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Abstract

We present systematic theoretical studies of both bulk and surface electromagnetic eigenmodes,

or polaritons, in Weyl semimetals in the minimal model of two bands with two separated Weyl

nodes. We derive the tensors of bulk and surface conductivity taking into account all possible

combinations of the optical transitions involving bulk and surface electron states. We show how

information about electronic structure of Weyl semimetals, such as position and separation of

Weyl nodes, Fermi energy, and Fermi arc surface states, can be unambiguously extracted from

measurements of the dispersion, transmission, reflection, and polarization of electromagnetic waves.
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I. INTRODUCTION

Weyl semimetals (WSMs) have attracted a lot of interest as a new class of gapless three-

dimensional topological materials. Their Brillouin zone contains an even number of band-

touching points, or Weyl nodes, that can be described by topological invariants defined

as integrals over the two-dimensional Fermi surface. For each pair of Weyl nodes, these

invariants can be viewed as topological chiral charges of opposite sign of chirality [1]. The

electron dispersion near each Weyl node corresponds to three-dimensional massless Weyl

fermions. For crystals with broken time-reversal or inversion symmetry (or both), the Weyl

nodes of opposite chirality are separated in momentum space. The separation makes them

stable against small perturbations and also gives rise to surface states with Fermi arcs. For

reviews of WSMs discovered so far and their properties, see [2–7].

So far, the bulk of the research has been focused on measuring and modeling the electronic

structure of WSMs and topological signatures in electron transport. However, it is becoming

increasingly clear that optical methods (e.g. [8]) can provide a sensitive and sometimes more

selective probe into the unique properties of these materials as compared to other approaches.

Furthermore, analogies between light propagation in materials and topological effects in

propagation of massless Weyl fermions in WSMs have been pointed out [9, 10]. For a WSM

in a magnetic field several proposals explored the signatures of the chiral anomaly in the

interband optical absorption and plasmon mode properties; see e.g. the calculations of the

magnetooptical conductivity in the quasiclassical limit [11–17] and the quantum-mechanical

theory in a strong magnetic field [18, 19]. Note that these studies did not include finite

separation of Weyl nodes in a microscopic Hamiltonian.

Here we study electromagnetic eigenmodes of WSMs in the presence of finite separation

between Weyl nodes in momentum space and without an external magnetic field. To cal-

culate the optical response, one needs to determine a realistic low-energy Hamiltonian that

captures the essential topological structure of WSMs. While many WSMs discovered in

experiment have a complicated arrangement of several pairs of Weyl nodes, essential physics

and electronic properties of WSMs are already revealed in a model containing only two

Weyl nodes separated in momentum space. Such models serve as a usual starting point for

theoretical studies of transport and optical phenomena. Probably the simplest approach is

to add a Zeeman-like constant shift term to the Hamiltonian for a Dirac semimetal, which
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preserves the linear form of the Hamiltonian with respect to momentum operators [20].

The bulk optical conductivity for this model was calculated in [21]. In another approach,

developed in [22] and used in many optical response studies to date, a phenomenological

axion θ-term is introduced in the action for the electromagnetic field. This gives rise to

the gyrotropic terms in the dielectric permittivity tensor and associated effects of Faraday

and Kerr rotation, linear dichroism, modification of surface plasmon dispersion etc.; see e.g.

[7, 23–25].

In yet another approach, Burkov and Balents [26] derived a minimal 2x2 Hamiltonian (one

conduction and one valence band) containing one parameter which describes the transition

from the normal insulator to the WSM with two Weyl nodes separated in momentum space.

In the WSM phase, this Hamiltonian allows for surface state solutions with Fermi arcs.

Therefore, a single microscopic Hamiltonian can be used to describe optical transitions

between the bulk states, surface states, and surface-to-bulk states. As a result, both bulk and

surface tensors of the optical conductivity can be derived. Subsequent studies [27] explored

the dispersion of bulk and surface states within the minimal Hamiltonian model and their

evolution from the WSM phase to bulk insulating phases including topological insulators.

The Hamiltonian of [27] has been recently used to develop a quantum-mechanical theory of

surface plasmons (Fermi arc plasmons) and their dissipation [28].

Here we use a slightly more general Hamiltonian, which is free of certain surface state

pathologies, to perform quantum-mechanical derivation of the tensors of both bulk and

surface conductivity. We take into account all possible combinations of transitions between

bulk and surface electron states. We then proceed to determine the properties of bulk and

surface electromagnetic eigenmodes, or polaritons. We show how information about the

electronic structure of WSMs, such as position and separation of Weyl nodes, Fermi energy,

surface states, Fermi arcs, etc. can be extracted from the transmission, dispersion, reflection,

and polarization of electromagnetic modes. We identify the most sensitive optical signatures

of the electronic properties of WSMs and discuss the potential use of WSM thin films for

optoelectronic applications.

Since our model includes only two Weyl nodes of opposite chirality, it describes WSMs

with time reversal symmetry breaking, i.e. the materials with some kind of magnetic order-

ing. Examples discovered so far include pyrochlore iridates [29], ferromagnetic spinels [30],

and Heusler compounds [31]. WSMs with the crystal structure which breaks the inversion
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symmetry but preserves the time-reversal symmetry should have a minimum of four Weyl

nodes, and in some cases show much more than four [32], see e.g. recent reviews cited above.

Therefore, our quantitative results below can be applied only to magnetic WSMs. However,

some qualitative conclusions for inversion-symmetry breaking WSMs can be still made, as

discussed in Sec. VIII. Another limitation stems from an effective two-band model, which

neglects higher bands. This limits the frequency range by the onset of the optical transitions

to higher bands, typically at several hundred meV. Finally, we limit ourselves to the linear

optical response, assuming that the electromagnetic field is weak enough and neglecting any

strong-field modification of electron states.

Section II describes the effective Hamiltonian, or rather a family of Hamiltonians used

in this study and derives the properties of corresponding bulk and surface electron states.

Section III gives the classification of possible optical transitions and outlines all steps in the

derivation of tensors of bulk and surface optical conductivity. The explicit expressions for

the tensor elements are given in the Appendix. Section IV provides a detailed description of

the electromagnetic normal modes (polaritons) in bulk WSMs. Section V provides boundary

conditions which are then used in Sec. VI to calculate the reflection of incident radiation from

the surface of a WSM. Section VII describes surface electromagnetic eigenmodes, i.e. surface

plasmon-polaritons. Conclusions are in Sec. VIII. The Appendix contains matrix elements

of the current density operator, general expressions for elements of the bulk and surface

conductivity tensor, their low-frequency limit and the limit of small Weyl node separation.

II. EFFECTIVE HAMILTONIAN

In this section we describe the family of Hamiltonians that serve as a microscopic basis

in this study. We derive the properties of bulk and surface electron states and use them to

calculate the optical conductivity. Consider a family of Hamiltonians of the type

Ĥ = vF

(
Q̂2 − h̄2m(z)

2h̄b
σ̂x + p̂yσ̂y + p̂zσ̂z

)
, (1)

where the function m(z) takes into account that the system may be nonuniform along z

and, in particular, has boundaries. Here σ̂x,y,z are Pauli matrices and the operator Q̂2 is

defined by one of the following three expressions:
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(1) Q̂2 = p̂2
x

(2) Q̂2 = p̂2
x + p̂2

y

(3) Q̂2 = p̂2
x + p̂2

y + p̂2
z

The first option is the Hamiltonian in [26, 27].

To make the derivation of surface states more convenient [27], we apply the unitary

transformation Ĥ =⇒ Ŝ−1ĤŜ to Eq. (1), where Ŝ = 1√
2

(1− iσ̂x) . This gives

Ĥ = vF

(
Q̂2 − h̄2m(z)

2h̄b
σ̂x + p̂zσ̂y − p̂yσ̂z

)
, (2)

One can check that this Hamiltonian violates time-reversal symmetry due to the term pro-

portional to σ̂x. The gyrotropy axis is the x-axis. In k-representation the Hamiltonian of

Eq. (2) becomes

Ĥk = h̄vF (Kx (k) σ̂x + kzσ̂y − kyσ̂z) , (3)

where Kx (k) for the same three Hamiltonians is given by

(1) Kx =
k2
x −m

2b

(2) Kx =
k2
x + k2

y −m
2b

(3) Kx =
k2
x + k2

y + k2
z −m

2b

In all three cases the Weyl nodes are located at kx = ±
√
m assuming that m > 0. We have

found bulk and surface eigenstates for all three Hamiltonians. Below is a summary of main

results related to electron states.

A. Hamiltonians 1 and 2

1. Bulk states

The stationary spinor eigenstate of the Hamiltonian in Eq. (3) is

|Ψk〉 =

 Ψ1

Ψ2

 eikr−i
E
h̄
t, (4)
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where the components are determined from −ky − E
h̄vF

Kx (k)− ikz
Kx (k) + ikz ky − E

h̄vF

 Ψ1

Ψ2

 = 0., (5)

From Eq. (5) one can get the eigenenergy of the bulk states E (k)

E = sh̄vF

√
K2
x + k2

y + k2
z , (6)

and corresponding components of the spinor eigenstate in Eq. (4): Ψ1

Ψ2

 =
1√
2V

 √1− s cos θke
−iφk

s
√

1 + s cos θk

 , (7)

where cos θk = ky√
K2
x+k2

y+k2
z

, eiφk = Kx+ikz√
K2
x+k2

z

; s = ±1 denotes the conduction and valence

bands, and V is the quantization volume.

To visualize the dispersion of electron states, we take for simplicity m = b2. The 3D plot

for one projection of 3D dispersion of the Hamiltonian 2 is shown in Fig. 1. For small energies

| E
h̄vF
| � b the constant energy surface consists of two disconnected spheres, each of them

enclosing a corresponding Weyl point; see Fig. 2. At | E
h̄vF
| = b

2
a separatrix isoenergy surface

is a 3D “figure of eight”. For | E
h̄vF
| > b

2
the constant energy surface is simply connected and

encloses both Weyl points. Figures 2a and 2b shows contours of constant energy surfaces

on the plane kz = 0 for the Hamiltonians 2 and 1, respectively. The electron dispersion is

strongly anisotropic. This will result in different values for the diagonal elements of the bulk

dielectric permittivity tensor, as in two-axial crystals. The dotted circle in Fig. 2a is the

boundary of a region that contains surface states. For Hamiltonian 1 in Fig. 2b the surface

states exist between the dotted lines.

2. Reflection from the boundary. Surface states and Fermi arcs

Following [27], we define the boundary as a jump in the parameter m, so that m = b2

inside the WSM and m = −m∞ outside. Then Eqs. (3) and (5) will contain the parameter

m as a function of the coordinate rj orthogonal to the boundary, and the corresponding

component of the quasimomentum kj is replaced by kj =⇒ −i ∂
∂rj

.

For the boundary parallel to the gyrotropy axis x, we assume that it coincides with the

surface z = 0 and the WSM fills the halfspace z < 0. In this case m = b2 for z < 0 and

m = −m∞, m∞ →∞ for z > 0.
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FIG. 1. Bulk energy dispersion for Hamiltonian 2 on the surface kz = 0. Here the energy is

normalized by h̄vF b and kx,y are normalized by b.

For Hamiltonian 3, the Schrödinger equation given by Eq. (5) is a 4th order differential

equation, since its matrix elements contain ∂2

∂z2 . For Hamiltonians 1 and 2 we get a 2nd

order set of equations. The velocity operator v̂z = i
h̄

[H, z] for Hamiltonian 3 is v̂z =

−ivF
b
σ̂x

∂
∂z

+ vF σ̂y, i.e. it depends on the coordinate derivative. In contrast, the velocity

operator v̂z = vF σ̂y for Hamiltonians 1 and 2 does not depend on the coordinate derivative.

