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Abstract
We present systematic theoretical studies of both bulk and surface electromagnetic eigenmodes,
or polaritons, in Weyl semimetals in the minimal model of two bands with two separated Weyl
nodes. We derive the tensors of bulk and surface conductivity taking into account all possible
combinations of the optical transitions involving bulk and surface electron states. We show how
information about electronic structure of Weyl semimetals, such as position and separation of
Weyl nodes, Fermi energy, and Fermi arc surface states, can be unambiguously extracted from

measurements of the dispersion, transmission, reflection, and polarization of electromagnetic waves.



I. INTRODUCTION

Weyl semimetals (WSMs) have attracted a lot of interest as a new class of gapless three-
dimensional topological materials. Their Brillouin zone contains an even number of band-
touching points, or Weyl nodes, that can be described by topological invariants defined
as integrals over the two-dimensional Fermi surface. For each pair of Weyl nodes, these
invariants can be viewed as topological chiral charges of opposite sign of chirality [I]. The
electron dispersion near each Weyl node corresponds to three-dimensional massless Weyl
fermions. For crystals with broken time-reversal or inversion symmetry (or both), the Weyl
nodes of opposite chirality are separated in momentum space. The separation makes them
stable against small perturbations and also gives rise to surface states with Fermi arcs. For

reviews of WSMs discovered so far and their properties, see [2H7].

So far, the bulk of the research has been focused on measuring and modeling the electronic
structure of WSMs and topological signatures in electron transport. However, it is becoming
increasingly clear that optical methods (e.g. [§]) can provide a sensitive and sometimes more
selective probe into the unique properties of these materials as compared to other approaches.
Furthermore, analogies between light propagation in materials and topological effects in
propagation of massless Weyl fermions in WSMs have been pointed out [9, [10]. For a WSM
in a magnetic field several proposals explored the signatures of the chiral anomaly in the
interband optical absorption and plasmon mode properties; see e.g. the calculations of the
magnetooptical conductivity in the quasiclassical limit [ITHI7] and the quantum-mechanical
theory in a strong magnetic field [I8, 19]. Note that these studies did not include finite

separation of Weyl nodes in a microscopic Hamiltonian.

Here we study electromagnetic eigenmodes of WSMs in the presence of finite separation
between Weyl nodes in momentum space and without an external magnetic field. To cal-
culate the optical response, one needs to determine a realistic low-energy Hamiltonian that
captures the essential topological structure of WSMs. While many WSMs discovered in
experiment have a complicated arrangement of several pairs of Weyl nodes, essential physics
and electronic properties of WSMs are already revealed in a model containing only two
Weyl nodes separated in momentum space. Such models serve as a usual starting point for
theoretical studies of transport and optical phenomena. Probably the simplest approach is

to add a Zeeman-like constant shift term to the Hamiltonian for a Dirac semimetal, which



preserves the linear form of the Hamiltonian with respect to momentum operators [20].
The bulk optical conductivity for this model was calculated in [2I]. In another approach,
developed in [22] and used in many optical response studies to date, a phenomenological
axion f-term is introduced in the action for the electromagnetic field. This gives rise to
the gyrotropic terms in the dielectric permittivity tensor and associated effects of Faraday
and Kerr rotation, linear dichroism, modification of surface plasmon dispersion etc.; see e.g.
[7, 23-25].

In yet another approach, Burkov and Balents [26] derived a minimal 2x2 Hamiltonian (one
conduction and one valence band) containing one parameter which describes the transition
from the normal insulator to the WSM with two Weyl nodes separated in momentum space.
In the WSM phase, this Hamiltonian allows for surface state solutions with Fermi arcs.
Therefore, a single microscopic Hamiltonian can be used to describe optical transitions
between the bulk states, surface states, and surface-to-bulk states. As a result, both bulk and
surface tensors of the optical conductivity can be derived. Subsequent studies [27] explored
the dispersion of bulk and surface states within the minimal Hamiltonian model and their
evolution from the WSM phase to bulk insulating phases including topological insulators.
The Hamiltonian of [27] has been recently used to develop a quantum-mechanical theory of
surface plasmons (Fermi arc plasmons) and their dissipation [28].

Here we use a slightly more general Hamiltonian, which is free of certain surface state
pathologies, to perform quantum-mechanical derivation of the tensors of both bulk and
surface conductivity. We take into account all possible combinations of transitions between
bulk and surface electron states. We then proceed to determine the properties of bulk and
surface electromagnetic eigenmodes, or polaritons. We show how information about the
electronic structure of WSMs, such as position and separation of Weyl nodes, Fermi energy,
surface states, Fermi arcs, etc. can be extracted from the transmission, dispersion, reflection,
and polarization of electromagnetic modes. We identify the most sensitive optical signatures
of the electronic properties of WSMs and discuss the potential use of WSM thin films for
optoelectronic applications.

Since our model includes only two Weyl nodes of opposite chirality, it describes WSMs
with time reversal symmetry breaking, i.e. the materials with some kind of magnetic order-
ing. Examples discovered so far include pyrochlore iridates [29], ferromagnetic spinels [30],

and Heusler compounds [31]. WSMs with the crystal structure which breaks the inversion

3



symmetry but preserves the time-reversal symmetry should have a minimum of four Weyl
nodes, and in some cases show much more than four [32], see e.g. recent reviews cited above.
Therefore, our quantitative results below can be applied only to magnetic WSMs. However,
some qualitative conclusions for inversion-symmetry breaking WSMs can be still made, as
discussed in Sec. VIII. Another limitation stems from an effective two-band model, which
neglects higher bands. This limits the frequency range by the onset of the optical transitions
to higher bands, typically at several hundred meV. Finally, we limit ourselves to the linear
optical response, assuming that the electromagnetic field is weak enough and neglecting any
strong-field modification of electron states.

Section II describes the effective Hamiltonian, or rather a family of Hamiltonians used
in this study and derives the properties of corresponding bulk and surface electron states.
Section III gives the classification of possible optical transitions and outlines all steps in the
derivation of tensors of bulk and surface optical conductivity. The explicit expressions for
the tensor elements are given in the Appendix. Section IV provides a detailed description of
the electromagnetic normal modes (polaritons) in bulk WSMs. Section V provides boundary
conditions which are then used in Sec. VI to calculate the reflection of incident radiation from
the surface of a WSM. Section VII describes surface electromagnetic eigenmodes, i.e. surface
plasmon-polaritons. Conclusions are in Sec. VIII. The Appendix contains matrix elements
of the current density operator, general expressions for elements of the bulk and surface

conductivity tensor, their low-frequency limit and the limit of small Weyl node separation.

II. EFFECTIVE HAMILTONIAN

In this section we describe the family of Hamiltonians that serve as a microscopic basis
in this study. We derive the properties of bulk and surface electron states and use them to

calculate the optical conductivity. Consider a family of Hamiltonians of the type

X )2 — B2
H =g <QTan(2)é'm +ﬁy&y +]§z&z> ) (1)

where the function m(z) takes into account that the system may be nonuniform along z
and, in particular, has boundaries. Here 0, , . are Pauli matrices and the operator QQ is

defined by one of the following three expressions:
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(1) Q* =7

(2) Q° =93+,

(3) Q* =iy + 5, + 77
The first option is the Hamiltonian in [26], 27].

To make the derivation of surface states more convenient [27], we apply the unitary

transformation H = S~'HS to Eq. 7 where S = \/Li (1 —i6,). This gives

. Q2 — 1’m(z) . . .
H=vp (Taw + D20y — Dyo: |, (2)

One can check that this Hamiltonian violates time-reversal symmetry due to the term pro-

portional to 6,. The gyrotropy axis is the z-axis. In k-representation the Hamiltonian of

Eq. (2) becomes
Hy = hop (K, (K) 6, + k.6, — ky,6.) , (3)

where K, (k) for the same three Hamiltonians is given by

k2 —m
1) K, =-"5
(1) K, = =2
K24+ k2 —m
NK, =2 7
(2) 5
kP + Ky + k2 —m
K. — T Yy 1
(3) K. -

In all three cases the Weyl nodes are located at k, = ++/m assuming that m > 0. We have
found bulk and surface eigenstates for all three Hamiltonians. Below is a summary of main

results related to electron states.

A. Hamiltonians 1 and 2
1. Bulk states

The stationary spinor eigenstate of the Hamiltonian in Eq. is

L4

|Wk> — eik’r—i%t’ (4)
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where the components are determined from
—k, — % K, (k) — ik, U

K, (k) +ik, k £ v,

y_h'l)F

~ 0, (5)

From Eq. one can get the eigenenergy of the bulk states E (k)

E = shvp\/ K2 + k3 + k2, (6)

and corresponding components of the spinor eigenstate in Eq. :

| V1 — scosBOpe " o)

v, V2V s/ 1+ scosby

ek = % : s = 41 denotes the conduction and valence
.’13+ z

where cos 6, = \/#W’
bands, and V is the quantization volume.

To visualize the dispersion of electron states, we take for simplicity m = 2. The 3D plot
for one projection of 3D dispersion of the Hamiltonian 2 is shown in Fig. 1. For small energies
|%] < b the constant energy surface consists of two disconnected spheres, each of them

enclosing a corresponding Weyl point; see Fig. 2. At |%| = g a separatrix isoenergy surface

is a 3D “figure of eight”. For |hfF| > g the constant energy surface is simply connected and
encloses both Weyl points. Figures 2a and 2b shows contours of constant energy surfaces
on the plane k, = 0 for the Hamiltonians 2 and 1, respectively. The electron dispersion is
strongly anisotropic. This will result in different values for the diagonal elements of the bulk
dielectric permittivity tensor, as in two-axial crystals. The dotted circle in Fig. 2a is the

boundary of a region that contains surface states. For Hamiltonian 1 in Fig. 2b the surface

states exist between the dotted lines.

2.  Reflection from the boundary. Surface states and Fermi arcs

Following [27], we define the boundary as a jump in the parameter m, so that m = b?
inside the WSM and m = —m., outside. Then Egs. and will contain the parameter

m as a function of the coordinate r; orthogonal to the boundary, and the corresponding

0

component of the quasimomentum £; is replaced by k; = _ia_rj'

For the boundary parallel to the gyrotropy axis z, we assume that it coincides with the
surface z = 0 and the WSM fills the halfspace z < 0. In this case m = b? for z < 0 and

m = —Mes, Me —> 00 for z > 0.



