CHORUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Nearly flat Chern bands in moiré superlattices
Ya-Hui Zhang, Dan Mao, Yuan Cao, Pablo Jarillo-Herrero, and T. Senthil Phys. Rev. B 99, 075127 - Published 12 February 2019

Nearly Flat Chern Bands in Moiré Superlattices

Ya-Hui Zhang, Dan Mao, Yuan Cao, Pablo Jarillo-Herrero, and T. Senthil*
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA

(Dated: December 6, 2018)

Abstract

Topology and electron interactions are two central themes in modern condensed matter physics. Here we propose graphene based systems where both the band topology and interaction effects can be simply controlled with electric fields. We study a number of systems of twisted double layers with small twist angle where a moiré super-lattice is formed. Each layer is chosen to be either AB stacked bilayer graphene (BG), ABC stacked trilayer graphene (TG), or hexagonal boron nitride (h-BN). In these systems a vertical applied electric field enables control of the bandwidth, and interestingly also the Chern number. We find that the Chern numbers of the bands associated with each of the two microscopic valleys can be $\pm 0, \pm 1, \pm 2, \pm 3$ depending on the specific system and vertical electrical field. We show that these graphene moiré super-lattices are promising platforms to realize a number of fascinating many-body phenomena, including (Fractional) Quantum Anomalous Hall Effects. We also discuss conceptual similarities and implications for modeling twisted bilayer graphene systems.

I. INTRODUCTION

Van der Waals heterostructures have recently emerged as a highly tunable platform to study correlated electron physics. A striking recent example is the observation of correlated insulating and superconducting states in twisted bilayer graphene encapsulated by hexagonal Boron Nitride (h-BN) near 'magic' twist angles ${ }^{1,2}$. The twisting produces a long period moiré pattern, and reconstructs the electronic band structure. Near the magic twist angle the bands active near the Fermi energy become very narrow ${ }^{3}$. The effects of Coulomb interaction become important, and interesting correlation effects are seen. Correlated insulating states have also been reported in trilayer graphene on $\mathrm{h}-\mathrm{BN}^{4}$. In other experiments magnetic field induced fractional Chern insulators have been observed in moiré super-lattices of bilayer graphene ${ }^{5}$. Further, an interesting recent paper proposes to realize the triangular lattice Hubbard model in twisted heterostructures of transition metal dichalcogenides ${ }^{6}$.

Here we describe graphene-based moiré super-lattice systems to realize model systems with two nearly flat bands which each carry equal and opposite Chern number C, the most basic topological index of a band ${ }^{7}$. Previously Ref. 8 demonstrated that when monolayer graphene is stacked on top of $\mathrm{h}-\mathrm{BN}$ to form a moiré superlattice, isolated $\pm C=1$ Chern bands may potentially occur. Other proposals for bands with Chern number $\pm C$ in various graphene systems can be found in Refs. $8-11$. The width of these bands is large compared to the expected Coulomb energy and hence correlation effects may be expected to be weak. Here we show that modifications of the proposal of Ref. 8 naturally enable engineering $\pm C \geq 1$ Chern bands which, moreover, are nearly flat. We dub such bands $\pm C$ Chern bands. We find systems with various values of $C=0,1,2,3$. The near flat-

[^0]ness implies that correlation effects from Coulomb interaction are potentially important. Remarkably, C can be controlled simply by applying a transverse electric field. Such an electric field also allows control of the bandwidth of the nearly flat band as shown experimentally ${ }^{4}$. This allows electric control of correlation effects, the band topology, and the band filling and provides a possibly unique opportunity to study many fascinating phenomena. Systems with flat Chern bands have also been studied theoretically for many years ${ }^{12-20}$ as a potential realization of novel interacting topological phases of matter such as fractional Chern insulators. Fractional Chern insulators have been realized in strong magnetic field experiments with Harper-Hofstadter bands ${ }^{5}$ of bilayer graphene. However interacting topological phases at zero magnetic field remain elusive in experiment.

As examples, we describe some natural and simple phases at integer filings ν_{T} (which is defined to be the number of electrons/moiré unit cell including spin and valley degrees of freedom) where, we expect that the spin/valley degree of freedom will spontaneously uniformly polarize (" spin/valley ferromagnet") so as to fully fill the band. For instance at $\nu_{T}=1$ there is a spin and valley polarized insulating state which will show an electrical quantum Hall effect with $\sigma_{x y}=\frac{C e^{2}}{h}$. This is an Integer Quantum Anomalous Hall (QAH) insulator. QAH effects have been reported in magnetically doped three dimensional topological insulator(TI) systems ${ }^{21-24}$. However, QAH effect in a true two dimensional system with a Chern band has never been achieved before.

At non-integer, but rational fillings ν_{T}, a number of topological ordered states - both Abelian and non-Abelian - seem possible. We discuss some of these - specifically Fractional Quantum Anomalous Hall (FQAH) states - as well with a focus on states that have been previously established in numerical calculations on correlated flat Chern bands. Our proposed realization of nearly flat $\pm C$ Chern bands with tunable interactions calls for a detailed exploration of the possible many body phases. We will mostly leave this for future work but re-
mark that correlated $\pm C$ Chern bands may also be an excellent platform for the appearance of fractional topological insulators.

For TG/h-BN correlated insulating states have already been reported in Ref. 4. A model for one sign of the electric field when $C=0$ was described in Ref. 25. For the other sign of the electric field we get $\pm C=3$ Chern bands, and we propose possible explanations of the observed insulating states in this side.