Therefore, for Hamiltonian 3 at z = 0, the continuity of both the eigenstate and its derivative

is required, whereas one only needs the continuity of the eigenstates for Hamiltonians 1 and

2.

Using Eq. (5) one can find that the eigenstate of Hamiltonians 1 and 2 in the region z > 0

at m∞ → ∞ is |Ψ∞〉 ∝

 1

0

 eikxx+ikyy−m∞2b z. In the region z < 0 we take the eigenstate

|ΨB〉 which is given by Eq. (7). Stitching together these two eigenstates |Ψ∞〉 and |ΨB〉 at

the boundary yields the following expression for the bulk state:
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FIG. 2. (a) Contours of constant energy surfaces for Hamiltonian 2 on the surface kz = 0. The

dotted circle is the boundary of a region k2
x + k2

y ≤ b2 where surface states exist. (b) Contours of

constant energy surfaces for Hamiltonian 1 on the surface kz = 0. Here x, y = kx,y/b. The dotted

lines indicate the boundary of a region k2
x ≤ b2 where surface states exist.

|ΨB〉 =
eikxx+ikyy

2
√
V

√1− s cos θke
−iφk

s
√

1 + s cos θk

 eikzz −

 √1− s cos θke
iφk

s
√

1 + s cos θk

 e−ikzz

 , (8)

where the quantization volume is limited from one side by the z = 0 plane. The eigenenergy

is still given by Eq. (6), and the angles θk and φk are defined below Eq. (7).

If E2

h̄2v2
F
< k2

y +K2
x the value of kz in Eq. (6) is imaginary: kz = ±iκ. In order to connect

the eigenstate |Ψ∞〉 ∝

 1

0

 in z > 0 with the eigenstate localized at z < 0 which is eκz , the
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localized eigenstate should be also a spinor

 1

0

. After replacing kz ⇒ −iκ in Eq. (5), we

obtain the following eigenenergies and eigenvectors for surface states in the limit m∞ →∞:

E

h̄vF
= −ky, |ΨS〉 =

√
2κ

S

 1

0

Θ (−z) eκz+ikxx+ikyy, (9)

where Θ is a step function, S is the quantization area, κ = −Kx > 0. For Hamiltonian 2

the surface states exist inside a dashed circle b2 > k2
x + k2

y in Fig. 2a. For Hamiltonian 1 the

surface states exist in the region b2 > k2
x in Fig. 2b.

If a WSM occupies the region z > 0, instead of Eqs. (9) we obtain

E

h̄vF
= +ky, |ΨS〉 =

√
2κ

S

 0

1

Θ (z) e−|κ|z+ikxx+ikyy, (10)

where κ = +Kx < 0. Equations (9),(10) can be easily generalized to the case of a parameter

m(z) which varies continuously between the values b2 and −m∞ [27]. For example, instead

of Eqs. (9) we get

E

h̄vF
= −ky, |ΨS〉 = N

 1

0

 eikxx+ikyy

 e
´ z
0
m(z)−k2

x
2b

dz for Hamiltonian 1

e
´ z
0

m(z)−k2
x−k

2
y

2b
dz for Hamiltonian 2,

(11)

where N is a normalization factor.

Note that the constant surface energy lines ky = const are tangent to the points where

the bulk-state constant energy surface intersects the boundary of the surface states, shown

as dotted lines in Fig. 2a and 2b. The union of these ky = const lines and the bulk-state

constant energy surface is a set of bulk and surface energy states with the same energy. In

particular, at the energy equal to the Fermi energy EF the ky = EF/(h̄vF ) line forms a

Fermi arc.

B. Hamiltonian 3

For a 4th order set of differential equations the construction of electron states including

their interaction with a boundary is more complicated.

First, we use Eq. (6) to find the value of kz for given kx,y and E. Consider the parameter

range m ≤ b2, including both positive and negative values of m. If E2

h̄2v2
F
> k2

y +
(k2
x+k2

y−m)
2

4b2
,
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one always has two real solutions kz1 = −kz2 > 0 together with two imaginary solutions

corresponding to evanescent states: kz3,4 = iκ3,4, where 0 < κ3 = −κ4 . If E2

h̄2v2
F
< k2

y +

(k2
x+k2

y−m)
2

4b2
, all four solutions are imaginary and correspond to evanescent states: kz1,2,3,4 =

iκ1,2,3,4, where 0 < κ1 = −κ3, 0 < κ2 = −κ4. In the region z > 0 (i.e. outside the sample,

where m = −m∞ ) it is reasonable to take the solution as a superposition of two localized

modes e−|κ3,4|z. In this case for z < 0, i.e. inside the sample where m = b2, there could be

two options:

(i) A superposition of two counterpropagating waves with quasimomenta kz1 = −kz2
together with a localized wave eκ3z. The localized solution cannot be discarded, since without

it the number of constants becomes smaller than the number of the boundary conditions.

(ii) A superposition of two localized waves i.e. the surface state. In this option the number

of constants is always smaller than the number of the boundary conditions, so such a state

can exist only at certain values of energy.

The procedure of stitching the spinor components and their derivatives is simplified if

m∞ → ∞ since in this limit the continuity of the derivative is equivalent to setting both

components of a spinor Ψ1,2 equal to zero in the cross section z = 0.

1. Bulk states near the boundary

In case (i) we obtain

|ΨB〉 ≈
eikxx+ikyy

2
√
V

×

 √1− s cos θke
−iφk

s
√

1 + s cos θk

 eikzz + r

 √1− s cos θke
iφk

s
√

1 + s cos θk

 e−ikzz + l

 √1− s cos θke
ακ

−s
√

1 + s cos θk

 eκz


(12)

where

kz =

√√√√2b

√
E2

h̄2v2
F

+ k2
x −

(
k2
x + k2

y + b2
)
, κ =

√√√√2b

√
E2

h̄2v2
F

+ k2
x +

(
k2
x + k2

y + b2
)
,

r = −e
ακ + e−iφk

eακ + eiφk
, sinhακ =

κ√
E2

h̄2v2
F
− k2

y

, l = 2i
sinφk

eακ + eiφk
.
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Clearly, |r|2 = 1, which corresponds, as expected, to the total reflection from the boundary.

The quantization volume in Eq. (12) is chosen in such a way that its length along the z

axis is much larger than k−1
z > κ−1. Therefore, the last term in the brackets in Eq. (12) is

unimportant in a sense that it does not affect the eigenstate normalization or the matrix

elements.

2. Surface states

To construct the surface states (option (ii)) it is convenient to to go back to Eq. (5), use

m = b2, and make the substitution kz = −iκ: −ky − E
h̄vF

k2
x+k2

y−κ2−b2

2b
− κ

k2
x+k2

y−κ2−b2

2b
+ κ ky − E

h̄vF

 Ψ1

Ψ2

 = 0 (13)

Consider the solution of Eq. (13), corresponding to different positive values of κ1,2 but

the same spinor constant

 a

b

. One can build a nontrivial localized solution |ΨS〉 ∝ a

b

Θ (−z) (eκ1z − eκ2z), which corresponds to the null boundary conditions at the surface

z = 0. Such a solution of Eq. (13) is possible under the following conditions:

−ky − E
h̄vF

=
k2
x+k2

y−κ2−b2

2b
+ κ = 0, or ky − E

h̄vF
=

k2
x+k2

y−κ2−b2

2b
− κ = 0, or ky − E

h̄vF
=

k2
x+k2

y−κ2−b2

2b
− κ = 0, where

 a

b

 =

 1

0

 or

 a

b

 =

 0

1

respectively. It is easy to see

that the first option corresponds to the surface state when the WSM occupies the halfspace

z < 0, whereas the second option corresponds to the WSM in the region z > 0, since in this

case the values of κ1,2 are negative. The resulting states are as follows.

(i) WSM in z < 0:

E

h̄vF
= −ky, |ΨS〉 =

√√√√ 2

S
(

1
κ1

+ 1
κ2
− 4

κ1+κ2

)
 1

0

Θ (−z) (eκ1z − eκ2z) · eikxx+ikyy; (14)

(ii) WSM in z > 0:

E

h̄vF
= ky, |ΨS〉 =

√√√√ 2

S
(

1
κ1

+ 1
κ2
− 4

κ1+κ2

)
 1

0

Θ (z)
(
e−κ1z − e−κ2z

)
· eikxx+ikyy. (15)
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Here κ1,2 = b∓
√
k2
x + k2

y .

In the region b2 < k2
x + k2

y there is only one localized evanescent solution for any fixed

value of energy, which is not enough to satisfy the boundary conditions. Therefore, the

region b2 > k2
x + k2

y, where the surface states exist, is the same in the models described by

the Hamiltonian 2 and Hamiltonian 3 (see the dotted circle in Fig. 2a).

Taking into account a finite value of m∞ modifies the above expression, but their general

structure remains the same. For example, when a WSM fills the halfspace z < 0, then the

eigenstate in Eq. (14) is replaced by

|ΨS;z<0〉 ∝

 1

0

 (eκ1z − ζeκ2z) eikxx+ikyy,

|ΨS;z>0〉 ∝

 1

0

 κ2 − κ1

κ2 +
√
m∞

e−
√
m∞zeikxx+ikyy, (16)

where ζ =
κ1 +

√
m∞

κ2 +
√
m∞

.

C. The boundary orthogonal to the gyrotropy axis

Any Hamiltonian, 1, 2, or 3, contains the second derivative ∂2

∂x2 . Therefore, the analysis

of the bulk and surface states near the boundary orthogonal to the gyrotropy axis is similar

to the one for the boundary parallel to the gyrotropy axis when the Hamiltonian contains

the second derivative ∂2

∂z2 . Repeating the same arguments as in the previous section, we

obtain that the orthogonal boundary is trivial and does not contain surface states.

D. Comparison of Hamiltonians 1, 2, and 3

The only principal difference between the eigenstates of the effective Hamiltonians con-

sidered above is the region where the surface states exist. Such a region is determined by

the inequality b >
√
k2
x + k2

y for Hamiltonians 2 and 3, and the inequality b > |kx| for

Hamiltonian 1. The latter condition leads to an infinite density of surface states, which

is unphysical and would have to be restricted artificially. Therefore, it is better to work

with Hamiltonian 2 or 3. Hamiltonian 2 leads to a simpler z-component of the velocity

operator: v̂z = vF σ̂y instead of v̂z = −ivF
b
σ̂x

∂
∂z

+ vF σ̂y, which corresponds to Hamiltonian
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3. The velocity operator of Hamiltonian 2 makes calculations of the surface current easier

without losing any essential physics. Therefore, we will use Hamiltonian 2 for subsequent

calculations of the optical properties.

III. OPTICAL TRANSITIONS AND THE TENSORS OF BULK AND SURFACE

CONDUCTIVITY

In the presence of external fields one should replace p̂ =⇒ p̂ − e
c
A, and also add the

electrostatic potential Ĥ =⇒ Ĥ + eϕ1̂ in Eq. (2). Particles are assumed to have charge

e where −e is the magnitude of the electron charge. If the potential has a coordinate

dependence A(r) we assume symmetrized operators(
p̂x,y,z −

e

c
Ax,y,z

)2

=⇒ p̂2
x,y,z +

e2

c2
A2
x,y,z −

e

c
(p̂x,y,zAx,y,z + Ax,y,zp̂x,y,z) ,

and in the expressions for the velocity operator we need to replace

−i ∂

∂x, ∂y, ∂z
=⇒ −i ∂

∂x, ∂y, ∂z
− e

ch̄
Ax,y,z.