FIG. 1. Bulk energy dispersion for Hamiltonian 2 on the surface k, = 0. Here the energy is

normalized by hvrb and k; , are normalized by b.

For Hamiltonian 3, the Schrodinger equation given by Eq. is a 4th order differential
equation, since its matrix elements contain 68—; . For Hamiltonians 1 and 2 we get a 2nd
order set of equations. The velocity operator v, = %[H ,z] for Hamiltonian 3 is 0, =
—i”{&x% + vpoy, ie. it depends on the coordinate derivative. In contrast, the velocity
operator v, = vpd, for Hamiltonians 1 and 2 does not depend on the coordinate derivative.
Therefore, for Hamiltonian 3 at z = 0, the continuity of both the eigenstate and its derivative
is required, whereas one only needs the continuity of the eigenstates for Hamiltonians 1 and
2.

Using Eq. one can find that the eigenstate of Hamiltonians 1 and 2 in the region z > 0

at Mo, — 00 18 |Pu) etkertikyy =252 In the region z < 0 we take the eigenstate
0

|Wp) which is given by Eq. (7). Stitching together these two eigenstates |W..) and |¥p) at
the boundary yields the following expression for the bulk state:
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FIG. 2. (a) Contours of constant energy surfaces for Hamiltonian 2 on the surface k, = 0. The
dotted circle is the boundary of a region k2 + k:g < b? where surface states exist. (b) Contours of
constant energy surfaces for Hamiltonian 1 on the surface k, = 0. Here x,y = ks 4/b. The dotted

lines indicate the boundary of a region k2 < b? where surface states exist.

ehertity | [T scosfee @ \ VI—scoslpe \
WV WiTseosle )\ svitsest | |
where the quantization volume is limited from one side by the z = 0 plane. The eigenenergy
is still given by Eq. @, and the angles 0, and ¢, are defined below Eq. @)
If £ ~ k2 4+ K2 the value of k. in Eq. (@) is imaginary: k., = +ik. In order to connect

72,3
h v

V) = (8)

1
the eigenstate |V ) in z > 0 with the eigenstate localized at z < 0 which is "% | the



localized eigenstate should be also a spinor . After replacing k, = —ik in Eq. (5)), we
0

obtain the following eigenenergies and eigenvectors for surface states in the limit m,, — oo:

FE 12K 1 . .
— Uo) — O (— kz+ikgx+ikyy 9
h/UF Yo | S) S 0 ( Z) € I ( )

where © is a step function, S is the quantization area, k = —K, > 0. For Hamiltonian 2
the surface states exist inside a dashed circle b > k? + & in Fig. 2a. For Hamiltonian 1 the
surface states exist in the region b? > k2 in Fig. 2b.

If a WSM occupies the region z > 0, instead of Eqgs. @D we obtain

E 2k [ O , 4
o = TR [Zs) =4[5 : O (z) e Irletikertiby, (10)

where k = +K, < 0. Equations @D, can be easily generalized to the case of a parameter

m(z) which varies continuously between the values b* and —m., [27]. For example, instead
of Egs. @ we get

-z m(2)—k2 . .
FE 1 P elo =+ dz for Hamiltonian 1
o= _kyJ |Eps> = N e vy 2 m(z)—k’%—k2 (1]‘>

hvg 0 elo == " 9% for Hamiltonian 2,

where N is a normalization factor.

Note that the constant surface energy lines k, = const are tangent to the points where
the bulk-state constant energy surface intersects the boundary of the surface states, shown
as dotted lines in Fig. 2a and 2b. The union of these k, = const lines and the bulk-state
constant energy surface is a set of bulk and surface energy states with the same energy. In
particular, at the energy equal to the Fermi energy Ep the k, = Ep/(hvp) line forms a

Fermi arc.

B. Hamiltonian 3

For a 4th order set of differential equations the construction of electron states including
their interaction with a boundary is more complicated.
First, we use Eq. @ to find the value of k, for given k., and E. Consider the parameter

(K2+k2—m)”

range m < b?, including both positive and negative values of m. If % > k2 + T,
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one always has two real solutions k,; = —k.» > 0 together with two imaginary solutions

. . 2
corresponding to evanescent states: k.34 = tkg4, where 0 < kK3 = —ry . If ngT < /{:2 +
F

2
k2+k2—m . . .
(ehi—m) , all four solutions are imaginary and correspond to evanescent states: k.1 234 =

D2
ik1234, Where 0 < k1 = —kK3, 0 < Koy = —rKy4. In the region z > 0 (i.e. outside the sample,
where m = —m., ) it is reasonable to take the solution as a superposition of two localized

modes e 13412 In this case for z < 0, i.e. inside the sample where m = b?, there could be
two options:

(i) A superposition of two counterpropagating waves with quasimomenta k,; = —k,o
together with a localized wave e"3*. The localized solution cannot be discarded, since without
it the number of constants becomes smaller than the number of the boundary conditions.

(ii) A superposition of two localized waves i.e. the surface state. In this option the number
of constants is always smaller than the number of the boundary conditions, so such a state
can exist only at certain values of energy.

The procedure of stitching the spinor components and their derivatives is simplified if
Meo — 00 since in this limit the continuity of the derivative is equivalent to setting both

components of a spinor ¥; 5 equal to zero in the cross section z = 0.

1.  Bulk states near the boundary

In case (i) we obtain

eikxm—i—ikyy

20V
V1 — scos Oe 1k

W) ~

V1 — scos O’ V1 — scos Gger
effz

% eikzz 4 e—ikzz +l
sV 1+ scosby sv' 1+ scosby —sv/1 + scos by
(12)
where
E? 2 2 2 2 E? 2 2 2 4 }2
Ay _Zd)k ]
r:——e +€. , sinha,{:—ﬁ =2 i g
et + ik

Vi — k2 e + ek’
h vy Y
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Clearly, |r|*> = 1, which corresponds, as expected, to the total reflection from the boundary.
The quantization volume in Eq. is chosen in such a way that its length along the z
axis is much larger than k! > x~!. Therefore, the last term in the brackets in Eq. is
unimportant in a sense that it does not affect the eigenstate normalization or the matrix

elements.

2. Surface states

To construct the surface states (option (ii)) it is convenient to to go back to Eq. (5], use

m = b2, and make the substitution k, = —ix:
k2+k2—R2—b2
—k - £ Baly W 70 7,
Y FLUF 2b _ 0 (13)
k2+k2—r2—b? e E . B
% Tk Y hop 2

Consider the solution of Eq. , corresponding to different positive values of ;5 but

a
the same spinor constant . One can build a nontrivial localized solution |[¥g) o
b
a
O (—z) ("% — e"2%) which corresponds to the null boundary conditions at the surface
b
z=10. Such a solution of Eq. is possible under the following conditions:
£ kZ4kI—k2-b? - £ k24k2—k2-p? B E
—hy —qen =t =000k, -z = F—5—— k=0 0r k-5 =
k2 4+k2—k2—b2 a 1 a 0 . .
——t—— — t = 0, where = or = respectively. It is easy to see

b 0 b 1
that the first option corresponds to the surface state when the WSM occupies the halfspace

z < 0, whereas the second option corresponds to the WSM in the region z > 0, since in this
case the values of k9 are negative. The resulting states are as follows.

(i) WSM in z < 0:

E 2 1
o~ W) = 1,1 4
S </€_1 + Ky m+n2)

o O (=) (¢1% = ¢nsF) - hertbn, (1)

(ii)) WSM in z > 0:

2 1
1 1 4
S <H_1 + Ky n1+ﬂ2>

11

P kjya |!p5> =

hor 6 (z) (7% — 7)ot (15)




Here KLQZb:F\/k‘,%‘i‘/{?g .

In the region v* < k2 + k;g there is only one localized evanescent solution for any fixed
value of energy, which is not enough to satisfy the boundary conditions. Therefore, the
region b > k2 + k7, where the surface states exist, is the same in the models described by
the Hamiltonian 2 and Hamiltonian 3 (see the dotted circle in Fig. 2a).

Taking into account a finite value of m., modifies the above expression, but their general
structure remains the same. For example, when a WSM fills the halfspace z < 0, then the

eigenstate in Eq. is replaced by

‘Ws;z<0> X 1 (emz _ Cenzz) eikzx-i-ikyy’

1 — . .
|Ws;z>o> x K2 K1 7\/moozelkz$+lk’yy, (16)

- —€
Ko + /Moo

K1 +\/moo
Ko + /Moo

where ( =

C. The boundary orthogonal to the gyrotropy axis

82

5.2+ Therefore, the analysis

Any Hamiltonian, 1, 2, or 3, contains the second derivative
of the bulk and surface states near the boundary orthogonal to the gyrotropy axis is similar
to the one for the boundary parallel to the gyrotropy axis when the Hamiltonian contains
the second derivative g—;. Repeating the same arguments as in the previous section, we

obtain that the orthogonal boundary is trivial and does not contain surface states.

D. Comparison of Hamiltonians 1, 2, and 3

The only principal difference between the eigenstates of the effective Hamiltonians con-
sidered above is the region where the surface states exist. Such a region is determined by
the inequality b > \/m for Hamiltonians 2 and 3, and the inequality b > |k,| for
Hamiltonian 1. The latter condition leads to an infinite density of surface states, which
is unphysical and would have to be restricted artificially. Therefore, it is better to work
with Hamiltonian 2 or 3. Hamiltonian 2 leads to a simpler z-component of the velocity

oA A s N vp A O A . . .
operator: 0, = vpo, instead of 0, = —1E 0.5, + VROy, which corresponds to Hamiltonian
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3. The velocity operator of Hamiltonian 2 makes calculations of the surface current easier
without losing any essential physics. Therefore, we will use Hamiltonian 2 for subsequent

calculations of the optical properties.

