry.
why the scaling relation, Eq. (1), also holds in the case of Coulomb truncation. We can, therefore, rewrite Eq. (1) using C_1 instead of ϵ:

$$E_B = A_B \epsilon^{\alpha-2} \mu^{\alpha-1} C_1^{-\alpha}$$

(3)

Hybrid DFT calculations can then yield effective masses and, after adjusting the fraction of exact exchange, strain-dependent corrected gaps. In combination with the RPA, these calculations also yield the inhomogeneous screening as a function of strain and, thus, the parameter C_1. This shows that for an isolated, strained CNT, the exciton-binding energy can be related to that of the unstrained state by means of a scaling relation, Eq. (3).

IV. CONCLUSIONS

We use first-principles electronic-structure calculations, based on the GW+BSE approach, to compute strong, strain-related shifts of peaks E_{min} in the optical-absorption spectrum of an (8,0)-CNT, consistent with earlier literature. We find that the exciton binding energy in strained CNTs is a function of the band gap and our work leads to the important conclusion that this arises directly from strain-dependent inhomogeneous dielectric screening. This shows that deformation potentials of electronic eigenvalues and exciton binding energies need to be considered explicitly, in order to predict strain-dependent optical spectra of CNTs.

While this implies that the effect of many-body physics on optical spectra in strained CNTs is crucial, we then show that a more simple scaling relation for the exciton binding energy is applicable also to strained CNTs. This scaling relation allows us to extrapolate the shift of optical transitions from the unstrained state to the strained state, based on the strain-induced shift of electronic energy levels and the strain dependence of $\epsilon(q)$ and μ. We then showed that the modified HSE06 hybrid functional, with a fraction of 66% exact exchange, mimics QP corrections for the unstrained CNT quite well, allowing us to avoid expensive GW calculations of strained CNTs to determine these parameters.

Finally, we provide detailed understanding of why the scaling relation works for strained CNTs, even though it relies on the dielectric constant as a parameter and neglects the influence of local-field effects. To this end, we demonstrate that in low-dimensional materials, a wave-vector dependent screening function $\epsilon(q_z)$ must be used. In addition, in first-principles excited-state calculations the Coulomb interaction must be truncated in order to obtain supercell convergence, which influences the long-range, low-q_z part of the screening function. We show that a suitable screening function $\epsilon(q_z)$ for CNTs can be obtained from a 1D Penn model of a charge on an infinitely long, hollow cylinder and connect the parameters of this model to our first-principles data, leading to an excellent fit. We envision that this significantly advances the study of optical transitions in strained CNTs and
enables broader applications of this interesting material system.

ACKNOWLEDGMENTS

Part of this work was supported by the National Science Foundation under Grant No. DMR-1555153. Support by the Deutsche Forschungsgemeinschaft DFG research unit 1713 and funding of the German academic exchange service (DAAD) is gratefully acknowledged. We thank the Yambo developers, who gave important feedback concerning technical issues during some calculations.

* christian.wagner@zfim.tu-chemnitz.de

† schleife@illinois.edu

Only the π bands are optically active and their effective masses play an important role when comparing to results from BSE calculations.