Throughout the paper, we will consider the potentials corresponding to a monochromatic

electromagnetic field propagating in the arbitrary direction r with angular frequency ω and

wavevector q, i.e.

φ =
1

2
φ(ω)e−iωt+iq·r + c.c., (17)

A =
1

2
[x0Ax(ω) + y0Ay(ω) + z0Az(ω)]e−iωt+iq·r + c.c. (18)

Bulk-to-bulk and surface-to-surface transitions contribute to the bulk and surface conduc-

tivity tensors, respectively. The contributions are detailed in the Appendix. Surface-to-bulk

transitions contribute to the surface conductivity tensor only. They have to be handled with

more care, as we briefly describe below.

Generally, the electron and current densities expressed in terms of the density matrix are

given by

n (r) =
∑
αβ

nβα (r) ραβ, j (r) =
∑
αβ

jβα (r) ραβ, (19)

nβα = Ψ ∗βΨα, jβα =
1

2

[
Ψ ∗β

(
ĵΨα

)
+
(
ĵ
∗
Ψ ∗β

)
Ψα

]
, (20)

where ĵ = ev̂.
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The Fourier harmonics of the the electron and current densities are

j (r) =
1

2

∑
q

j(q)eiqr + c.c., n (r) =
1

2

∑
q

n(q)eiqr + c.c.,

where
1

2
j(q) =

1

V

ˆ
V

j (r)e−iqrd3r,
1

2
n(q) =

1

V

ˆ
V

n(q)e−iqrd3r.

For their matrix elements we have

j(q) =
∑
αβ

j
(q)
βαραβ, n(q) =

∑
αβ

n
(q)
βαραβ, (21)

where

j
(q)
βα = 2 〈β| e−iqrĵ |α〉 , n

(q)
βα = 2 〈β| e−iqr |α〉 (22)

To find the current without the effect of a boundary we can use the states given by Eq. (7).

Now consider the states near the surface. We will denote the bulk states with latin indices

and surface states with greek ones. For convenience we rewrite them, having in mind an

upper boundary z = 0 with the WSM located at z < 0 :

|Ψm〉 =
eikxx+ikyy

2
√
V

√1 + s cos θk‖e
−iθk⊥

s
√

1− s cos θk‖

 eikzz −

√1− s cos θk‖e
iθk⊥

s
√

1 + s cos θk‖

 e−ikzz

 ,
(23)

where Em = sh̄vF

√(
k2
x+k2

y−b2
2b

)2

+ k2
y + k2

z is the eigenenergy, s = ±1 is the band index, the

values kx,y can be of either sign whereas kz > 0; cos θk‖ = kz
|E|
h̄vF

.

|Ψα〉 =

√
2κ

S

 1

0

Θ (−z) eikxx+ikyy+κz, (24)

where S is the area; the energy of the state is Eα = −h̄vFky, κ =
b2−k2

x−k2
y

2b
,
√
k2
x + k2

y < b.

Let us limit the surface states by the condition κ > κmin, where the latter could be a

typical scattering length ∼ κ−1
min. We will assume that κ−1

min is much smaller than L, which

enters the quantization volume V = SL in Eq. (23). When we calculate the matrix elements

of the interaction Hamiltonian in the von Neumann equation, the matrix elements V
(int)
mn

,V
(int)
αβ and V

(int)
mα have no peculiarities: the integration is carried out over the whole volume.

However when we calculate the matrix elements of the density and current, and if at least

one of the indices belongs to the surface state, we will perform the integration over dz:

nβα =

ˆ 0

−∞
Ψ ∗βΨαdz, nmα =

ˆ 0

−∞
Ψ ∗mΨαdz, (25)
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jβα =
1

2

ˆ 0

−∞

[
Ψ ∗β

(
ĵΨα

)
+
(
ĵ∗Ψ ∗β

)
Ψα

]
dz, jmα =

1

2

ˆ 0

−∞

[
Ψ ∗m

(
ĵΨα

)
+
(
ĵ∗Ψ ∗m

)
Ψα

]
dz.

(26)

These quantities will depend only on x and y, and therefore determine the surface current

and density.

The following current component is nontrivial:
∑

αβ (jz)βα ραβ +
∑

mα (jz)mα ραm. It

determines the polarization of a thin double layer:

∂

∂t
pz (x, y) =

∑
αβ

(jz)βα ραβ +
∑
mα

(jz)mα ραm, (27)

This layer radiates, but not normally to the layer, and it cannot affect the surface density

of carriers.

With properly defined matrix elements of the current and density the continuity equation

is satisfied automatically, so we can consider the volume current flowing toward the boundary

(
∑

mn (jz)nm ρmn)z=0 as a source in the surface continuity equation.

A. Tensors of bulk and surface conductivity

The matrix elements of the Fourier components of the current density operator are eval-

uated in Appendix A. After evaluating them, in Appendix B and C we used the Kubo-

Greenwood formula to calculate the bulk and surface conductivity tensors, respectively;

e.g.

σαβ(ω) = g
ih̄

V

∑
mn

(
fn − fm
Em − En

)
〈n| ĵα |m〉 〈m| ĵβ |n〉

h̄(ω + iγ) + (En − Em)
, (28)

for the bulk conductivity, where g = 2 is the spin degeneracy factor and α, β denote Carte-

sian coordinate components. The surface conductivity tensor has a similar structure, but

the contribution is summed over surface-to-surface and surface-to-bulk transitions, and the

normalization is over the surface area S instead of a volume V . Both interband and in-

traband transitions are included. Three-dimensional integrals over electron momenta in

Appendix B and C cannot be evaluated analytically, except limiting cases of small frequen-

cies or small b (see Appendix D and E). Therefore, integrals were calculated numerically at

zero temperature for all plots below.
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The bulk (3D) conductivity tensor due to low-energy electrons near Weyl points is

σBij (ω) =


σBxx 0 0

0 σByy σByz

0 σBzy σBzz

 (29)

where σBzy = −σByz. The surface conductivity tensor at z = 0 has a similar structure, with

superscript B replaced by S and σSzy = −σSyz.

The background bulk dielectric tensor in the most general form which corresponds to the

one for a two-axial nongyrotropic crystal is

ε
(0)
ij (ω) =


ε

(0)
xx 0 0

0 ε
(0)
yy 0

0 0 ε
(0)
zz

 (30)

so that the total dielectric permittivity tensor is

εij(ω) = ε
(0)
ij (ω) + i

4πσBij (ω)

ω
=


εxx 0 0

0 εyy ig

0 −ig εzz

 (31)

where

g =
4πσByz
ω

. (32)

Note that for Hamiltonian 3 we would have σByy = σBzz, whereas for Hamiltonian 2 (used in

all calculations of the conductivity tensors in this paper) we have σByy 6= σBzz. Therefore, even

if the background dielectric tensor is isotropic, the contribution of massless Weyl electrons

will create a two-axial anisotropy. In the numerical plots below we will take an isotropic

background dielectric tensor and neglect its frequency dependence at low frequencies, ε
(0)
xx =

ε
(0)
yy = ε

(0)
zz = 10, so that all nontrivial effects of anisotropy and gyrotropy are due to Weyl

fermions.

The salient feature of both bulk and surface conductivity tensor is the presence of nonzero

off-diagonal (gyrotropic) components due to time-reversal symmetry breaking in the Hamil-

tonian. These terms originate from the finite separation of the Weyl nodes in momentum

space and the existence of surface states (Fermi arcs). The gyrotropic effects in the prop-

agation, reflection, and transmission of bulk and surface modes can serve as a definitive
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diagnostic of Weyl nodes, surface states, and Fermi surface. They could also find applica-

tions in optoelectronic devices such as Faraday isolators, modulators etc.

Figures 3-6 show spectra of εxx(ω), εyy(ω), εzz(ω), and g(ω) for several values of the

Fermi momentum kF (at zero temperature), when the Weyl node separation 2h̄vF b = 200

meV. The characteristic feature in all plots is strong absorption and dispersion at the onset

of interband transitions, when ω = 2vFkF . Another common feature is a Drude-like increase

in the absolute value of all tensor components at low frequencies. Indeed, as shown in

Appendix D, in the limit ω � vFkF � vF b when only the intraband transitions in the

vicinity of each Weyl point are important, the off-diagonal components are equal to zero

and the diagonal conductivity components are reduced to the same Drude form:

σintraxx (ω) = σintrayy (ω) = σintrazz (ω) =
ge2vFk

2
F

3π2h̄(−iω + γ)
. (33)

Note an absorption peak at ω = 100 meV at low Fermi momenta, which corresponds to a

Van Hove singularity at the interband transitions between saddle points of conduction and

valence bands at k = 0, i.e. in the middle between the Weyl points.

Note also that diagonal and off-diagonal parts of the conductivity tensor are of the same

order at low frequencies comparable to the Weyl node separation, which indicates that

gyrotropic effects should be quite prominent.

All figures in this paper are plotted for a relatively high dephasing rate γ = 10 meV,

which smoothes out all spectral features and introduces strong losses for electromagnetic

eigenmodes even below the interband transition edge. The dephasing rate originates from

electron scattering and obviously depends on the temperature and material quality in real-

istic materials. Its derivation is beyond the scope of the present paper.

IV. BULK POLARITONS IN WEYL SEMIMETALS

Consider first the propagation of plane monochromatic waves in a bulk Weyl semimetal.

For complex amplitudes of the electric field and induction, (D,E)eikr−iωt, where D = ε̂E

and ε̂ is a bulk dielectric tensor, Maxwell’s equations give n · D = 0, where n = ck
ω

. The

resulting dispersion equations are

n (n · E)− n2E + ε̂E = 0, (34)
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FIG. 3. Real and imaginary parts of the εxx component of the dielectric tensor as a function of

frequency for h̄vF b = 100 meV, dephasing rate γ = 10 meV, and ε
(0)
xx = 10.

or 
εxx − n2 + n2

x nxny nxnz

nynx εyy − n2 + n2
y ig + nynz

nznx −ig + nzny εzz − n2 + n2
z



Ex

Ey

Ez

 = 0. (35)

The structure of these equations indicate strongly anisotropic and gyrotropic properties

of bulk polaritons. The dispersion is drastically different for normal modes propagating

perpendicular to the x-axis and to the y-axis. For each direction, there are furthermore two

normal modes with different refractive indices. We will consider each case separately.
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FIG. 4. Real and imaginary parts of the εyy component of the dielectric tensor as a function of

frequency for h̄vF b = 100 meV, dephasing rate γ = 10 meV, and ε
(0)
yy = 10.

A. Propagation perpendicular to the anisotropy x-axis

In this case we have nx = 0, n2 = n2
y + n2

z, nz = n cos θ, ny = n sin θ, where θ is the

angle between the wave vector and z-axis. From Eqs. (35) we obtain two normal modes that

can be called an ordinary (O) and extraordinary (X) wave. An O-wave has an electric field

along x and the refractive index

n2
O = εxx. (36)

Therefore, its dispersion and absorption are completely described by the spectrum of εxx(ω).

As shown in Fig. 7, at low frequencies the O-mode experiences strong metallic absorption

and at ω = 2EF = 160 meV there is an onset of interband transitions.
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FIG. 5. Real and imaginary parts of the εzz component of the dielectric tensor as a function of

frequency for h̄vF b = 100 meV, dephasing rate γ = 10 meV, and ε
(0)
zz = 10.