III. OPTICAL TRANSITIONS AND THE TENSORS OF BULK AND SURFACE
CONDUCTIVITY

In the presence of external fields one should replace p = p — €A, and also add the
electrostatic potential H— H+ epl in Eq. . Particles are assumed to have charge
e where —e is the magnitude of the electron charge. If the potential has a coordinate

dependence A(r) we assume symmetrized operators

e

2 ) e? e
EAw,y,z> Pry,2 + C_QA

x?yVZ

(pw,y,z - (vayvax7yvz + Aﬂ“v%sz»y,z) ’

¢
and in the expressions for the velocity operator we need to replace

— L — _'L _ iA
Z@x,@y,@z Z@x,@y,@z ch”vE

Throughout the paper, we will consider the potentials corresponding to a monochromatic
electromagnetic field propagating in the arbitrary direction r with angular frequency w and

wavevector q, i.e.

1 . .

o= §gb(w)e_“"t+“"r + c.c., (17)
1 o

A= §[w0Ax(w) + Yo A, (w) + 2o A, (w)]e ™" 4 c.c. (18)

Bulk-to-bulk and surface-to-surface transitions contribute to the bulk and surface conduc-
tivity tensors, respectively. The contributions are detailed in the Appendix. Surface-to-bulk
transitions contribute to the surface conductivity tensor only. They have to be handled with
more care, as we briefly describe below.

Generally, the electron and current densities expressed in terms of the density matrix are
given by

n (1) = g0 (1) paps 3(1) =D dpa () pap, (19)
ap ap

% . 1 x [ 5 SE Lk
NBa = WBWQ, -7604 - 5 [Wg <JWQ> + (.7 wﬁ) wai| ) (20>

where 3 = e?.
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The Fourier harmonics of the the electron and current densities are
1 ‘ 1 .
j(r)= 3 zq:j(q)e’q’“ +cc, n(r)= 3 zq: n@el" 4 cc.,

where
1() igr j3 1() 1 (q) —igr 33
V= — j('r)e TPr, —n'Y = — [ nWe "y,
2 Vv

For their matrix elements we have

3@ = Zjﬁa/)Ofﬂ? Z 5 pag, (21)

where
g =2(ple” " la), ngl =2(8le” |a) (22)
To find the current without the effect of a boundary we can use the states given by Eq. .
Now consider the states near the surface. We will denote the bulk states with latin indices
and surface states with greek ones. For convenience we rewrite them, having in mind an

upper boundary z = 0 with the WSM located at z < 0 :

@) ety V1 scos Qk”e_ieh ikzz V1 —scosby, el —ik.2
m) — T = e — e # ,
2v'V sy/T— s cosl, sy/T+ 5 cos O,

2
where E,, = shvp\/ (k“2”+k5_b2) + k7 + k2 is the eigenenergy, s = +1 is the band index, the

2b
values k,, can be of either sign whereas k, > 0; cos 6’k” = hlkj
vE
2K 1 ikpr+ikyy+rKz
) =g | | @Rt (24)

2 1.2
where S is the area; the energy of the state is B, = —hvpk,, Kk = b ];b K2+ k‘Q < b.
Let us limit the surface states by the condition k > K,.;,, Where the latter could be a

typical scattering length ~ We will assume that «,} is much smaller than L, which

Romin-
enters the quantization volume V' = SL in Eq. . When we calculate the matrix elements
of the interaction Hamiltonian in the von Neumann equation, the matrix elements V,on"
V(mt and V%" have no peculiarities: the integration is carried out over the whole volume.
However when we calculate the matrix elements of the density and current, and if at least
one of the indices belongs to the surface state, we will perform the integration over dz:

0 0
nf;a:/ ViWadz, nma:/ U W,dz, (25)

—00 —00
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0

o=y [0 0) ) ) = [ [ () ()

. ) (26)

These quantities will depend only on z and ¥, and therefore determine the surface current
and density.

The following current component is nontrivial: > 5 (J2)gq Pas + 2 ma (Uz)ma Pam- 1t

determines the polarization of a thin double layer:

O e ) = 3 (1) 05+ 3 () (27)

af mao
This layer radiates, but not normally to the layer, and it cannot affect the surface density
of carriers.
With properly defined matrix elements of the current and density the continuity equation
is satisfied automatically, so we can consider the volume current flowing toward the boundary

(2 mn (Jz)pm Pmn) ,_o s a source in the surface continuity equation.

A. Tensors of bulk and surface conductivity

The matrix elements of the Fourier components of the current density operator are eval-
uated in Appendix A. After evaluating them, in Appendix B and C we used the Kubo-

Greenwood formula to calculate the bulk and surface conductivity tensors, respectively;

e.g.

_ ih fn_fm <n‘ja’m> <m’§ ’n>
Tas (W) _97%; (Em —En) Fi(w + ) +(Enﬁ—Em)’ (28)

for the bulk conductivity, where g = 2 is the spin degeneracy factor and «, § denote Carte-
sian coordinate components. The surface conductivity tensor has a similar structure, but
the contribution is summed over surface-to-surface and surface-to-bulk transitions, and the
normalization is over the surface area S instead of a volume V. Both interband and in-
traband transitions are included. Three-dimensional integrals over electron momenta in
Appendix B and C cannot be evaluated analytically, except limiting cases of small frequen-
cies or small b (see Appendix D and E). Therefore, integrals were calculated numerically at

zero temperature for all plots below.
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The bulk (3D) conductivity tensor due to low-energy electrons near Weyl points is

o8 0 0
B
o;(w)=10 UyBy U;,BZ (29)
0 OZBy UZBZ
where 07 = —o)’. The surface conductivity tensor at z = 0 has a similar structure, with
superscript B replaced by S and afy = —0'52.

The background bulk dielectric tensor in the most general form which corresponds to the

one for a two-axial nongyrotropic crystal is

6;9@) 0 0

0

5§j)(w)= 0 en 0 (30)
0 0 9

so that the total dielectric permittivity tensor is

A B( ) €z 0 0
o (w
gij(w) = Eg-))(w) + ZTJ =10 g ig (31)
0 —ig €,,
where
47TJ£Z
9= : (32)
w

Note that for Hamiltonian 3 we would have 02 = ¢Z whereas for Hamiltonian 2 (used in

yy — T zz

all calculations of the conductivity tensors in this paper) we have crf; # 0B . Therefore, even
if the background dielectric tensor is isotropic, the contribution of massless Weyl electrons
will create a two-axial anisotropy. In the numerical plots below we will take an isotropic

background dielectric tensor and neglect its frequency dependence at low frequencies, 8(sz) =

51(2,) =9 = 10, so that all nontrivial effects of anisotropy and gyrotropy are due to Weyl
fermions.

The salient feature of both bulk and surface conductivity tensor is the presence of nonzero
off-diagonal (gyrotropic) components due to time-reversal symmetry breaking in the Hamil-
tonian. These terms originate from the finite separation of the Weyl nodes in momentum

space and the existence of surface states (Fermi arcs). The gyrotropic effects in the prop-

agation, reflection, and transmission of bulk and surface modes can serve as a definitive
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diagnostic of Weyl nodes, surface states, and Fermi surface. They could also find applica-
tions in optoelectronic devices such as Faraday isolators, modulators etc.

Figures 3-6 show spectra of €,,(w), gyy(w), €..(w), and g(w) for several values of the
Fermi momentum kp (at zero temperature), when the Weyl node separation 2hvgpb = 200
meV. The characteristic feature in all plots is strong absorption and dispersion at the onset
of interband transitions, when w = 2vpkr. Another common feature is a Drude-like increase
in the absolute value of all tensor components at low frequencies. Indeed, as shown in
Appendix D, in the limit w < vpkr < vpb when only the intraband transitions in the
vicinity of each Weyl point are important, the off-diagonal components are equal to zero
and the diagonal conductivity components are reduced to the same Drude form:

B ge*vpk?,
- 3m2h(—iw + )

intra
vy

intra

22 (w) = 022" (w)

zz

(W) =0 (33)

Note an absorption peak at w = 100 meV at low Fermi momenta, which corresponds to a
Van Hove singularity at the interband transitions between saddle points of conduction and
valence bands at k = 0, i.e. in the middle between the Weyl points.

Note also that diagonal and off-diagonal parts of the conductivity tensor are of the same
order at low frequencies comparable to the Weyl node separation, which indicates that
gyrotropic effects should be quite prominent.

All figures in this paper are plotted for a relatively high dephasing rate v = 10 meV,
which smoothes out all spectral features and introduces strong losses for electromagnetic
eigenmodes even below the interband transition edge. The dephasing rate originates from
electron scattering and obviously depends on the temperature and material quality in real-

istic materials. Its derivation is beyond the scope of the present paper.

IV. BULK POLARITONS IN WEYL SEMIMETALS

Consider first the propagation of plane monochromatic waves in a bulk Weyl semimetal.
For complex amplitudes of the electric field and induction, (D, E)e*"=®! where D = éE
and € is a bulk dielectric tensor, Maxwell’s equations give n - D = 0, where n = % The

resulting dispersion equations are

n(n-E)-n’E+ZéE =0, (34)
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FIG. 3. Real and imaginary parts of the £;, component of the dielectric tensor as a function of

frequency for hvpb = 100 meV, dephasing rate v = 10 meV, and 53(602 = 10.

or

Eze — N2 + N2 ngny, NNy E,
2 2 _
Ny Ny Eyy — N+ nyig+nyn, E,| =0 (35)
NNy —1g + NNy €, — n? + nz E,

The structure of these equations indicate strongly anisotropic and gyrotropic properties
of bulk polaritons. The dispersion is drastically different for normal modes propagating
perpendicular to the x-axis and to the y-axis. For each direction, there are furthermore two

normal modes with different refractive indices. We will consider each case separately.
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FIG. 4. Real and imaginary parts of the €,, component of the dielectric tensor as a function of

frequency for hvpb = 100 meV, dephasing rate v = 10 meV, and 53(,,%) = 10.

A. Propagation perpendicular to the anisotropy x-axis

In this case we have n, = 0, n? = nZ +n? n, = ncosf, n, = nsinf, where 6 is the
angle between the wave vector and z-axis. From Eqs. we obtain two normal modes that
can be called an ordinary (O) and extraordinary (X) wave. An O-wave has an electric field

along x and the refractive index

Ny = - (36)

Therefore, its dispersion and absorption are completely described by the spectrum of &, (w).
As shown in Fig. 7, at low frequencies the O-mode experiences strong metallic absorption

and at w = 2Er = 160 meV there is an onset of interband transitions.
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FIG. 5. Real and imaginary parts of the £,, component of the dielectric tensor as a function of

frequency for hvpb = 100 meV, dephasing rate v = 10 meV, and 59 = 10.