An X-wave have an electric field in the (y, z) plane and the refractive index showing

strong θ-dependence and resonances:

n2
X =

εyyεzz − g2

cos2 θεzz + sin2 θεyy
. (37)

For normal incidence θ = 0,

n2
X = εyy −

g2

εzz
. (38)

It is obvious from Eq. (37) that the refractive index for an X-wave is strongly enhanced

(singular in the absence of losses) when

cos2 θεzz + sin2 θεyy = 0 (39)
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FIG. 6. Real and imaginary parts of g =
4πσByz
ω as a function of frequency for h̄vF b = 100 meV and

dephasing rate γ = 10 meV.

which corresponds to the bulk plasmon excitation. Indeed, from Maxwell’s equations in the

Coulomb gauge one can show that |1
c
∂A
∂t
|/|∇ϕ| ∼ | ω2

ω2−c2k2 || j⊥j‖ |, where j = j⊥+j‖, ∇×j‖ = 0,

∇ · j⊥ = 0. Therefore, if |j⊥| ∼ |j‖|, which corresponds to a general oblique propagation in

an anisotropic medium, the wave is quasi-electrostatic at n2 � 1. Eq. (39) corresponds to

the condition n ·D = 0 for E = −∇ϕ ‖ n . If εyy = εzz = ε⊥ the dispersion equation for a

plasmon propagating in the plane orthogonal to the x-axis has a simple form ε⊥ = 0.

Figure 8 shows real and imaginary parts of the refractive index nX of an X-wave as a

function of frequency for different values of the propagation angle θ. Near the bulk plasmon

resonance, i.e. around 100 meV for normal incidence, the value of n2
X becomes negative in

21



0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

ω (meV)

R
e
[n
O
]

(a)

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

ω (meV)

Im
[n
O
]

(b)

FIG. 7. Real and imaginary parts of the refractive index nO of an O-wave as a function of frequency

for EF = 80 meV, h̄vF b = 100 meV, and dephasing rate γ = 10 meV.

the absence of losses according to Eq. (38)This corresponds to a non-propagating photonic

gap. Since we include significant loss rate γ = 10 meV in all simulations, the real part of

nX does not go all the way to zero, but there is a strong absorption peak in the imaginary

part of nX . We will later see that this spectral region leads to a telltale change of phase in

reflection. The second feature in all plots is an onset of interband transitions at 2EF = 160

meV.

The real part of the bulk plasmon resonance frequency at normal incidence as a function

of the Fermi energy is shown in Fig. 9. Note that according to Eq. (38) the magnitude of

the refractive index at frequencies around plasmon resonance is determined by the value
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FIG. 8. Real and imaginary parts of the refractive index nX of an X-wave as a function of frequency

for different values of the propagation angle θ. Other parameters are EF = 80 meV, h̄vF b = 100

meV, and dephasing rate γ = 10 meV.

of the off-diagonal component of the dielectric tensor g. Therefore, measurements of the

transmission and reflection provide a sensitive measure of the Weyl node separation.

The same is true about the polarization effects. From the third row of Eqs. (35) one can

get the expression for the polarization coefficient:

KX =
Ez
Ey

=
ig − n2

X sin θ cos θ

εzz − n2
X sin2 θ

. (40)

Substituting Eq. (37) into Eq. (40) we get

KX =
ig
(
cos2 θεzz + sin2 θεyy

)
− (εyyεzz − g2) sin θ cos θ

εzz
(
cos2 θεzz + sin2 θεyy

)
− (εyyεzz − g2) sin2 θ

. (41)

At the resonant plasmon frequency defined by cos2 θεzz + sin2 θεyy = 0 we obtain KX =

1
tan θ

, which is expected. If we set θ = 0, which corresponds to normal incidence, KX = ig
εzz

,
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FIG. 9. Real part of the bulk plasmon resonance frequency at normal incidence θ = 0 as a function

of the Fermi energy.

i.e. again proportional to g. In this case, the plasmon frequency is given by εzz = 0, and

KX →∞ in the absence of losses. If εyy = εzz = ε⊥, Eq. (41) gives

KX =
igε⊥ − (ε2

⊥ − g2) sin θ cos θ

ε2
⊥ cos2 θ + g2 sin2 θ

. (42)

For an isotropic medium, when g2 = 0, the last expression gives KX = − tan θ, as it

should be for a transverse wave in an isotropic medium.

B. Propagation transverse to the y-axis

In this case ny = 0, n2 = n2
x + n2

z, nx = n cosφ, nz = n sinφ;
εxx − n2

z 0 nxnz

0 εyy − n2 ig

nznx −ig εzz − n2
x



Ex

Ey

Ez

 = 0 (43)

(
sin2 φεzz + cos2 φεxx

)
n4 − n2

[
εxxεzz + εyy

(
sin2 φεzz + cos2 φεxx

)
− sin2 φg2

]
+εxx

(
εyyεzz − g2

)
= 0. (44)

Note that the solution of Eq. (44) at φ = π
2

corresponds to the normal incidence propagation

along z and therefore should coincide with Eqs. (36), (37) at θ = 0. Indeed, from Eq. (44)

for φ = π
2

we obtain (
n2 − εxx

) [
n2 −

(
εyy −

g2

εzz

)]
= 0; (45)
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from which n2
O = εxx, n

2
X = εyy − g2

εzz
, as expected.

The case n2 →∞ in the absence of losses, when

sin2 φεzz + cos2 φεxx = 0 (46)

corresponds to the condition n ·D = 0 where E = −∇ϕ ‖ n. From Eq. (44) we obtain

n2
O,X =

εxxεzz + εyy
(
sin2 φεzz + cos2 φεxx

)
− sin2 φg2

2
(
sin2 φεzz + cos2 φεxx

) ±√[
εxxεzz + εyy

(
sin2 φεzz + cos2 φεxx

)
− sin2 φg2

]2 − 4
(
sin2 φεzz + cos2 φεxx

)
εxx (εyyεzz − g2)

2
(
sin2 φεzz + cos2 φεxx

)
(47)

In Eq. (47) the signs ± are chosen for n2
O,X according to the limiting case φ = π

2
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FIG. 10. Spectra of real and imaginary parts of the polarization coefficient KX = Ez/Ey for an

incident wave linearly polarized in y-direction after traversing a 1-µm film in x-direction.
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For the propagation along the x-axis of anisotropy, when φ = 0, Eq. (44) gives

n2
O,X =

εzz + εyy
2

±

√(
εzz − εyy

2

)2

+ g2 (48)

Note that the x-axis is also a gyrotropy axis related to the Weyl node separation along x.

Therefore, the propagation along x is similar to the Faraday geometry in a magnetic field. In

our case the normal modes are elliptically polarized, and an incident linearly polarized wave

experiences Faraday rotation and gains ellipticity after traversing a sample in x-direction. To

quantify the effect, Fig. 10 shows the polarization coefficient KX = Ez/Ey after traversing a

1-µm thick film for a wave initially linearly polarized in y-direction. The real part of KX is

a measure of the polarization rotation whereas its imaginary part is a measure of ellipticity.

Clearly, a rotation by ∼ π/2 by very thin (0.5-1 µm) Weyl semimetal films is possible at

frequencies near the interband absorption edge. This is a giant Faraday rotation, comparable

to the one observed at THz frequencies in narrow-gap semiconductors in the vicinity of a

cyclotron resonance in Tesla-strength magnetic fields; see e.g. [33] for the review. Note

that in our case no magnetic field is needed and the effect is controlled by the Weyl node

separation and by the Fermi level. Previously Faraday rotation and nonreciprocity in light

propagation associated with it was studied in [7, 23] using the model with an axion θ-term

in the electromagnetic field action.

C. Oblique propagation of bulk polaritons

In the general case the direction of the wave vector is determined by two angles θ and φ:

nx = n cosφ , nz = n sinφ cos θ , ny = n sinφ sin θ.

The general expression for n2
O,X is quite cumbersome. At the same time, in the particular

case of εyy = εzz = ε⊥, the result should not depend on the angle θ and should coincide with

the one for a magnetized plasma:

n2
O,X =

ε⊥
[
εxx (1 + cos2 φ) + sin2 φε⊥

]
− sin2 φg2

2
(
sin2 φε⊥ + cos2 φεxx

) ±√(
ε⊥
[
εxx (1 + cos2 φ) + sin2 φε⊥

]
− sin2 φg2

)2 − 4εxx
(
sin2 φε⊥ + cos2 φεxx

)
(ε2
⊥ − g2)

2
(
sin2 φε⊥ + cos2 φεxx

)
(49)
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The condition n ·D = 0 at E = −∇ϕ ‖ n in the case of an oblique propagation gives

εxx cos2 φ+ sin2 φ
(
sin2 θεyy + cos2 θεzz

)
= 0. (50)

Therefore, Eq. (50) determines the frequencies of bulk plasmons in the general case. Under

the condition εyy = εzz = ε⊥ the plasmon dispersion equation takes a form similar to

plasmons in a magnetized plasma:

εxx cos2 φ+ sin2 φε⊥ = 0. (51)

V. BOUNDARY CONDITIONS

So far we considered propagation and transmission of electromagnetic waves in bulk

samples. Now we turn to effects of reflection and surface wave propagation that are equally

sensitive to the electronic structure of WSMs. Moreover, in many situations they are easier

to observe than bulk propagation effects.

We start with the derivation of the boundary conditions at z = 0 surface. Assume that

there is an isotropic dielectric medium with dielectric constant n2
up = εup above a WSM.

The boundary conditions include:

(i) Gauss’ law for the normal components of the electric induction vector:

εupEz (z = +0)−Dz (z = −0) = 4πρS = −i4π
ω

(
∂

∂x
jSx +

∂

∂y
jSy

)
(52)

where ρS, jSx and jSy are the surface charge and components of the surface current that are

connected by the continuity equation. For the wave field we have ∂
∂x,∂y

→ ikx,y.

(ii) Equations for the magnetic field components:

Bz (z = −0) = Bz (z = +0) , (53)

By (z = +0)−By (z = −0) = −4π

c
jSx , (54)

Bx (z = +0)−Bx (z = −0) =
4π

c
jSy . (55)

Due to the presence of the components of the surface conductivity σSzz and σSzy = −σSyz a

surface dipole layer is formed at the boundary between the two media. Its dipole moment is

d = Re
[
zdze

−iωt+ikxx+ikyy
]
,
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dz =
i

ω

[
σSzyEy (z = −0) + σSzzEz (z = −0)

]
. (56)

Note that when dealing with a surface response, we will always choose the fields at z = −0

in Eq. (56) and similar relationships. The presence of the dipole layer changes the boundary

conditions for the tangential field components of E. Consider Maxwell’s equations

∂Ez
∂y
− ∂Ey

∂z
= i

ω

c
Bx,

∂Ex
∂z
− ∂Ez

∂x
= i

ω

c
By.

For convenience, let’s assume that the dipole layer has a small but finite thickness L:

|kx,y|L� 1 and
ω

c
L� 1.

Using ∂
∂x,∂y

→ ikx,y and integrating
´ L

2

−L
2

. . . dz , we obtain

ikx,y

ˆ L
2

−L
2

Ez dz = Ex,y

(
z =

L

2

)
− Ex,y

(
z = −L

2

)
(57)

We neglect the integral over the magnetic field components assuming that ω
c
L → 0. Next

we use Gauss’ law under the condition |kx,y|L → 0, which will yield in the region of the

dipole layer:
∂Ez
∂z

= 4πρ (z) , ρ (z) = −
(
∂Pz
∂z

+
∂pz
∂z

)
.

Here Pz is a component of the volume polarization whereas pz describes the distribution of

the polarization in the dipole layer, so that

ˆ L
2

−L
2

∂pz
∂z

dz = 0 and

ˆ L
2

−L
2

pz dz = dz.

Substituting Ez = −4π (Pz + pz) into Eq. (57) and integrating over dz at |kx,y|L → 0 and

finite Pz , we obtain

Ex,y

(
z =

L

2

)
− Ex,y

(
z = −L

2

)
= −i4πkx,ydz (58)

The boundary condition Eq. (58) looks unusual but it can be easily deduced from the

radiation field of an individual dipole.

Figures 11-14 show spectra of the surface conductivity components for different values of

the Fermi momentum. Note that the surface conductivity in Gaussian units has a dimension

of velocity and its value is normalized by e2/(2πh̄) ' 3.5 × 107 cm/s in all plots. In con-

trast with the bulk conductivity, the surface conductivity had a Drude-like behavior at low
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frequencies only for the yy-component because of the surface state dispersion E = −h̄vFky.

The surface optical response decreases with increasing Fermi energy and vanishes when all

surface states within k2
x + k2

y < b2 are occupied.
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FIG. 11. Spectra of the real and imaginary parts of the xx component of the surface conductivity

at several values of the Fermi momentum for h̄vF b = 100 meV and dephasing rate γ = 10 meV.

VI. REFLECTION FROM THE SURFACE OF A WEYL SEMIMETAL

Consider radiation incident from a medium with refractive index nup on a WSM at an

angle θ between the wavevector of the wave and the normal to a WSM. For simplicity consider
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FIG. 12. Spectra of the real and imaginary parts of the yy component of the surface conductivity

at several values of the Fermi momentum for h̄vF b = 100 meV and dephasing rate γ = 10 meV.

the propagation transverse to the x-axis. The reflection spectra provide information about

both bulk and surface conductivity components. Here we will pay particular attention to

the case when the contribution of the surface states becomes significant or dominant, thus

allowing one to probe surface states by optical means.
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FIG. 13. Spectra of the real and imaginary parts of the zz component of the surface conductivity

at several values of the Fermi momentum for h̄vF b = 100 meV and dephasing rate γ = 10 meV.

A. Reflection with excitation of an O-mode

In this geometry, the complex amplitudes of the electric field of the incident E1, re-

flected E2, and transmitted EO wave are parallel to the x-axis. The refractive index of the

transmitted wave is n2
O = εxx = ε

(0)
xx + i4π

ω
σBxx (see Eq. (36)).

Applying Maxwell’s equations with standard boundary conditions including the surface
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FIG. 14. Spectra of the real and imaginary parts of the yz component of the surface conductivity

at several values of the Fermi momentum for h̄vF b = 100 meV and dephasing rate γ = 10 meV.

current, we arrive at

R =
E2

E1

= −
cos θO

√
ε

(0)
xx + i4π

ω
σBxx + 4π

c
σSxx − cos θnup

cos θO

√
ε

(0)
xx + i4π

ω
σBxx + 4π

c
σSxx + cos θnup

(59)

where nup sin θ = nO sin θO. Assuming σSxx = 0 we obtain R = E2

E1
= cos θnup−cos θOnO

cos θOnO+cos θnup
, which

is a standard Fresnel formula.

For the same magnitude of σSxx, the relative contribution of surface states to the reflected

field depends on the parameter |ε(0)
xx |

4π|σBxx|/ω
. If ω|ε(0)

xx |
4π|σBxx|

� 1, the relative contribution of surface

32



states is determined by the expression: 2ω|σSxx|/c
|σBxx|/|ε

(0)
xx |

. If ω|ε(0)
xx |

4π|σBxx|
� 1, one needs to evaluate the

ratio 2
√
πσSxx/c√
σBxx/ω

.

B. Reflection with excitation of an X-mode

In this geometry, the complex Fourier harmonics for the incident and reflected waves are

(y ∓ z tan θ)E1,2e
∓iω

c
nup cos θz−iω

c
nup sin θy−iωt.

The transmitted wave is

(y + zKX)EXe
−iω

c
nX cos θXz−iωc nX sin θXy−iωt,

where n2
X and KX are given by Eqs. (37) and (40), in which one should substitute θ → θX .

The corresponding complex amplitudes of the magnetic field are B1x = nup
cos θ

E1, B2x =

− nup
cos θ

E2, B(X)x = nX (cos θX − sin θXKX)EX .

At the plasmon frequency, when KX = 1
tan θX

, the last equation gives B(X)x = 0, as

should be expected. For an isotropic medium, when KX = − tan θX , we obtain B(X)x =

nX
cos θX

EX which is also expected for a transverse wave (note that EX is an amplitude of the

y-component of the extraordinary (X-)mode).

We will use the boundary conditions

E1 + E2 − EX = iω
4π

c
nup sin θdz, dz =

i

ω

(
σSzy + σSzzKX

)
EX (60)

nup
cos θ

(E1 − E2)− nX (cos θX − sin θXKX)EX =
4π

c
jSy , jSy =

(
σSyy + σSyzKX

)
EX (61)

to obtain

R =
E2

E1

=
nup
[
1− 4π

c
nup sin θ

(
σSzy + σSzzKX

)]
− nX cos θ (cos θX − sin θXKX) + 4π

c
cos2 θ

(
σSyy + σSyzKX

)
nX cos θ (cos θX − sin θXKX) + 4π

c
cos2

(
σSyy + σSyzKX

)
+ nup

[
1− 4π

c
nup sin θ

(
σSzy + σSzzKX

)]
(62)

where nup sin θ = nX sin θX . In the limit of an isotropic medium, where KX = − tan θX ,

σSij = 0, we obtain R = E2

E1
= nup cos θX−nX cos θ

nX cos θ+nup cos θX
which is a standard Fresnel equation.
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For the normal incidence the expressions are simplified:

n2
X = εyy −

g2

εzz
= ε(0)

yy + i
4π

ω
σByy −

(
4πσByz
ω

)2

ε
(0)
zz + i4π

ω
σBzz

, KX =
ig

εzz
= i

4πσByz
ω

ε
(0)
zz + i4π

ω
σBzz

,

which gives

R =
nup − nX + 4π

c

(
σSyy + iσSyz

g
εzz

)
nup + nX + 4π

c

(
σSyy + iσSyz

g
εzz

) (63)

The contribution of surface states is less trivial for X-mode excitation as compared to

the excitation of an O-mode. For normal incidence (see Eq. (63)) one can see that at the

plasmon resonance frequency, when εzz → 0 in the absence of losses, the contribution of the

surface conductivity can become dominant. Indeed, in Eq. (63) the term σSyz
g
εzz

diverges

as 1
εzz

, whereas the refractive index nX diverges weaker, as 1√
εzz

. When σSij = 0 while

nX � nup we have R = −1 (we take into account that the magnitude of nX is large at the

plasmon frequency). In the opposite case, when the contribution of the surface conductivity

dominates, i.e. 4π
c
|σSyz

g
εzz
| � |nX | ≈ g√

|εzz |
, we obtain R = +1 , i.e. the phase of the

reflected field is rotated by 180 degrees.

The enhanced contribution of the surface conductivity at normal incidence in the vicinity

of the bulk plasmon resonance is expected. Indeed, at plasmon resonance the z-component

Ez of the field in the medium becomes very large, which leads to a dominant contribution

of the surface current jSy = σSyzEz.

For oblique incidence θ 6= 0 and small losses the calculations of the reflection in the

vicinity of plasmon resonance have a technical subtlety, related to the presence of the term

nX cos θ (cos θX − sin θXKX) in Eq. (62). Indeed, at the plasmon frequency nX → ∞ as

losses γ → 0; however, for a plasmon we also have KX → 1
tan θX

, i.e. (cos θX − sin θXKX)→

0. One needs to treat the resulting uncertainty of the product with caution. The details are

presented in Appendix F.

The main result is that the contribution of surface states to the reflected wave is deter-

mined by the ratio

|σSyz|
c
√
|εzz|/4π

and therefore becomes significant or dominant at the plasmon resonance frequency, when

εzz = ε
(0)
zz + i4π

ω
σBzz → 0. When the bulk contribution dominates the reflection coefficient R
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is close to −1. When the surface contribution dominates, R is close to +1 i.e. the phase of

the reflected field flips.

VII. SURFACE PLASMON-POLARITONS

Surface plasmon-polaritons can be supported by both bulk and surface electron states.

Here we derive dispersion relations for surface waves including both bulk and surface con-

ductivity for several specific cases. Emphasis is placed on the situations where the dispersion

is significantly affected or dominated by surface states and can therefore be used for diag-

nostics of surface states and Fermi arcs. Previously, surface plasmons in WSMs have been

considered in the low-frequency limit within a semiclassical description of particle motion

with added ad hoc anomalous Hall term [34] and with a quantum-mechanical description [28]

based on the Hamiltonian in [27]. Both studies indicated strong anisotropy and dispersion

of surface plasmons.

A. Quasielectrostatic approximation

Within the quasielectrostatic approximation the electric field can be defined through the

scalar potential:

~E = Re
[
~E (z) eikxx+ikyy−iωt

]
= −∇F , F = Re

[
Φ (z) eikxx+ikyy−iωt

]
.

We introduce the vector of electric induction, ~D = Re
[
~D (z) eikxx+ikyy−iωt

]
= ε̂~E and use

Gauss’ law for each halfspace:

∇ · ~D = 0. (64)

In general, there can be an electric dipole layer at the boundary between the two media.

The dipole layer has a jump in the scalar potential Φ (z),

Φ (z = +0)− Φ (z = −0) = 4πdz, (65)

where dz is determined by Eqs. (56).

Next, we define the potential Φ (z) for the surface mode as

Φ (z > 0) = Φupe
−κupz, Φ (z < 0) = ΦW e

+κW z.
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Using Eq. (64) in each halfspace, we obtain

k2
x + k2

y − κ2
up = 0, (66)

k2
xεxx + k2

yεyy − κ2
W εzz = 0. (67)

Using the boundary condition Eq. (52) we get

n2
upκupΦup − [εzz (−κWΦW ) + εzy (−ikyΦW )] = −i4π

ω

(
∂

∂x
jSx +

∂

∂y
jSy

)
which gives

n2
upκupΦup +

[
κW

(
εzz +

4π

ω
kyσ

S
yz

)
+ gky + i

4π

ω

(
k2
xσ

S
xx + k2

yσ
S
yy

)]
ΦW = 0 (68)

where εyz = −εzy = ig = i
4πσByz
ω

. Using also the boundary condition Eq. (65) together with

Eqs. (56), we obtain

Φup +

(
i
4π

ω
κWσ

S
zz −

4π

ω
kyσ

S
zy − 1

)
ΦW = 0 (69)

From these relationships one can get the dispersion equation for surface waves. Note that the

confinement constants κW and κup are generally complex-valued. Their imaginary parts give

rise to a Poynting flux away from the surface which contributes to surface wave attenuation.

1. Neglecting surface states

First, we neglect the surface conductivity to consider surface plasmons supported by bulk

carriers only. In this case from Eqs. (66), (69) we get κup =
√
k2
x + k2

y, Φup = ΦW . Denoting

k2
x + k2

y = k2, kx = k cosφ, ky = k sinφ, we obtain from Eq. (67)

κW = k

√
cos2 φεxx + sin2 φεyy

εzz
. (70)

Furthermore, from Eq. (68) for κup = k and Φup = ΦW we have

n2
upk + κW εzz + gk sinφ = 0, (71)

where εyz = ig = i
4πσByz
ω

. Substituting Eq. (70) into Eq. (71), we obtain the dispersion

relation

D (ω, φ) = n2
up + εzz

√
cos2 φεxx + sin2 φεyy

εzz
+ g sinφ = 0. (72)
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The dispersion equation Eq. (72) gives the dependence ω (φ), but does not have any

dependence on the magnitude of k. This situation is similar to the dispersion relation for

bulk plasmons in the quasielectrostatic approximation, Eq. (50). It is also similar to waves

in classical magnetized plasmas. Of course the range of values of k is constrained by the

validity of the quasielectrostatic approximation.