An X-wave have an electric field in the (y,z) plane and the refractive index showing

strong f-dependence and resonances:

Eyy€zz — 92 (37>

cos? fc., + sin® Oe,,

2
Nx =

For normal incidence 6 = 0,
2

9
Nk = €y — e (38)

It is obvious from Eq. that the refractive index for an X-wave is strongly enhanced

(singular in the absence of losses) when
cos’ Oz, + sin®fe,, =0 (39)
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FIG. 6. Real and imaginary parts of g = 4”5-"2 as a function of frequency for Avpb = 100 meV and

dephasing rate v = 10 meV.

which corresponds to the bulk plasmon excitation. Indeed, from Maxwell’s equations in the
Coulomb gauge one can show that |122|/|V | ~ |w2f—;k2||jj—‘#|, where j = 3, +7), Vxj) =0,
V -3 = 0. Therefore, if |5, | ~ |7)|, which corresponds to a general oblique propagation in
an anisotropic medium, the wave is quasi-electrostatic at n? > 1. Eq. corresponds to
the condition n- D =0 for E = -Vy | n . If g, =¢,, = ¢, the dispersion equation for a

plasmon propagating in the plane orthogonal to the z-axis has a simple form £, = 0.

Figure 8 shows real and imaginary parts of the refractive index nx of an X-wave as a
function of frequency for different values of the propagation angle . Near the bulk plasmon

resonance, i.e. around 100 meV for normal incidence, the value of n% becomes negative in
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FIG. 7. Real and imaginary parts of the refractive index np of an O-wave as a function of frequency

for Er = 80 meV, hvpb = 100 meV, and dephasing rate v = 10 meV.

the absence of losses according to Eq. This corresponds to a non-propagating photonic
gap. Since we include significant loss rate v = 10 meV in all simulations, the real part of
nx does not go all the way to zero, but there is a strong absorption peak in the imaginary
part of nx. We will later see that this spectral region leads to a telltale change of phase in
reflection. The second feature in all plots is an onset of interband transitions at 2Er = 160

meV.

The real part of the bulk plasmon resonance frequency at normal incidence as a function
of the Fermi energy is shown in Fig. 9. Note that according to Eq. the magnitude of

the refractive index at frequencies around plasmon resonance is determined by the value
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FIG. 8. Real and imaginary parts of the refractive index nx of an X-wave as a function of frequency
for different values of the propagation angle 8. Other parameters are Er = 80 meV, hvpb = 100

meV, and dephasing rate v = 10 meV.

of the off-diagonal component of the dielectric tensor g. Therefore, measurements of the
transmission and reflection provide a sensitive measure of the Weyl node separation.

The same is true about the polarization effects. From the third row of Eqgs. one can
get the expression for the polarization coefficient:

E. ig—n%sinfcosb
Kx:Ez:g X (40)
y €, — Ny sin“ 0
Substituting Eq. (37)) into Eq. (40]) we get
g (cos? Oe.. + sin®bey,) — (gyye2. — g?)sinfcosf

Ky —
X €2z <C082 fc,, + sin? Heyy) — (Eyy€sz — g2) sin? 0

(41)

At the resonant plasmon frequency defined by cos? fc,, + sin® fg,, = 0 we obtain Kx =

ﬁ, which is expected. If we set § = 0, which corresponds to normal incidence, Ky = -2

Ez2z

b
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FIG. 9. Real part of the bulk plasmon resonance frequency at normal incidence § = 0 as a function

of the Fermi energy.

i.e. again proportional to g. In this case, the plasmon frequency is given by €., = 0, and
Kx — o0 in the absence of losses. If ¢, = ¢,, =€, Eq. gives

ige; — (3 — ¢g*)sinfcosf

Kx = - 42
% cos? 0 + g?sin® 0 (42)
For an isotropic medium, when ¢?> = 0, the last expression gives Kx = —tan#, as it
should be for a transverse wave in an isotropic medium.
B. Propagation transverse to the y-axis
In this case n, =0, n? =n?+n? n, =ncos¢, n, = nsin ¢;
Evw — N 0 NyMs E,
2 » _
0 Eyy — N ig E,| =0 (43)
NNy —ig €., —mn2 b,

(sin® ge.. + cos® Pegy) Nt — n® [eue.. + &y (5in® P, + cos”® gy, ) — sin® ¢g°]
+eua (Eyyeaz — g°) = 0. (44)

Note that the solution of Eq. at ¢ = 7 corresponds to the normal incidence propagation
along z and therefore should coincide with Eqgs. , at # = 0. Indeed, from Eq.

for ¢ = 7 we obtain
g
(n® — e42) [nQ — (5yy - 8—)} =0; (45)
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C o2 2 _ . _ 4
from which ng = €42, Nk = €yy =, as expected.

The case n? — oo in the absence of losses, when

sin? ge,, + cos? pegy = 0 (46)

corresponds to the condition n - D = 0 where E = =V || n. From Eq. we obtain

Exa€rz + Eyy (sin2 de, + cos? qﬁem) — sin? ¢g? N
f]’]/ =
0.X 2 (sin® ge.. + cos? pe,y,)
\/ [Caater + €4y (SN Ge.. + cOS? deyy) — sin® pg2]” — 4 (sin? ge.. + c08? Pers) €0 (Eyynn — )
2 (sin® ge.. + cos? pe,y,)

(47)

In Eq. the signs + are chosen for n207 x according to the limiting case ¢ = 7.

(a)
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FIG. 10. Spectra of real and imaginary parts of the polarization coefficient Kx = E./E, for an

incident wave linearly polarized in y-direction after traversing a 1-pym film in x-direction.
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For the propagation along the z-axis of anisotropy, when ¢ = 0, Eq. gives

2
m =ty \/ (%) e (43)

Note that the z-axis is also a gyrotropy axis related to the Weyl node separation along z.

Therefore, the propagation along x is similar to the Faraday geometry in a magnetic field. In
our case the normal modes are elliptically polarized, and an incident linearly polarized wave
experiences Faraday rotation and gains ellipticity after traversing a sample in z-direction. To
quantify the effect, Fig. 10 shows the polarization coefficient Kx = E,/E, after traversing a
1-pm thick film for a wave initially linearly polarized in y-direction. The real part of Kx is
a measure of the polarization rotation whereas its imaginary part is a measure of ellipticity.
Clearly, a rotation by ~ /2 by very thin (0.5-1 um) Weyl semimetal films is possible at
frequencies near the interband absorption edge. This is a giant Faraday rotation, comparable
to the one observed at THz frequencies in narrow-gap semiconductors in the vicinity of a
cyclotron resonance in Tesla-strength magnetic fields; see e.g. [33] for the review. Note
that in our case no magnetic field is needed and the effect is controlled by the Weyl node
separation and by the Fermi level. Previously Faraday rotation and nonreciprocity in light
propagation associated with it was studied in [7, 23] using the model with an axion #-term

in the electromagnetic field action.

C. Oblique propagation of bulk polaritons

In the general case the direction of the wave vector is determined by two angles 6 and ¢:
Ny =Ncose,n, =nsingcosd,n, = nsin@sinb.

The general expression for n207 « 1s quite cumbersome. At the same time, in the particular
case of €, = €,, = €, the result should not depend on the angle 6 and should coincide with
the one for a magnetized plasma:
I €22 (1 + cos? ¢) + sin® ¢z | | — sin® ¢g?
0.X 2 (sin® gpe 1 + cos? gey,)
\/(sL [am (1 4+ cos? ¢) + sin? ¢5L] — sin? (;ng)2 —4eg, (sin2 ¢pe + cos? qbam) (2 —g¢?)
2 (sin® ge | + cos? gey,)

+

(49)
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The condition n- D =0 at E = —V || n in the case of an oblique propagation gives
€4z COS> @ + sin® ¢ (sin2 Ocyy + cos? 0522) = 0. (50)

Therefore, Eq. determines the frequencies of bulk plasmons in the general case. Under
the condition ¢, = ¢,, = ¢, the plasmon dispersion equation takes a form similar to

plasmons in a magnetized plasma:

e COSZ ¢ + sin® g | = 0. (51)

V. BOUNDARY CONDITIONS

So far we considered propagation and transmission of electromagnetic waves in bulk
samples. Now we turn to effects of reflection and surface wave propagation that are equally
sensitive to the electronic structure of WSMs. Moreover, in many situations they are easier
to observe than bulk propagation effects.

We start with the derivation of the boundary conditions at z = 0 surface. Assume that
there is an isotropic dielectric medium with dielectric constant ni, = e,, above a WSM.
The boundary conditions include:

(i) Gauss’ law for the normal components of the electric induction vector:

Ar (0O 0
E.(z=+0)— D, (z = —0) = 47mp° = —i— | —j5 + —j} 2
cupl (z = +0) . (2 0) =4mp i (8x]”+8y‘7y) (52)

where p°, j5 and jg are the surface charge and components of the surface current that are
connected by the continuity equation. For the wave field we have ﬁ%y — kg y.