2. Including surface states

If we now include the surface conductivity, Eqs. (66)-(69) give

D (ω, φ)− 4π

ω
k

[√
cos2 φεxx + sin2 φεyy

εzz

(
in2
upσ

S
zz − sinφσSyz

)
− n2

up sinφσSyz − i
(
cos2 φσSxx + sin2 φσSyy

) ]
= 0 (73)

where the function D (ω, φ) is determined by Eq. (72). As we see, taking the surface con-

ductivity into account brings the dependence on the magnitude of the wave vector k into the

dispersion relation. Therefore, measuring the frequency dispersion of the surface plasmon

resonance provides a direct characterization of surface states.

Figure 15 shows the surface plasmon dispersion for propagation along y, i.e. transverse

to the gyrotropy x-axis, for two values of the Fermi momentum. The real part of the surface

plasmon frequency ignoring the contribution of the surface conductivity is shown as a dashed

horizontal line for each value of kF . Clearly, the contribution of surface electron states is

important everywhere, except maybe in a narrow region of small wavenumbers k where the

quasistatic approximation breaks down. The plot has a horizontal axis ck in units of meV

in order to directly compare with frequencies. The inequality ck � ω is satisfied almost

everywhere.

The fact that the contribution of the surface current is so important can be understood

from the structure of Eq. (73). Clearly, the relative contribution of the bulk and surface

terms can be estimated by comparing the magnitudes of |σB| and |kσS| where σB and σS

are appropriate components of bulk and surface conductivity tensors and k is a wavenumber

of a given electromagnetic mode. This is true not only for surface modes but also for other

electromagnetic wave processes at the boundary such as reflection. In the mid/far-infrared

spectral region of interest to us, |kσS| � |σB| for vacuum wavelengths ck ∼ ω. However, for
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FIG. 15. Real part of the surface plasmon frequency as a function of real plasmon wavenumber

obtained as a solution to the dispersion equation Eq. (73) for φ = π/2, h̄vF b = 100 meV and

two values of the electron Fermi momentum kF = 0.5b and 0.8b. The surface plasmon frequency

neglecting surface conductivity contribution is shown as a dashed line.

large surface plasmon wavenumbers shown in Fig. 15 the opposite condition |kσS| ≥ |σB| is

satisfied.

Note the dispersion in Fig. 15 is stronger (the slope is steeper) at frequencies correspond-

ing to Re[εzz] ≈ 0, i.e. near the resonance for bulk plasmons propagating along z. This

follows from Eq. (73) where the surface terms contain a factor 1/
√
εzz. Physically, this is

expected: indeed, as we already commented, at the plasmon resonance the z-component Ez

of the field in the medium becomes very large, which leads to an enhanced contribution of
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the surface current jSy = σSyzEz.

B. Surface waves beyond the quasielectrostatic approximation

For small wavenumbers the quasielectrostatic approximation is no longer valid. On the

other hand, in this case one can neglect the surface conductivity as we pointed out in the

previous paragraph. This is not an interesting limit as far as the spectroscopy of surface

states is concerned, but we still derive the resulting dispersion relation for completeness.

For the electric field of a surface mode in the upper halfspace with the refractive index nup,

~Eup = Re
[
~Eupe

ikxx+ikyy−κupz−iωt
]
,

the Maxwell’s equation for ∇× ~E gives

kyEz − iκupEy =
ω

c
Bx, kxEz − iκupEx = −ω

c
By, kxEy − kyEx =

ω

c
Bz. (74)

For the field in the Weyl semimetal,

~EW = Re
[
~EW e

ikxx+ikyy+κW z−iωt
]

the same equation gives, after replacing κup → −κW in Eq. (74),

kyEz + iκWEy =
ω

c
Bx, kxEz + iκWEx = −ω

c
By, kxEy − kyEx =

ω

c
Bz. (75)

The inverse decay length for the field in the upper halfspace is given by κ2
up = k2 − n2

up
ω2

c2
.

In a WSM we can use a version of Eq. (35) after replacing kz → −iκW :
ω2

c2
εxx − k2

y + κ2
W kxky −ikxκW

kykx
ω2

c2
εyy − k2

x + κ2
W iω

2

c2
g − ikyκW

−ikxκW −iω2

c2
g − ikyκW ω2

c2
εzz − k2



Ex

Ey

Ez

 = 0, (76)

where k2 = k2
x + k2

y.

Consider again a surface wave propagating transverse to the anisotropy axis (kx = 0). In

this case, there are two solutions to the dispersion equation Eq. (76), an O-wave and an X-

wave. However, one can show that an O-wave with Ex 6= 0 does not exist as a surface wave.

Moreover, this statement remains true even with the surface current taken into account.
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Only the X-wave with Ey,z 6= 0 can exist as a surface wave. Its inverse confinement length

in the Weyl semimetal is given by

κ2
W =

εyy
εzz

(
k2 − n2

X

ω2

c2

)
(77)

where

n2
X = εzz −

g2

εyy

is the refractive index of an extraordinary wave propagating in the volume in the y-direction

(see Eq. (37) for θ = π
2
). The polarization of an extraordinary wave is determined by

i

(
ω2

c2
g + kκW

)
Ey =

(
ω2

c2
εzz − k2

)
EzW (78)

which follows from Eq. (76). After some straightforward algebra, we obtain the dispersion

relation for a surface wave:(
k2 − ω2

c2
n2
up

)(
gk + εzz

√
εyy
εzz

√
k2 − ω2

c2
n2
X

)
+

√
k2 − ω2

c2
n2
up

(
k2 − ω2

c2
εzz

)
n2
up = 0. (79)

In the limit of large wavenumbers k this equation becomes the quasielectrostatic dispersion

relation Eq. (72) at φ = π
2
.

For the propagation in x-direction, one can repeat the above analysis for the case ky =

0 and obtain that there are no surface wave solutions when the surface conductivity is

neglected.

One interesting solution of the dispersion equation Eq. (79) is a strongly nonelectrostatic

case when the surface mode is weakly localized in a medium above the WSM surface, e.g. in

the air. The energy of this wave is mostly contained in an ambient medium above the

WSM surface where there is no absorption. Therefore, such surface waves can have a long

propagation length; see e.g. [35–37].

To find this solution we assume n2
up = 1 and introduce the notation ω

c
= k0. A weak

localization outside a WSM means that |κup| � k0. Then, assuming k ' k0 + δk, where

k0 � |δk|, we obtain κup '
√

2k0δk. From Eqs. (79) and (77) in the first order with respect

to
√

δk
k0

we get

δk ' k0

2

(εzz − 1)2[
g +

√
εzzεyy

(
1− εzz + g2

εyy

)]2 , (80)
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FIG. 16. Normalized confinement constants (a) Re[κup]/k0 ' Re[
√

2δk/k0] and (b) Re[κW ]/k0 as

functions of frequency, for the Fermi momentum kF = 0.5b. Other parameters are h̄vF b = 100

meV and γ = 10 meV.

Reκ2
W ' Re

[
k2

0

εyy
εzz

(
1− εzz +

g2

εyy

)]
. (81)

This solution describes surface waves if Re[κW ] > 0 and Re[κup] > 0. In addition, |δk| �

k0 has to be satisfied. We checked that all three inequalities are satisfied for the numerical

parameters chosen to calculate the conductivity tensor. As an example, Fig. 16 shows

normalized confinement constants Re[κW ]/k0 and Re[κup]/k0 ' Re[
√

2δk/k0] as functions

of frequency, for the Fermi momentum kF = 0.5b. Clearly, the solution describes a surface

wave which is weakly confined in the air and strongly confined in the WSM. The spectra

remain qualitatively the same with increasing Fermi momentum, but the oscillating feature
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moves to higher energies, roughly following the spectral region where the real parts of εzz

and εyy cross zero. We note again that the confinement constants κW and κup are complex-

valued. Their imaginary parts give rise to a Poynting flux away from the surface which

contributes to surface wave attenuation.

VIII. SUMMARY AND CONCLUSIONS

We presented systematic studies of the optical properties and electromagnetic modes of

Weyl semimetals in the minimal two-band model with two separated Weyl nodes. Both

bulk and surface conductivity tensors are derived from a single microscopic Hamiltonian.

The presence of separated Weyl nodes and associated surface states gives rise to distinct

signatures in the transmission, reflection, and polarization of bulk and surface electromag-

netic waves. These signatures can be used for quantitative characterization of electronic

structure of Weyl semimetals. Particularly sensitive spectroscopic probes of bulk electronic

properties include strong anisotropy in propagation of both bulk and surface modes, bire-

fringent dispersion and absorption spectra of ordinary and extraordinary normal modes,

the frequency of bulk plasmon resonance as a function of incidence angle and doping level,

and the polarization rotation and ellipticity for incident linearly polarized light. The sen-

sitive characterization of surface electronic states can be achieved by measuring the phase

change of the reflection coefficient of incident plane waves, the frequency dispersion of surface

plasmon-polariton modes, and strong anisotropy of surface plasmon-polaritons with respect

to their propagation direction and polarization.

The quantitative results in this paper are valid only for magnetic WSMs with time-reversal

symmetry breaking. One can still make some qualitative conclusions regarding the optical

response of WSMs with inversion symmetry breaking. In particular, one should expect the

off-diagonal conductivity components to be zero in this case, and therefore gyrotropic effects

will be absent. However, there should still be strong anisotropy of both bulk and surface

mode propagation, related to the position of Weyl node pairs. One should still expect

strong dispersion of surface plasmon-polaritons associated with the presence of Fermi arc

surface states. The features in absorption and dispersion associated with the bulk plasmon

resonance, Fermi edge, and saddle points between Weyl nodes will be present. The low-

frequency response related to bulk Dirac cones will be similar.
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Potential optoelectronic applications of magnetic WSM films in the mid-infrared and

THz spectral regions will benefit from the strong anisotropy, gyrotropy, and birefringence

of these materials, giant polarization rotation for light transmitted along the gyrotropy axis

of submicron films, and strongly localized surface plasmon-polariton modes. All effects are

tunable by doping.
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Appendix A: Evaluation of the matrix elements of the current density operator

We denote everywhere the bulk states by Latin letters, and the surface states by Greek

letters, i.e. |n〉 = |B〉 , |µ〉 = |S〉. In this section we evaluate the matrix elements of

the current density operator that enter Eq. (28) for the components of bulk and surface

conductivity tensors.