(ii) Equations for the magnetic field components:

B, (2 =—-0) = B, (2 = +0), (53)
By(z=+0) = By (z = ~0) = 255, (54)
B, (2 =+40) - B, (2 = —0) = 4%]'5 (55)
Due to the presence of the components of the surface conductivity o2 and ofy = —agz a

surface dipole layer is formed at the boundary between the two media. Its dipole moment is
d = Re [zod.e™ T hertibu]
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d,:éngﬂz:—m+niEAz:—my (56)

Note that when dealing with a surface response, we will always choose the fields at z = —0
in Eq. and similar relationships. The presence of the dipole layer changes the boundary

conditions for the tangential field components of E. Consider Maxwell’s equations

OE, O0E, w oFE, O0FE, w
2y lp, T T ¥R
dy 8z ¢ 0z dr ¢V

For convenience, let’s assume that the dipole layer has a small but finite thickness L:

koy|L <1 and <L < 1.
C

L
2

Using % — ik, and integrating [ L .dz , we obtain

L
2 L L
ik%y/ E.dz=FE,, (Z = —) —E;y (z = ——) (57)
-L 2 2

We neglect the integral over the magnetic field components assuming that 2L — 0. Next
we use Gauss’ law under the condition |k, ,|L — 0, which will yield in the region of the

dipole layer:
OE. _ (9P,  Op.
32 —47TP(Z), p(z)__(az+az>

Here P, is a component of the volume polarization whereas p. describes the distribution of

the polarization in the dipole layer, so that

3 Ip, %
dz=0 and / p.dz =d,.

_L 0z
2

SISl

Substituting E, = —4w (P, 4+ p,) into Eq. and integrating over dz at |k, ,|L — 0 and

finite P, , we obtain

E,, <z = g) —FEyy (z = —g) = —idrk,,d, (58)

The boundary condition Eq. looks unusual but it can be easily deduced from the
radiation field of an individual dipole.

Figures 11-14 show spectra of the surface conductivity components for different values of

the Fermi momentum. Note that the surface conductivity in Gaussian units has a dimension

of velocity and its value is normalized by e*/(2nh) ~ 3.5 x 107 cm/s in all plots. In con-

trast with the bulk conductivity, the surface conductivity had a Drude-like behavior at low
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frequencies only for the yy-component because of the surface state dispersion £ = —hvpk,,.
The surface optical response decreases with increasing Fermi energy and vanishes when all

surface states within k2 + k2 < b* are occupied.

(a)
0.4 /\
— k=0
£03 F
NE.)/ kr=0.2b
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FIG. 11. Spectra of the real and imaginary parts of the zax component of the surface conductivity

at several values of the Fermi momentum for Avpb = 100 meV and dephasing rate v = 10 meV.

VI. REFLECTION FROM THE SURFACE OF A WEYL SEMIMETAL

Consider radiation incident from a medium with refractive index n,, on a WSM at an

angle 6 between the wavevector of the wave and the normal to a WSM. For simplicity consider
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FIG. 12. Spectra of the real and imaginary parts of the yy component of the surface conductivity

at several values of the Fermi momentum for Avpb = 100 meV and dephasing rate v = 10 meV.

the propagation transverse to the x-axis. The reflection spectra provide information about
both bulk and surface conductivity components. Here we will pay particular attention to
the case when the contribution of the surface states becomes significant or dominant, thus

allowing one to probe surface states by optical means.
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FIG. 13. Spectra of the real and imaginary parts of the zz component of the surface conductivity

at several values of the Fermi momentum for Avpb = 100 meV and dephasing rate v = 10 meV.

A. Reflection with excitation of an O-mode

In this geometry, the complex amplitudes of the electric field of the incident Fj, re-

flected E», and transmitted Eo wave are parallel to the z-axis. The refractive index of the
© + 108  (see Eq. )

transmitted wave is n% = €., = €au

Applying Maxwell’s equations with standard boundary conditions including the surface
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FIG. 14. Spectra of the real and imaginary parts of the yz component of the surface conductivity

at several values of the Fermi momentum for Avpb = 100 meV and dephasing rate v = 10 meV.

current, we arrive at

E, cos o/ + iZoB + Zob — cosbny,
= == (59)

R—E—

0) | -4 4
cos 0o/ €xz + 1508, + “Tad, + cosbOny,

. . . . S . _ By __ cosfnyp—cosbono :
where n,,sinf = npsinfp. Assuming o = 0 we obtain R = Br = cosfonsToos O which

is a standard Fresnel formula.

For the same magnitude of o2 | the relative contribution of surface states to the reflected

xx)
B If wlel|
inoB|Jw"  nloE,

field depends on the parameter > 1, the relative contribution of surface
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©)
states is determined by the expression: 200z, |/ CI If ”‘EZ};" < 1, one needs to evaluate the

Ay
0B, /1% Arlogy
2/7a3, /c

N

ratio

B. Reflection with excitation of an X-mode
In this geometry, the complex Fourier harmonics for the incident and reflected waves are
(yo T 2z, tan 0) El,geq:i%n"p €08 0z—i%nyp sin 9y—iwt'
The transmitted wave is
(yo + ZOKX) EXe—i%nX cosxz—i%nx sin ny—iwt,

where n% and Kx are given by Egs. and , in which one should substitute § — 0.

The corresponding complex amplitudes of the magnetic field are By, = %El, By, =

— 22 [y, Bx)e = nx (cosfx —sinfx Kx) Ex.

At the plasmon frequency, when Ky = ﬁ, the last equation gives B(x), = 0, as
should be expected. For an isotropic medium, when Kx = —tanfx, we obtain B(x), =
Coz)éx Ex which is also expected for a transverse wave (note that Fy is an amplitude of the

y-component of the extraordinary (X-)mode).

We will use the boundary conditions

4 .
E,+E,— Ex = iw—ﬂnup sinfd,, d,= L (afy + afZKX) Ex (60)
c w

M (g By — Oy —sinOxKy) By = 2255 5 — (65 4 05 Ky) E 1

cose( 1 ) —nx (cosfx —sinfx Kx) Ex = Iy gy = (o5, +0,.Kx) Ex  (61)
to obtain
E,
R="2
Ey

My [1 - %nup sin 0 (crfy + O'EZKX)] —nxcosf (cosfy —sinfxyKy) + 47” cos?d (05y + O'iZKX)

" nycosf (cosfx —sinfx Kx) + 47“ cos? (szy + O'iZKx) + Ny [1 — %nup sin 0 (Ufy + afzKX)]

(62)
where n,,sinf = nxsinfx. In the limit of an isotropic medium, where Kx = —tan0x,
. i COS O3 — 0 R .
0% =0, we obtain R = £2 = DupCSIXNX BT which is a standard Fresnel equation.
1] ) E1 nx cos 0+nyp cosfx
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For the normal incidence the expressions are simplified:

B\ 2
P A (ﬂ) io dmoD,
7 w —
2 0 - B -
nk =y To =gy ti—on — g, Kx=—=ig——,
822 w Ezz + ZUO-ZZ 822 Ezz + 7/70'22

which gives

. iz [ S : S g
Nyp — Nx + = <ayy+wyz622>

R:

(63)
Nup +nx + 22 <05y +i05 i)

Yze..

The contribution of surface states is less trivial for X-mode excitation as compared to
the excitation of an O-mode. For normal incidence (see Eq. (63))) one can see that at the
plasmon resonance frequency, when ., — 0 in the absence of losses, the contribution of the

surface conductivity can become dominant. Indeed, in Eq. the term Ufzé diverges

as i, whereas the refractive index nx diverges weaker, as \/%; When afj = (0 while
nx > ny, we have R = —1 (we take into account that the magnitude of ny is large at the

plasmon frequency). In the opposite case, when the contribution of the surface conductivity
dominates, i.e. ol | > |nx| ~ \/ﬁ , we obtain R = +1 , i.e. the phase of the
reflected field is rotated by 180 degrees.

The enhanced contribution of the surface conductivity at normal incidence in the vicinity
of the bulk plasmon resonance is expected. Indeed, at plasmon resonance the z-component
E. of the field in the medium becomes very large, which leads to a dominant contribution
of the surface current j(;f = ngEz.

For oblique incidence # # 0 and small losses the calculations of the reflection in the
vicinity of plasmon resonance have a technical subtlety, related to the presence of the term
nx cosf (cosfx —sinfx Kx) in Eq. . Indeed, at the plasmon frequency nxy — oo as

losses v — 0; however, for a plasmon we also have Kx — ie (cosfxy —sinfxKx) —

_1
tanfx ’
0. One needs to treat the resulting uncertainty of the product with caution. The details are
presented in Appendix F.

The main result is that the contribution of surface states to the reflected wave is deter-

mined by the ratio
o
cy/|e..|/4n
and therefore becomes significant or dominant at the plasmon resonance frequency, when

€oy = 822) + i%afz — 0. When the bulk contribution dominates the reflection coefficient R
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is close to —1. When the surface contribution dominates, R is close to +1 i.e. the phase of

the reflected field flips.

VII. SURFACE PLASMON-POLARITONS

Surface plasmon-polaritons can be supported by both bulk and surface electron states.
Here we derive dispersion relations for surface waves including both bulk and surface con-
ductivity for several specific cases. Emphasis is placed on the situations where the dispersion
is significantly affected or dominated by surface states and can therefore be used for diag-
nostics of surface states and Fermi arcs. Previously, surface plasmons in WSMs have been
considered in the low-frequency limit within a semiclassical description of particle motion
with added ad hoc anomalous Hall term [34] and with a quantum-mechanical description [2§]
based on the Hamiltonian in [27]. Both studies indicated strong anisotropy and dispersion

of surface plasmons.

A. Quasielectrostatic approximation

Within the quasielectrostatic approximation the electric field can be defined through the

scalar potential:
E—RelE (2) eikzx+ikyyfiwt] _— _VF, F=Re [45 (2) eikszrikyyfiwt} '

We introduce the vector of electric induction, D = Re [5 (2) eikr$+ikyy_i“t] = 2€ and use
Gauss’ law for each halfspace:

V- -D=0. (64)

In general, there can be an electric dipole layer at the boundary between the two media.

The dipole layer has a jump in the scalar potential @ (z),
& (z=40)— P (z=—-0) =4nd,, (65)

where d, is determined by Egs. .

Next, we define the potential @ (z) for the surface mode as

D (z>0) =Dy ", P(2<0)=Pye
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Using Eq. in each halfspace, we obtain

kZ+kl— k2, =0, (66)

k2ewa + koeyy — Kiye.. = 0. (67)
Using the boundary condition Eq. we get

) Ar (0 . 0
nipffupﬁpup — [tz (hwPw) + €2y (—ik,Pw)] = i (%95 + 6_y‘75)

which gives
4 47
2 s - 2 _S 2 S
nupﬁupgpup + [RW (Szz + Uk:yo-yz> + gky + ZU (kwo-l“m + k?yO'yy):| ¢W =0 (68>
4

O'B . o . .
where ¢,, = —¢., = ig = i—**. Using also the boundary condition Eq. together with
Eqgs. , we obtain

zz zy

4 4
Bop + (i%RWUS %kyas 1) By = 0 (69)

From these relationships one can get the dispersion equation for surface waves. Note that the
confinement constants xy and k., are generally complex-valued. Their imaginary parts give

rise to a Poynting flux away from the surface which contributes to surface wave attenuation.

1. Neglecting surface states

First, we neglect the surface conductivity to consider surface plasmons supported by bulk
carriers only. In this case from Egs. , we get kyp = (/K2 + k2, Pup = Py. Denoting
k2 + k§ = k?, k, = kcos ¢, k, = ksin ¢, we obtain from Eq. @

Kw = k’\/ 005? $eaa + S Gy (70)

E:ZZ

Furthermore, from Eq. for £, = k and @, = Py, we have

nipk + Kwe., + gksing = 0, (71)

4wl

where €,, = ig = —**. Substituting Eq. into Eq. , we obtain the dispersion

w

relation

2 i 02
D(w,¢) = nip + 8ZZ\/COS ¢€m5+ e + gsin¢g = 0. (72)
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The dispersion equation Eq. gives the dependence w (¢), but does not have any
dependence on the magnitude of k. This situation is similar to the dispersion relation for
bulk plasmons in the quasielectrostatic approximation, Eq. . It is also similar to waves
in classical magnetized plasmas. Of course the range of values of k is constrained by the

validity of the quasielectrostatic approximation.

2. Including surface states

If we now include the surface conductivity, Eqgs. — give

4 2 xTxr in
D (w,¢) — Sl {\/COS Perr SN QEy (in2 o° —sin gbafz)
w

€.s up” zz
— n, sin ¢c75z — i (cos® o, + sin® qﬁaiy) =0 (73)

where the function D (w, ¢) is determined by Eq. . As we see, taking the surface con-
ductivity into account brings the dependence on the magnitude of the wave vector k into the
dispersion relation. Therefore, measuring the frequency dispersion of the surface plasmon
resonance provides a direct characterization of surface states.

Figure 15 shows the surface plasmon dispersion for propagation along y, i.e. transverse
to the gyrotropy z-axis, for two values of the Fermi momentum. The real part of the surface
plasmon frequency ignoring the contribution of the surface conductivity is shown as a dashed
horizontal line for each value of kr. Clearly, the contribution of surface electron states is
important everywhere, except maybe in a narrow region of small wavenumbers k where the
quasistatic approximation breaks down. The plot has a horizontal axis ck in units of meV
in order to directly compare with frequencies. The inequality ck > w is satisfied almost
everywhere.

The fact that the contribution of the surface current is so important can be understood
from the structure of Eq. . Clearly, the relative contribution of the bulk and surface
terms can be estimated by comparing the magnitudes of |0”| and |ko®| where o and o°
are appropriate components of bulk and surface conductivity tensors and £ is a wavenumber
of a given electromagnetic mode. This is true not only for surface modes but also for other
electromagnetic wave processes at the boundary such as reflection. In the mid/far-infrared

spectral region of interest to us, |ko®| < |oP| for vacuum wavelengths ck ~ w. However, for
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FIG. 15. Real part of the surface plasmon frequency as a function of real plasmon wavenumber
obtained as a solution to the dispersion equation Eq. for ¢ = w/2, hupb = 100 meV and
two values of the electron Fermi momentum kr = 0.50 and 0.8b. The surface plasmon frequency

neglecting surface conductivity contribution is shown as a dashed line.

large surface plasmon wavenumbers shown in Fig. 15 the opposite condition |ko®| > |oP| is

satisfied.

Note the dispersion in Fig. 15 is stronger (the slope is steeper) at frequencies correspond-
ing to Rele,.] ~ 0, i.e. near the resonance for bulk plasmons propagating along z. This
follows from Eq. where the surface terms contain a factor 1/,/€... Physically, this is
expected: indeed, as we already commented, at the plasmon resonance the z-component F,

of the field in the medium becomes very large, which leads to an enhanced contribution of
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the surface current jJ = o E..

B. Surface waves beyond the quasielectrostatic approximation

For small wavenumbers the quasielectrostatic approximation is no longer valid. On the
other hand, in this case one can neglect the surface conductivity as we pointed out in the
previous paragraph. This is not an interesting limit as far as the spectroscopy of surface
states is concerned, but we still derive the resulting dispersion relation for completeness.

For the electric field of a surface mode in the upper halfspace with the refractive index n,,

-

o n ikyx+ikyy—Kupz—iwt
Eup = Re [Eupe pETIRy YT R ,

the Maxwell’s equation for V x g gives

kyE, — ikupEy = ~By, koE, —itupEy = ——B,, koE, —k,Ey = ~B,.  (74)
c c c
For the field in the Weyl semimetal,
E_/:W — Re [E_’Weikxac—l—ikyy-l—nwz—iwt}
the same equation gives, after replacing ., — —rw in Eq. ,
. w , w w
kB, +ikwE, = ZBI, kB, +ikwE, = _EBy’ kB, — kB, = EBZ. (75)

The inverse decay length for the field in the upper halfspace is given by /@Zp =k —n2 <.
In a WSM we can use a version of Eq. after replacing k, — —iky:

(;)_225:(% - k; + /{12/[/ k'a;k?y —Zk?xl*iw E,
kykx o;_jgyy - k‘i + /112/1/ Zif—;g - Z.l{y/{W Ey = 0, (76)
—iky Ky —i”;—jg — ikykw 02_22522 — k2 E,

where k? = k2 + k;

Consider again a surface wave propagating transverse to the anisotropy axis (k, = 0). In
this case, there are two solutions to the dispersion equation Eq. , an O-wave and an X-
wave. However, one can show that an O-wave with E, # 0 does not exist as a surface wave.

Moreover, this statement remains true even with the surface current taken into account.
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Only the X-wave with E, ., # 0 can exist as a surface wave. Its inverse confinement length

in the Weyl semimetal is given by

2
€ w
2 yy [ 1.2 2
Ko, = = | kK — ns— 77
= (- ) (™
where
2
2 g
nx—gzz -
vy

is the refractive index of an extraordinary wave propagating in the volume in the y-direction

(see Eq. for & = 7). The polarization of an extraordinary wave is determined by

[ w? w?
7 (gg + k’/ﬁlw) Ey = (gé‘zz — k‘z) EzW (78)

which follows from Eq. . After some straightforward algebra, we obtain the dispersion

relation for a surface wave:

2 2 2 2
5 W 4 € w w 2 W 2
(k - —”> (g'“ ey # k= —”X) i ¢ K= i <’“ 2 ) oy =0 (79)

In the limit of large wavenumbers k this equation becomes the quasielectrostatic dispersion

relation Eq. at ¢ = 7.

For the propagation in z-direction, one can repeat the above analysis for the case k, =

0 and obtain that there are no surface wave solutions when the surface conductivity is
neglected.

One interesting solution of the dispersion equation Eq. is a strongly nonelectrostatic
case when the surface mode is weakly localized in a medium above the WSM surface, e.g. in
the air. The energy of this wave is mostly contained in an ambient medium above the
WSM surface where there is no absorption. Therefore, such surface waves can have a long
propagation length; see e.g. [35H37].

To find this solution we assume nip = 1 and introduce the notation % = ko. A weak
localization outside a WSM means that |k,,| < ko. Then, assuming k ~ ko + 0k, where
ko > |0k|, we obtain k,, ~ V2kydok. From Egs. and in the first order with respect

to ,/i—lg we get

k‘o (522 — 1)2
~ 5 5
2
|:g + \/5zz€yy (1 — €&zt EQE>|
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FIG. 16. Normalized confinement constants (a) Re[kyp|/ko ~ Re[\/20k/ko] and (b) Re[kw]/ko as
functions of frequency, for the Fermi momentum kr = 0.5b. Other parameters are hvpb = 100

meV and v = 10 meV.

Rer?, ~ Re [lﬁgﬂ <1 et 9—2)} (81)
w = 0 2z .

zz vy

This solution describes surface waves if Re[kw] > 0 and Re[k,,] > 0. In addition, [0k| <
ko has to be satisfied. We checked that all three inequalities are satisfied for the numerical
parameters chosen to calculate the conductivity tensor. As an example, Fig. 16 shows
normalized confinement constants Re[kw|/ko and Re[ku,)/ko =~ Re[\/20k/ko] as functions
of frequency, for the Fermi momentum kg = 0.5b. Clearly, the solution describes a surface
wave which is weakly confined in the air and strongly confined in the WSM. The spectra

remain qualitatively the same with increasing Fermi momentum, but the oscillating feature
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moves to higher energies, roughly following the spectral region where the real parts of ¢,
and €, cross zero. We note again that the confinement constants xy and &, are complex-
valued. Their imaginary parts give rise to a Poynting flux away from the surface which

contributes to surface wave attenuation.

VIII. SUMMARY AND CONCLUSIONS

We presented systematic studies of the optical properties and electromagnetic modes of
Weyl semimetals in the minimal two-band model with two separated Weyl nodes. Both
bulk and surface conductivity tensors are derived from a single microscopic Hamiltonian.
The presence of separated Weyl nodes and associated surface states gives rise to distinct
signatures in the transmission, reflection, and polarization of bulk and surface electromag-
netic waves. These signatures can be used for quantitative characterization of electronic
structure of Weyl semimetals. Particularly sensitive spectroscopic probes of bulk electronic
properties include strong anisotropy in propagation of both bulk and surface modes, bire-
fringent dispersion and absorption spectra of ordinary and extraordinary normal modes,
the frequency of bulk plasmon resonance as a function of incidence angle and doping level,
and the polarization rotation and ellipticity for incident linearly polarized light. The sen-
sitive characterization of surface electronic states can be achieved by measuring the phase
change of the reflection coefficient of incident plane waves, the frequency dispersion of surface
plasmon-polariton modes, and strong anisotropy of surface plasmon-polaritons with respect
to their propagation direction and polarization.