(jx)nm = 〈n| ĵx |m〉

=
evF
h̄b

ˆ
d³r
(
Ψ
B
kn,sn(r)

)†
(−ih̄∂x) σ̂xΨBkm,sm(r)

=
evF
2b

knxδkn,km

×
[
sm
√

(1 + sm cos θkn) (1− sn cos θkn)eiφkn + sn
√

(1 + sn cos θkn) (1− sm cos θkn)e−iφkn
]

(A1)

(jx)µν = 〈µ| ĵx |ν〉 =
evF
h̄b

ˆ
d³r
(
Ψ
S
kµ(r)

)†
(−ih̄∂x) σ̂xΨSkν (r) = 0, (A2)

(jx)µm = 〈µ| ĵx |m〉 =
evF
h̄b

ˆ
d³r
(
Ψ
S
kµ(r)

)†
(−ih̄∂x) σ̂xΨBkm,sm(r)

=
2evF smkmxkmz
ib(κ2

m + k2
mz)

√
κm (1 + sm cos θkm)

Lz
δkmx,kµxδkmy ,kµy (A3)
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(jy)nm =
evF
h̄b

ˆ
d³r
(
Ψ
B
kn,sn(r)

)†
(−ih̄∂y) σ̂xΨBkm,sm(r)− evF

ˆ
d³r
(
Ψ
B
kn,sn(r)

)†
σ̂zΨ

B
km,sm(r)

=
evF
2b

knyδkn,km

×
[
sm
√

(1 + sm cos θkn) (1− sn cos θkn)eiφkn + sn
√

(1 + sn cos θkn) (1− sm cos θkn)e−iφkn
]

+
evF
2
δkn,km

[
snsm

√
(1 + sn cos θkn) (1 + sm cos θkn)−

√
(1− sn cos θkn) (1− sm cos θkn)

]
(A4)

(jy)µν =
evF
h̄b

ˆ
d³r
(
Ψ
S
kµ(r)

)†
(−ih̄∂y) σ̂xΨSkν (r)− evF

ˆ
d³r
(
Ψ
S
kµ(r)

)†
σ̂zΨ

S
kν (r)

= −evF δkµx,kνxδkµy ,kνy (A5)

(jy)µm =
evF
h̄b

ˆ
d³r
(
Ψ
S
kµ(r)

)†
(−ih̄∂y) σ̂xΨBkm,sm(r)− evF

ˆ
d³r
(
Ψ
S
kµ(r)

)†
σ̂zΨ

B
km,sm(r)

=
2evF smkmykmz
ib(κ2

m + k2
mz)

√
κm (1 + sm cos θkm)

Lz
δkmx,kµxδkmy ,kµy ; (A6)

(jz)nm = evF

ˆ
d³r
(
Ψ
B
kn,sn(r)

)†
σ̂yΨ

B
km,sm(r) = i

evF
2
δkn,km

×
[
sn
√

(1 + sn cos θkn) (1− sm cos θkn)e−iφkn − sm
√

(1 + sm cos θkn) (1− sn cos θkn)eiφkn
]

(A7)

(jz)µν = evF

ˆ
d³r
(
Ψ
S
kµ(r)

)†
σ̂yΨ

S
kν (r) = 0, (A8)

(jz)µm = evF

ˆ
d³r
(
Ψ
S
kµ(r)

)†
σ̂yΨ

B
km,sm(r)

= −2evF smkmz
κ2
m + k2

mz

√
κm (1 + sm cos θkm)

Lz
δkmx,kµxδkmy ,kµy , (A9)

where we have used κ =
b2−(k2

x+k2
y)

2b
.
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Appendix B: Calculation of the bulk optical conductivity tensor

The 3D integrals over electron momenta cannot be evaluated analytically in most cases,

even in the zero temperature limit. Whenever the integrals remain in the final expression,

they were evaluated numerically for the plots in the main text.

1. Contribution of intraband transitions (s = +1→ s = +1)

In this case the matrix elements j(q)
nm of the current density operator reduce to

(jx)nn = evF sn
knx
b
|sin θkn| cosφkn , (B1)

(jy)nn = evF sn

(
kny
b
|sin θkn| cosφkn + cos θkn

)
, (B2)

(jz)nn = evF sn |sin θkn| sinφkn . (B3)

Therefore, we obtain

σintraxx (ω) = g
ih̄

V

∑
mn

(
fn − fm
Em − En

) ∣∣∣〈n| ĵx |m〉∣∣∣2
h̄(ω + iγ) + (En − Em)

=
ige2v2

F

b2(ω + iγ)

1

V

∑
n

(
− ∂fn
∂En

)
k2
nx sin2 θkn cos2 φkn

=
ige2v2

F

b2(ω + iγ)

ˆ
∞

d3k

(2π)3 δ(EB − EF )k2
x sin2 θk cos2 φk

=
ige2vF

4π3b2kF h̄(ω + iγ)

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dky
k2
xK

2
xΘ
(
kF −

√
K2
x + k2

y

)√
k2
F −

(
K2
x + k2

y

) (B4)

Similarly,

σintrayy (ω) =
ige2vF

4π3b2kF h̄(ω + iγ)

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dky
k2
y (Kx + b)2Θ

(
kF −

√
K2
x + k2

y

)√
k2
F −

(
K2
x + k2

y

) (B5)

σintrazz (ω) =
ige2vF

4π3kF h̄(ω + iγ)

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dkyΘ
(
kF −

√
K2
x + k2

y

)√
k2
F −

(
K2
x + k2

y

)
(B6)
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Here Θ(k) is the step function and we have used cos θk = ky√
K2
x+k2

y+k2
z

, eiφk = Kx+ikz√
K2
x+k2

z

,

Kx ≡
(k2
x+k2

y)−b2
2b

, and kF ≡ EF
h̄vF

.

σintraxy (ω) = σintraxz (ω) = σintrayz (ω) = 0. (B7)

2. Contribution of interband transitions (s→ −s, |B〉 ↔ |S〉)

In this case, i.e. sm = −sn = ±1, n 6= m, the matrix elements j(q)
nm of the current density

operator reduce to

(jx)nm = evF snδkn,km
knx
b

(sn cos θkn cosφkn − i sinφkn) , (B8)

(jy)nm = evF snδkn,km

[
kny
b

(sn cos θkn cosφkn − i sinφkn)− sn |sin θkn|
]
, (B9)

(jz)nm = evF snδkn,km (i cosφkn + sn cos θkn sinφkn) , (B10)

where n 6= m. Therefore, we obtain

σinterxx (ω) = g
ih̄

V

∑
s=±1

∑
mn

(
fn(−s) − fm(s)

Em(s) − En(−s)

) ∣∣∣〈−sn| ĵx |ms〉∣∣∣2
h̄(ω + iγ) + (En(−s) − Em(s))

= ih̄g
∑
s=±1

ˆ
∞

d3k

(2π)3

(
fk(−s) − fk(s)

Ek(s) − Ek(−s)

)
e2v2

Fk
2
x

(
cos2 θk cos2 φk + sin2 φk

)
b2
[
h̄(ω + iγ) + (Ek(−s) − Ek(s))

]
=
ige2 (ω + iγ)

8π3b2h̄vF

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dky ×
[
Θ

(
kF −

√
K2
x + k2

y

)

×2k2
x


K2
x

√
k2
F −K2

x − k2
y

kF

(
ω+iγ
vF

)2 (
K2
x + k2

y

) +

[(
ω+iγ
vF

)2

− 4K2
x

]
arctan

 (
ω+iγ
vF

)√
k2
F−K2

x−k2
y

kF

√
4(K2

x+k2
y)−

(
ω+iγ
vF

)2


(
ω+iγ
vF

)3
√

4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2


−Θ

(
K −

√
K2
x + k2

y

)
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×2k2
x


K2
x

√
K2 −K2

x − k2
y

K
(
ω+iγ
vF

)2 (
K2
x + k2

y

) +

[(
ω+iγ
vF

)2

− 4K2
x

]
arctan

 (
ω+iγ
vF

)√
K2−K2

x−k2
y

K

√
4(K2

x+k2
y)−

(
ω+iγ
vF

)2


(
ω+iγ
vF

)3
√

4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2




(B11)

where we have used Kx ≡
(k2
x+k2

y)−b2
2b

= −κ, cos θk (−kx) = cos θk (kx) ,sin θk (−kx) =

sin θk (kx) cosφk (−kx) = cosφk (kx) , and sinφk (−kx) = sinφk (kx) .

Similarly,

σinteryy (ω) =
ige2(ω + iγ)

4π3b2h̄vF

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dky ×
[
Θ

(
kF −

√
K2
x + k2

y

)
×

(b+Kx)
2 k2

y

√
k2
F −K2

x − k2
y

kF

(
ω+iγ
vF

)2 (
K2
x + k2

y

) +

[(
ω+iγ
vF

)2 (
b2 + k2

y

)
− 4 (b+Kx)

2 k2
y

]
arctan

 (
ω+iγ
vF

)√
k2
F−K2

x−k2
y

kF

√
4(K2

x+k2
y)−

(
ω+iγ
vF

)2


(
ω+iγ
vF

)3
√

4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2


−Θ

(
K −

√
K2
x + k2

y

)
×

(b+Kx)
2 k2

y

√
K2 −K2

x − k2
y

K
(
ω+iγ
vF

)2 (
K2
x + k2

y

) +

[(
ω+iγ
vF

)2 (
b2 + k2

y

)
− 4 (b+Kx)

2 k2
y

]
arctan

 (
ω+iγ
vF

)√
K2−K2

x−k2
y

K

√
4(K2

x+k2
y)−

(
ω+iγ
vF

)2


(
ω+iγ
vF

)3
√

4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2




(B12)

σinterzz (ω) =
ige2 (ω + iγ)

8π3h̄vF

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dky
(
K2
x + k2

y

) [
Θ

(
K −

√
K2
x + k2

y

)

×


2
√
K2 −K2

x − k2
y

K
(
ω+iγ
vF

)2 (
K2
x + k2

y

) −
8

[(
ω+iγ
vF

)2

− 4K2
x

]
arctan

 (
ω+iγ
vF

)√
K2−K2

x−k2
y

K

√
4(K2

x+k2
y)−

(
ω+iγ
vF

)2


(
ω+iγ
vF

)3
√

4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2


−Θ

(
kF −

√
K2
x + k2

y

)
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×


2
√
k2
F −K2

x − k2
y

kF

(
ω+iγ
vF

)2 (
K2
x + k2

y

) −
8

[(
ω+iγ
vF

)2

− 4K2
x

]
arctan

 (
ω+iγ
vF

)√
k2
F−K2

x−k2
y

kF

√
4(K2

x+k2
y)−

(
ω+iγ
vF

)2


(
ω+iγ
vF

)3
√

4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2



 .
(B13)

The only nonzero off-diagonal element is σinterzy (ω) = −σinteryz (ω), as expected:

σinteryz (ω) =
−ge2

4π3bh̄

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dky
(
k2
y − bKx

)

×

Θ
(
kF −

√
K2
x + k2

y

) 2 arctan

 (
ω+iγ
vF

)√
k2
F−K2

x−k2
y

kF

√
4(K2

x+k2
y)−

(
ω+iγ
vF

)2


(
ω+iγ
vF

)√
4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2

−Θ
(
K −

√
K2
x + k2

y

) 2 arctan

 (
ω+iγ
vF

)√
K2−K2

x−k2
y

K

√
4(K2

x+k2
y)−

(
ω+iγ
vF

)2


(
ω+iγ
vF

)√
4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2

 (B14)

Here we have introduced a cutoff at k = K in the integration over electron momenta

in order to regularize the divergent integral
´

d3k
(2π)3 which comes from 1

V

∑
n →

´
d3k

(2π)3 .