The quantitative results in this paper are valid only for magnetic WSMs with time-reversal
symmetry breaking. One can still make some qualitative conclusions regarding the optical
response of WSMs with inversion symmetry breaking. In particular, one should expect the
off-diagonal conductivity components to be zero in this case, and therefore gyrotropic effects
will be absent. However, there should still be strong anisotropy of both bulk and surface
mode propagation, related to the position of Weyl node pairs. One should still expect
strong dispersion of surface plasmon-polaritons associated with the presence of Fermi arc
surface states. The features in absorption and dispersion associated with the bulk plasmon
resonance, Fermi edge, and saddle points between Weyl nodes will be present. The low-

frequency response related to bulk Dirac cones will be similar.
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Potential optoelectronic applications of magnetic WSM films in the mid-infrared and
THz spectral regions will benefit from the strong anisotropy, gyrotropy, and birefringence
of these materials, giant polarization rotation for light transmitted along the gyrotropy axis
of submicron films, and strongly localized surface plasmon-polariton modes. All effects are
tunable by doping.

The authors are grateful to I. Tokman and M. Erukhimova for useful discussions. This
work has been supported by the Air Force Office for Scientific Research through Grants
No. FA9550-17-1-0341 and FA9550-14-1-0376. 1.0. and M.T. acknowledge the support by
the Ministry of Education Science of the Russian Federation contract No. 14.W03.31.0032.

Appendix A: Evaluation of the matrix elements of the current density operator

We denote everywhere the bulk states by Latin letters, and the surface states by Greek
letters, i.e. |n) = |B),|u) = |S). In this section we evaluate the matrix elements of
the current density operator that enter Eq. for the components of bulk and surface

conductivity tensors.

= = [ (L, (1) (<ihd,) 6,0, (r)
ev
- Q_kanx(Sk:n,km
X [sm\/(l + 8m €08 O, ) (1 — 5, cO8 O, )&’ + 5,/ (1 + 5, cos Oy, ) (1 — 8, cos Gkn)e’id’kn]
(A1)
. 5 ev LIPE .
Gl = (alJu vy = S [ dr (W5, (7)) (=ih0,) 6,95, () = 0, (A2)
. 5 ev LIV .
Gl = (G lm) = S [ @ (93, ()) (=iho,) 6,9, (7)
2evpSmkmakmz | Km (1 + Spm cosby,)
= (k2 + k2 \/ L. Vs Ok (43)
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. (¥ t . R .
G = 18 [ (U, (1) (00,) 5,08, ., () = evr [ 0 (W, . (7)) 0.0, ., ()
ev
= T;knyékn,km
X [sm\/(l + 8m €08 Ok, ) (1 — 8, cO8 O, )e'P*n + 5,4/ (1 + 8, cos O, ) (1 — 8, COS Hkn)e_i‘ﬁ’“n}
+ %TF(Skn,km [snsm\/(l + 8,080k, ) (1 + Sy cos O, ) — \/(1 — 8pcosbg, ) (1 — s, cos Hkn)}
(Ad)
_ ev to R LR
G = G [0 (W8,1)) " (=i10,) 0,95, () = eve [ aor (3, () 6205, ()
= —evpékw,kwékwkyy (A5)

i T
G = G5 [ (V) (00,) 0,98, (1) = cve [ @ (05, ) 0.0, ()

hb
26UFSmkmykmz Km (1 + Sy, COS Qk )

- Ok b Oy A6
(2, + K2, \/ Lo Db Ohnb (A6)

.EUp

(42)nm = EUF/dST (‘I’En,sn@'))T &yq’fm,sm(r) = ZT(Skn,km

X [sn\/(l + 8 €080, ) (1 — 8 O8O, e en — 5,0/ (1 + 8, o8 Oy, ) (1 — 5, COS B, )e'P*n

(A7)
: 3 S f A S
(]z)mz = €EVp d>r <\Ilku (T)> O-y\llk:l, (’l”) = 07 (A8>
T
G = cvr [ @7 (5,(0)) 6,08, (+)
2evpSmkms [ Km (1 + Spm cosby,)
RS \/ Lo DemebeDimi (49)

b2 — (k2 4k2
where we have used Kk = %
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Appendix B: Calculation of the bulk optical conductivity tensor

The 3D integrals over electron momenta cannot be evaluated analytically in most cases,
even in the zero temperature limit. Whenever the integrals remain in the final expression,

they were evaluated numerically for the plots in the main text.

1. Contribution of intraband transitions (s = +1 — s = +1)

In this case the matrix elements ] ) of the current density operator reduce to

knm .
(]x)nn = eUFSnT |Sln ekn‘ COs ¢kn7 (Bl)
. kny .
(Jy)nn = €VFS, -5 |sin O, | cos ¢g, + cosby, |, (B2)
(J2)nn = €UpSy |sin O, | sin ¢, . (B3)
Therefore, we obtain
. 2
intra fn _ fm )<7’L|jx |m>‘

T (W) =97%; (Em - En> hw + 1Y) + (En — En)

.9 9
igevy 1 Ofn 9 . 9 9
=) Y k 0

(w+ i) V & ( 8En) na S B, €OS O,

;202 3
ige*v d’k 2 o2 2
= : 0(Ep — Er)k; sin® O cos
b2(w+w)/oo(27r)3 (B — Er) ke COS” g

ige?up / " /oo " k2K20 (kp — /K2 +k2) (B4)
) Y

47T3[72]th(w + Z’y S \/k’2 KQ 4 kz)
Similarly,

O_;Ztra (w)

ige*vp / ik /oo ” k2 (K, + )0 (kp — /K2 + K2) (B5)
) Y

47302k ph(w + iy e \/k2 Kz + kz)

intra _ ig€QUF 00 - _ 2 2 2 2 2
T () = o T /_Oo dk, /_OO ahy© (kp — K2+ 82) /3 — (K2 + 12) (Bo)
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. : k ; Kotik
Here O(k) is the step function and we have used cosfy = ——t 0k = Kotike
(k) p kT JRZrkz k2 VEZRZ
_ (K2+k2)-0? B
Kx = %, and kF = ﬁ

intra
xz

aiztm (w)=o0

(w) = o (W) = 0. (B7)

yz

2. Contribution of interband transitions (s — —s, |B) < |S))

In this case, i.e. s, = —s, = £1, n # m, the matrix elements ]537)1 of the current density

operator reduce to

ke
(Ja)nm = €VFSnOk, Ky —— 3 % (8, cos O, cos g, — isingy, ), (B8)
. kny .. .
(Jy)nm = €VFSHOK, K -5 (8, cOS O, COS G, — isin g, ) — Sy, [sin b, || , (B9)
(J2)nm = €VEpSpOk, k., (1 COS @g, + S, cos Ok, siny, ), (B10)

where n # m. Therefore, we obtain

O_inter (w) _ g@ Z Z ( fn —s) — fm(s) ) <_871|]z |m8>
- 4 = Em(s) - E”(—S) h(w + erY) + (En(—s) - Em(s))

_ ilg Z / d’k ( Ji=s) = Jrs) ) e*vik? (cos? Oy cos? ¢, + sin® Py,
(27)* \ Eks) — En(—s) ) 0 [h(w +17) + (Bi(—s) — Er(s))]

@ge w + w )
= dk, dk, k —\/ K2+ k2
8Ty / / <Py e R

N2
”“’7) —4K§] arctan

F
N VL SR RF
x2k;

kF\/4(K%+k§)—(“’;;f7)2
_l’_

. 2
b (22) (K219 () (s m) — (52)°

G

(i) /K3 — K2k
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(s ] | 52T
o i K\/4(K§+kg)—<m>2

F

2
KiVET=KI=F |

K (m>2 (K2 + k) (M)?’ \/4 (K2 + k2) - (M)Z

x 2k2

(B11)

(kﬁsz)_b = —K, cosby (—k;) = cosby (k;),sinb (—k,) =

sin Oy, (k) cos g (—ky) = cos ¢y (ky) , and sin ¢y (—k,) = sin ¢, (k) .

Similarly,

;2 ; 0 00
inter Lge (w—i_ZfY)
gint (w):m/_mdkw/_wdkyx (6 (ke = /K2 +82) x

wrin ) (2 4 k2) — 4 (b + K, /{;} .
(b+Kx)2k’§\/k%—K§_/{§+ {( vF ) ( ) ( ) arc an[

. 2
e (52) (524 () Vatmz k) - ()

o (s~ R7)
[(%Y(Wki)—éx(bw@%j} arctan[ ()RR ] _

b+ K,)? kiy/K?— K2 —k2 N K\/4(Kg+k§)—<%>2
S\ 2
K(457) (K24 8) (=) \/4 (K2 4 82) — (22

(B12)

where we have used K, =

O.Zzzter (w) _ de w + Z’Y / dk, / dl{? K2 + k2 [@ (K _ K2+ k2>
- 8mhup Ve y
8 l(wM)z - 4K2} arctan | ) VETRER
2,/K?— K2 o ¢ K\/4(Kg+k;)_(%v)2

K(%Y(K%k%) : (%)3\/4(&3%;)— (mpv)Q
0 (kr — /K2 +52)

X
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8 {(my — 4K§} arctan () VK
2\ /K% — K2 — k2

o kp\/4(K§+k§)f(%;”>2
>< —

he (452) (024 (222)" fatrz ) - (222)°

(B13)
The only nonzero off-diagonal element is 023" (w) = —0,"" (w), as expected:
inter _ —ge
o 7r3bh/ dk, / dk, (k} — bK,)
2 arctan (%Fw b KA
ke 4(K%+k2)— w:ri—y 2
wHi w+i
() 102 4 2) — (222)
(w-&-w k2 ]
2 arctan
KyJ4(K2+k2)— “*’
0 (K— ﬂ/K§+k5) i (B14)
(0) \/4 (K2 4 82) — (20

Here we have introduced a cutoff at & = K in the integration over electron momenta
d3k

in order to regularize the divergent integral [ (gi])%,

The divergence is an artifact of the effective Hamiltonian Eq. ({1 . which has a “bottomless

which comes from Y. — f

valence band with electrons occupying all states to k& — oco. The regularization makes the
valence band bounded from below. We chose the cutoff at the momentum corresponding to
the energy of 2 eV, i.e. much higher than the range of interest to us near the Weyl nodes. In
the numerical examples in the paper the value of half-separation between Weyl nodes hvpb
is chosen to be 100 meV. We have verified that an exact value of the cutoff has a negligible

effect on the low-energy optical response below 350 meV, as long as K is large enough.
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Appendix C: Calculation of the surface electrical conductivity

1. Surface-to-surface states intraband transitions

. 2
O_intra (W) =g— fﬂ_fl’ ‘<,u’]y|y>‘
v S - E,—E,) h(w+ivy)+ (E,— E,)
_ @ghe ighe*vi Z 8fu 1 _O(b— k) ige*vp/b® — k%
h(w + i) I 0mh (w + i)

All other tensor components are equal to zero.