The divergence is an artifact of the effective Hamiltonian Eq. (1) which has a “bottomless”

valence band with electrons occupying all states to k → ∞. The regularization makes the

valence band bounded from below. We chose the cutoff at the momentum corresponding to

the energy of 2 eV, i.e. much higher than the range of interest to us near the Weyl nodes. In

the numerical examples in the paper the value of half-separation between Weyl nodes h̄vF b

is chosen to be 100 meV. We have verified that an exact value of the cutoff has a negligible

effect on the low-energy optical response below 350 meV, as long as K is large enough.
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Appendix C: Calculation of the surface electrical conductivity

1. Surface-to-surface states intraband transitions

σintrayy (ω) = g
ih̄

S

∑
µν

(
fµ − fν
Eν − Eµ

) ∣∣∣〈µ| ĵy |ν〉∣∣∣2
h̄(ω + iγ) + (Eµ − Eν)

=
igh̄e2v2

F

S

∑
µ

(
− ∂fµ
∂Eµ

)
1

h̄(ω + iγ)
= Θ (b− kF )

ige2vF
√
b2 − k2

F

2π2h̄ (ω + iγ)
. (C1)

All other tensor components are equal to zero.

2. Surface-to-bulk states transitions

σinterxx (ω) = g
ih̄

S

∑
s=±1

∑
mµ

(
fµ − fm(s)

Em(s) − Eµ

) ∣∣∣〈µ| ĵx |ms〉∣∣∣2
h̄(ω + iγ) + (Eµ − Em(s))

=
i4ge2v2

F h̄

b2

∑
s=±1

ˆ
∞

d3k

(2π)3Θ
[
b2 −

(
k2
x + k2

y

)]
Θ (kz)

×
(
fSk − fk(s)

Ek(s) − ES
k

)
k2
xk

2
zκ (1 + s cos θk)

(κ2 + k2
z)

2
[
h̄(ω + iγ) + (ES

k − Ek(s))
]

=
ige2

h

ˆ ∞
0

dkz

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dkyΘ
[
b2 −

(
k2
x + k2

y

)] k2
zk

2
xKx

π2(K2
x + k2

z)
2b2

×

 Θ
(
kF −

√
K2
x + k2

y + k2
z

)
−Θ (kF + ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky)−

√
K2
x + k2

y + k2
z

]
− Θ (−kF − ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky) +

√
K2
x + k2

y + k2
z

]
 (C2)

Similarly,

σinteryy (ω) =
ige2

h

ˆ ∞
0

dkz

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dkyΘ
[
b2 −

(
k2
x + k2

y

)] k2
zk

2
yKx

π2(K2
x + k2

z)
2b2

×

 Θ
(
kF −

√
K2
x + k2

y + k2
z

)
−Θ (kF + ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky)−

√
K2
x + k2

y + k2
z

]
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− Θ (−kF − ky)√
K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky) +

√
K2
x + k2

y + k2
z

]
 (C3)

σinterzz (ω) =
ige2

h

ˆ ∞
0

dkz

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dkyΘ
[
b2 −

(
k2
x + k2

y

)] k2
zKx

π2(K2
x + k2

z)
2

×

 Θ
(
kF −

√
K2
x + k2

y + k2
z

)
−Θ (kF + ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky)−

√
K2
x + k2

y + k2
z

]
− Θ (−kF − ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky) +

√
K2
x + k2

y + k2
z

]
 . (C4)

The only nonzero off-diagonal element is

σinteryz (ω) =
−ge2

h

ˆ ∞
0

dkz

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dkyΘ
[
b2 −

(
k2
x + k2

y

)] k2
zkyKx

π2(K2
x + k2

z)
2b

×

 Θ
(
kF −

√
K2
x + k2

y + k2
z

)
−Θ (kF + ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky)−

√
K2
x + k2

y + k2
z

]
− Θ (−kF − ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky) +

√
K2
x + k2

y + k2
z

]
 . (C5)

In Eqs. (C2)-(C5) the integral over kz can be carried out analytically in terms of elemen-

tary functions, leading however to very lengthy expressions which we do not present here.

The remaining integration was carried out numerically. All integrals are finite, i.e. no cutoff

is necessary.

Appendix D: Drude-like low-frequency limit

In the limit when the frequency and the Fermi energy are much smaller than h̄vF b, only

the electron momenta close to the corresponding Weyl point kx = ±b matter. Therefore, we

introduce δkx = kx − b for electron states near one Weyl point and replace the degeneracy

factor by 2 × g to account for the contribution from the second Weyl point. In this case,

Kx ∼ (kx−b)(kx+b)
2b

≈ δkx, kx= b+ δkx, and all diagonal intraband components have the same

Drude form:

σintraxx (ω) = σintrayy (ω) = σintrazz (ω) =
ge2vFk

2
F

3π2h̄(−iω + γ)
. (D1)

All off-diagonal conductivity elements are zero in this limit.
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Appendix E: Small b Expansion

In the limit b � 1, we can expand the conductivity in powers of b to the leading order:

b � 1, 1
b
� 1, Kx =

(k2
x+k2

y)−b2
2b

∼ (k2
x+k2

y)
2b

∼ (k2
x+k2

y+k2
z)

2b
� kx,y,z,

ω
vF

for kx,y,z 6= 0. Then we

obtain

σByz (ω) ≈ −ge2

3
√

2π2h̄

b3/2

k
1/2
F

(E1)

σBxx (ω) ≈ ge2k2
FvF

3π2h̄(−iω + γ)
+

2
√

2ge2(−iω + γ)

45π2h̄vF

b3/2

k
3/2
F

(E2)

σByy (ω) ≈ ge2k2
FvF

3π2h̄(−iω + γ)
+

7
√

2ge2(−iω + γ)

360π2h̄vF

b3/2

k
3/2
F

(E3)

σBzz (ω) ≈ ge2k2
FvF

3π2h̄(−iω + γ)
+
ge2(−iω + γ)

6
√

2π2h̄vF

b3/2

k
3/2
F

(E4)

σSxx (ω) = σSyy (ω) = σSzz (ω) ≈ ge2vF

2
√

2kFπ3h̄(−iω + γ)
b

3
2 . (E5)

All off-diagonal surface terms are zero.

Appendix F: Reflection in the vicinity of plasmon resonance

For oblique incidence θ 6= 0 and small losses the calculations of the reflection in the

vicinity of plasmon resonance have a technical subtlety, related to the presence of the term

nX cos θ (cos θX − sin θXKX) in Eq. (62). Indeed, at the plasmon frequency nX → ∞ as

losses γ → 0; however, for a plasmon we also have KX → 1
tan θX

, i.e. (cos θX − sin θXKX)→

0. One needs to treat the resulting uncertainty of the product with caution.

We substitute the relationship sin θX = nup sin θ

nX
into the expression for the refractive index

of an extraordinary wave:

n2
X =

εyyεzz − g2

cos2 θXεzz + sin2 θXεyy
=

εyyεzz − g2

εzz − sin2 θ
(
nup
nX

)2

(εzz − εyy)
,
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which gives

n2
X = εyy −

g2

εzz
+ sin2 θn2

up

(
1− εyy

εzz

)
(F1)

In the case εyy = εzz = ε⊥, Eq. (F1) for an arbitrary angle θ leads to the familiar expression

n2
X = ε⊥ − g2

ε⊥
. Next we use Eq. (40):

KX =
ig − n2

X sin θX cos θX
εzz − n2

X sin2 θX
=
ig − nup sin θnX

√
1−

(
sin θnup
nX

)2

εzz − sin2 θn2
up

.

Consider the expression nX cos θ (cos θX − sin θXKX):

nX cos θ (cos θX − sin θXKX)

= nX cos θ

cos θX −
ig sin θX − sin θXnup sin θnX

√
1−

(
sin θnup
nX

)2

εzz − sin2 θn2
up



= nX cos θ


√

1−
(

sin θnup
nX

)2

−
ig sin θnup

nX
− sin2 θn2

up

√
1−

(
sin θnup
nX

)2

εzz − sin2 θn2
up

 .

The condition nX
nup
� 1, which is satisfied at the plasmon frequency, allows one to simplify

the above expressions for any angle of incidence θ

KX =
ig − n2

X sin θX cos θX
εzz − n2

X sin2 θX
≈ ig − nXnup sin θ

εzz − sin2 θn2
up

(F2)

nXcosθ (cos θX − sin θXKX) ≈ nX cos θ

(
1−

ig sin θnup
nX

− sin2 θn2
up

εzz − sin2 θn2
up

)
(F3)

Since for nX
nup
� 1 we always have sin θX � 1, the plasmon frequency always corresponds

to |εzz| � 1 (at normal incidence, εzz = 0 exactly). Taking into account Eq. (F1), we obtain

1� |εzz| ∼ n−2
X .

Now let us consider the range of incidence angles close to normal incidence, when sin2 θ �

1. Two cases need to be treated separately: |εzz| � sin2 θn2
up � 1 and sin2 θn2

up � |εzz| � 1.

(i) |εzz| � sin2θn2
up � 1

In this case

n2
X ≈ εyy −

g2

εzz
, KX ≈

nX
nupsinθ

(F4)
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nX cos θ

(
1−

ig sin θnup
nX

− sin2 θn2
up

εzz − sin2 θn2
up

)
≈ ig

sinθnup
(F5)

where g =
4πσByz
ω

,

R ≈
n2
up sin θ − i4πσByz

ω
+ 4π

c
σSyznX

n2
up sin θ + i

4πσByz
ω

+ 4π
c
σSyznX

. (F6)

For real σ
(B,S)
yz we always have |R| = 1; however, the phase of the reflected field depends on

the contribution of surface states. Since in the vicinity of plasmon resonance nX ∼ 1√
|εzz |
�

1, at these frequencies the contribution of surface states may become important. This is

especially clear in the limit of small enough angles, when n2
upsinθ � |

4πσByz
ω
|. In this case

R ≈
−i4πσByz

ω
+ 4π

c
σSyznX

+i
4πσByz
ω

+ 4π
c
σSyznX

. (F7)

When the bulk contribution dominates we have R = −1, whereas if the surface contribu-

tion dominates we obtain R = +1, i.e. the phase of the reflected field flips.

The relative contribution of surface states is determined by the ratio
|σSyznX |
c
ω
|σByz |

. Taking into

account that |nX | ≈ |g|√
|εzz |

and |g| = 4π|σByz |
ω

, the above ratio can be reduced to
4π|σSyz |

c√
|εzz |

.

(ii) sin2 θn2
up � |εzz| � 1

This case is similar to the one at θ = 0. Indeed, for this range of parameters we obtain

n2
X ≈ εyy −

g2

εzz
, KX ≈

ig

εzz
(F8)

nXcosθ

(
1−

ig sinθnup
nX

− sin2θn2
up

εzz

)
≈ nX . (F9)

R ≈
−nX + 4π

c
σSyz

ig
εzz

nX + 4π
c
σSyz

ig
εzz

(F10)

Eqs. (F8), (F9) are the same as for the normal incidence. Eq. (F10) can be obtained from the

normal incidence formula Eq. (63) if |σSyy| � |σSyz
g
εzz
| and nX � nup; the latter inequalities

are valid near the plasmon resonance, where nX ∼ 1√
|εzz |
→∞.

For real values of σ
(S)
yz we always have |R| = 1, but the phase of the reflected field depends

on the contribution of surface states. Again, when the bulk contribution dominates we have

R = −1, whereas if the surface contribution dominates we obtain R = +1.
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The relative contribution of surface states is determined by the ratio
4π
c
|σSyz

g
εzz
|

|nX |
. Again

taking into account |nX | ≈ |g|√
|εzz |

and |g| = 4π|σByz |
ω

we obtain that the above ratio is reduced

to exactly the same expression as before:
4π|σSyz |/c√
|εzz |

.

To summarize, the effect of surface states on the reflected wave is determined by the ratio

|σSyz|
c
√
|εzz|/4π

and therefore becomes significant or dominant at the plasmon resonance frequency, when

εzz = ε
(0)
zz + i4π

ω
σBzz → 0.
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