2. Surface-to-bulk states transitions

Uinter (OJ) _ gﬂ Z ( fu - fm(s) ) ‘<:U'|Jx |m8>)

; 2,,2 3
SRS [ e (24 ) ek
+1Y

b2 = (27?)3
y < i ) k2k2k (1 + s cos Oy)
B — ER ) (82 + k2)? [h(w + i) + (B} — Bxs))]

ige? B2 K,
- / dk/ dk, / O [~ (1 + 1)) i
O (kr — /EKZ+ kK, + k%) — O (kr + ky)
VEITR TR (450 — k) - RET R T R
O (—kr — k,)

R+ 2+ 2 |:(w+ﬂ — k) 4+ JEZF R+ kg}

Similarly,
2.2
inter de 2 2 kzk Kz
cryyt / dk, / dk, / dk, @ k‘ +k )] WQ(Kg—Z{/—kZPb?
O (kr — /K2 +kZ+k2) — O (kr + ky)
X

RIFRE+RZ [<w+w k,) — /—K§+k‘§—l—k‘§}
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O (—kp — ky)

- (C3)
/RZFIZ+ K2 [(wm k,) -+ K§+k§+k‘§}
o (w) = @/mdk /OO dk /OO dk,© [0 — (kI + k})] __ kK
= hido Tl oV m (KR 4 R
O (kp — \/KZ+ kI +k2) — O (kp + k)
X
VEZ+ K2+ k2 [(“t}” —ky) — /K2 +E2+ k2]
—kp — ky,
/RZ+ 12+ 2 [(w+w — k) + JEZF R+ kz]
The only nonzero off-diagonal element is
inter _ge 2 2 kgk K,
o2 ( / dk, / dk, / dk,0 [b* — (k2 —|—k;)] W2(Km2:k§)2b
@(kF— VEZ+ k2 +E2) — O (kp + ky)
X
VEZ R4 k2 [(”*FW ky) — /K2 + k2 + lﬂ
B O (—kr — k) ‘ (C5)

VEE+ K2+ k2 [(“W ky) + K3+k§+kg}

In Egs. (C2)-(C5)) the integral over k, can be carried out analytically in terms of elemen-
tary functions, leading however to very lengthy expressions which we do not present here.
The remaining integration was carried out numerically. All integrals are finite, i.e. no cutoff

is necessary.

Appendix D: Drude-like low-frequency limit

In the limit when the frequency and the Fermi energy are much smaller than Avgb, only
the electron momenta close to the corresponding Weyl point k, = b matter. Therefore, we
introduce 60k, = k, — b for electron states near one Weyl point and replace the degeneracy
factor by 2 x g to account for the contribution from the second Weyl point. In this case,
K, ~ W ~ 0ky, k,= b+ 0k,, and all diagonal intraband components have the same

Drude form:

2. 1.2
intra intra intra ge UFkF
= = = . D1

ot (w) =0 (w)y=o0 (w) S (i 1) (D1)

vy 2z
All off-diagonal conductivity elements are zero in this limit.

20



Appendix E: Small b Expansion

In the limit b < 1, we can expand the conductivity in powers of b to the leading order:

Fathy)-b? ki+ky k2+k2+k2 w
b << 1) % >> 17 KJ; = ( Zb) ~ ( 2b ) ~ ( T ) >> ij7y7z, E fOF k$7y7z % O Then we
obtain
_ge2 b3/2
oB )~ 98 7 -
yz( ) 3\/57725 k?llm/Q ( )
B (o) - 9KEOE | 22 (it ) B (£2)
o (W) =~
T 3eh(—iw + ) Brthor
B ( ) 962]{%1)}7 7\/5962(—1(,04—’}/) b3/2 (E3>
o (w) ~
vy 3m2h(—iw + ) 360m2hup k%/Q
2k2 20 b3/2
o8 () ~ ge FUF ge*(—iw + ) e
3m2h(—iw + ) 67/ 2m2hug k;/?
2
ge v 3
059” (w) = O-ny (w) = O-fz (w) b2. <E5)

~ 2\ 2kpm3h(—iw + )

All off-diagonal surface terms are zero.

Appendix F: Reflection in the vicinity of plasmon resonance

For oblique incidence # # 0 and small losses the calculations of the reflection in the
vicinity of plasmon resonance have a technical subtlety, related to the presence of the term
nx cosf (cosfx —sinfx Kx) in Eq. . Indeed, at the plasmon frequency nxy — oo as

losses v — 0; however, for a plasmon we also have Kx — ie (cosfy —sinfxKyx) —

1
tanfx ’
0. One needs to treat the resulting uncertainty of the product with caution.

Nyp Sin 0
nx

We substitute the relationship sin fx = into the expression for the refractive index

of an extraordinary wave:
2 2
<C:yygzz —9g _ gyygzz —4g

2 s 2 - 2
cos?2 Oye sin® fye .
XE2 + X<yy €y — Sln2 0 (T:;;:) (5zz o gyy)

n =

I

o1



which gives

ni = gy — 9—2 + sin? On? (1 - @) (F1)
X T “yy up

zz €ZZ

In the case e,y = ¢,, = ¢, Eq. (F1] for an arbitrary angle # leads to the familiar expression
nk =¢e; — 5. Next we use Eq. :

2
. . sin On
. . 1G — Ny SIN N 1-— (—“")
ig — n’% sin Ox cos Ox g = Tup X\/ nx
= 2

KX . 29 . 29 2
Exz — Ny S~ Ux E,, — SIN nup

Consider the expression nx cos (cosfy —sinfx Ky):

nx cosf (cosfy —sinfx Ky)

nx

2
. . . in Oy
igsinfx — sin 6 xn.,, 81n9nX\/1 — <M>

=nyxcosl | coslx — 575
€,, — sin Hnup

=nx cosf

. . 2
- 2 ’Lg sin Onyp o SiIl2 Qni 1— (sm Gnup>
) ( sin Ony, > nx P nx

nx £,, — sin? onZ,

The condition % > 1, which is satisfied at the plasmon frequency, allows one to simplify

the above expressions for any angle of incidence 6

Ky — ig — n3 sin Ox cos Oy ~ 19 — NxNypSin g (F2)

€., — n% sin? Oy £,, — sin? on2,

i sin Onqyp

g=mre — sin? on2,
nxcosd (cosOx —sinOxKx) ~nxcosf [ 1— s (F3)
€z, — sin”On2,

Since for ZTXP > 1 we always have sinfx < 1, the plasmon frequency always corresponds
to |e..| < 1 (at normal incidence, €., = 0 exactly). Taking into account Eq. (F1)), we obtain
1> |e..| ~nyt

Now let us consider the range of incidence angles close to normal incidence, when sin? 6 <
1. Two cases need to be treated separately: |e..| < sin®0n2 < 1 and sin®n2, < |e..| < 1.
(i) |e.z] < sin®Oni, < 1
In this case

ng(zgyy_g_’ Kx = ——— (F4)



. sin Onygp : 2 2 .
ig— " —sin” Ong
nX(3089<1— X p) ~ 9 (F5)

£,, — sin? onz, ST,
o,
where g = —%
w )
n2 sin@ — o + 4155
~ __up 1 w [¢ Uyz X (F6>
~ . .4dnoB ’
2 MOz 4Am S
ng,sinf +i1—= + Lo nx
(B,S)

For real oy;"”’ we always have |R| = 1; however, the phase of the reflected field depends on

V |SZZ|

1, at these frequencies the contribution of surface states may become important. This is

the contribution of surface states. Since in the vicinity of plasmon resonance nyx ~ >

. In this case

especially clear in the limit of small enough angles, when n? pSind K |

AmcB 4
~ —? wyz + %Uian F
Ry e (F7)
+ZT + To'yan

When the bulk contribution dominates we have R = —1, whereas if the surface contribu-

tion dominates we obtain R = +1, i.e. the phase of the reflected field ﬂips
|og

5 \
w

The relative contribution of surface states is determined by the ratio —= = | Taking into
Yz

4m|o

71"‘0' yzl

account that |nx| ~ 9 and |g| = yz' , the above ratio can be reduced to :
V |€ZZ| \/ |5zz‘

(ii) sin®*On2, < |e..| < 1
This case is similar to the one at # = 0. Indeed, for this range of parameters we obtain

2

g9 iy
n_%(%&‘yy—g—, KX%g_ (F8)
z'g—s"fn“p — sinQQnip
nxcost [ 1 — N A nx. (F9)
€ZZ

—-Nnx + = 47r 52 ;g
R ~ nx s 47r S g (FlO)

yzfzz

Egs. (Fg)), (F9) are the same as for the normal 1n(31dence. Eq. (F10]) can be obtained from the
normal incidence formula Eq. (63) if |0} | < |0, | and nx > nyp; the latter inequalities

1
VIezz]

For real values of JZ(E) we always have |R| = 1, but the phase of the reflected field depends

are valid near the plasmon resonance, where nx ~ — 0.

on the contribution of surface states. Again, when the bulk contribution dominates we have

R = —1, whereas if the surface contribution dominates we obtain R = +1.

23



4 S _g
%'Uyzal

The relative contribution of surface states is determined by the ratio T Again

lg] Amloy|

taking into account |nx| ~ e and |g| = we obtain that the above ratio is reduced
Ezz

w

. ar|oS,|/c
to exactly the same expression as before: %
Ezz

To summarize, the effect of surface states on the reflected wave is determined by the ratio
S
‘O—yz
e/ €22 /AT

and therefore becomes significant or dominant at the plasmon resonance frequency, when

0 .
£, =e+ il — 0.
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