Though the details are different, there is nevertheless a conceptual similarity between the Moire systems with $\pm C$ Chern bands discussed in this paper and the twisted bilayer graphene system. In particular, due to the nonzero Chern number of valley filtered bands, it is obvious that it is not possible to write down maximally localized Wanier functions while preserving the valley $U(1)$ symmetry as a local "on-site" symmetry.. Exactly the same feature appears - albeit in a more subtle form in the theoretical analysis of Ref. 25 of the twisted bilayer graphene system. Thus both the systems discussed in this paper and the twisted bilayer graphene present an experimental context for a novel theoretical problem where strong correlations combine with topological aspects of band structure. This makes their modeling different from more conventional correlated solids.

II. MODELS FOR MOIRÉ MINI BAND

At low energies the electronic physics of graphene is dominated by states near each of two valleys which we denote \pm. We start from a continuum model of these low energy states:

$$
\begin{equation*}
H_{0}=\sum_{a} \sum_{\mathbf{k}} \psi_{a}^{\dagger}(\mathbf{k}) h_{a}(\mathbf{k}) \psi_{a}(\mathbf{k}) \tag{1}
\end{equation*}
$$

where $a=+,-$ is the valley index. $\psi_{a}(\mathbf{k})$ is a multicomponent vector with sublattice and layer index.

Time reversal transforms one valley to the other one, and requires that $h_{+}(\mathbf{k})=h_{-}^{*}(-\mathbf{k})$. In the following we focus on valley + . The model for valley - can be easily generated by time reversal transformation.

We restrict attention to graphene with chiral stacking patterns, such as $A B$ stacked bilayer graphene and $A B C$ stacked trilayer graphene. The effective Hamiltonian for one valley + of such an n-layer graphene is

$$
h_{+}(\mathbf{k})=\left(\begin{array}{cc}
\frac{U}{2} & A\left(k_{x}-i k_{y}\right)^{n} \tag{2}\\
A\left(k_{x}+i k_{y}\right)^{n} & -\frac{U}{2}
\end{array}\right)
$$

where U is a mass term. $A=\frac{v^{n}}{\gamma_{1}^{n-1}}$, where $v \approx 10^{6} \mathrm{~m} / \mathrm{s}$ is the velocity of Dirac cone of each graphene layer and $\gamma_{1} \approx 380 \mathrm{meV}$ is the inter-layer coupling parameter. For monolayer graphene with $n=1, U$ is the energy difference between two sublattices. For AB stacked bilayer graphene (BG) with $n=2$ and ABC stacked trilayer graphene (TG) with $n=3, U$ is the energy difference between top layer and bottom layer. Therefore U can be easily controlled by perpendicular electric field in BG and TG, which are the main focus in this paper.

When two lattices with lattice constant a_{1} and a_{2} are stacked with a small twist angle θ or when they have slightly different lattice constants with $\xi=\frac{a_{1}-a_{2}}{a_{2}}$, there is a large moiré super-lattice with lattice constant $a_{M}=\frac{a}{\sqrt{\xi^{2}+\theta^{2}}}$ at small twist angle θ, where $a=\frac{a_{1}+a_{2}}{2}$. The moiré lattice reconstructs the original band into a small Moiré Brillouin Zone(MBZ) which is a hexagon with size $|K|=\frac{4 \pi}{3 a_{M}}$. The calculation of band structure ${ }^{3}$ is very similar to the classic example of free electron approximation in elementary solid state textbooks ${ }^{26}$. Details can be found in the Appendix. A. When $a_{M} \gg a$, valley mixing terms can be ignored, and two valleys can be treated separately.

FIG. 1: Possibility of gate driven nearly flat Chern band for twisted graphene/h-BN systems. U is the potential difference between the top and bottom layers, controlled by applied vertical electric field. Figures are generated for BG/h-BN. TG/h-BN shows quite similar behavior. $n=2$ for BG/h-BN and $n=3$ for TG/h-BN. Two sides with opposite U have similar band dispersions with Chern number $|C|=0$ and $|C|=n$ respectively, which enables to switch between Hubbard model physics and quantum Hall physics within one sample. Twist angle $\theta=0$ and $a_{M} \approx 15 \mathrm{~nm} . K^{\prime}=\left(0, \frac{4 \pi}{3 a_{M}}\right) . K^{\prime \prime}=\left(\frac{2 \pi}{\sqrt{3} a_{M}}, \frac{2 \pi}{3 a_{M}}\right)$ and $K=\left(0,-\frac{4 \pi}{3 a_{M}}\right)$ are equivalent in the MBZ.

We discuss two different categories of moiré systems in this article. (1) n-layer graphene on top of h-BN with small twist angle. Each valley maps to the Γ point of the MBZ. (2) n_{1}-layer graphene on top of n_{2}-layer graphene with a relative twist angle θ close to a 'magic' value $\approx 1^{\circ}$. In the MBZ, the valley + of top and bottom graphene layers map to the K and K^{\prime} points respectively. Valley - is related by time reversal transformation. We assume that the two graphenes have the same chirality of stacking pattern. For example, we assume both $B G$ are $A B$ stacked in the BG/BG system. Systems with opposite chirality are discussed in the Appendix. C.

In these systems, generically only C_{3} rotation symmetry is preserved while the inversion symmetry or equivalently C_{6} rotation symmetry is broken. Time reversal symmetry flips the valley index and only requires that the Chern numbers for the bands of two valleys are opposite.

In the next two sections we demonstrate that these systems show the following two interesting features : (1) Nearly flat bands; (2)Non-zero Chern number of the narrow bands for each valley. The small bandwidth implies that strong correlation effects may be present and play an important role in determining the physics. The nonzero \pm Chern number further renders the physics different from traditional Hubbard-like lattice models which are only appropriate for topologically trivial bands.

III. NEARLY FLAT BANDS

III.1. Twisted Graphene/h-BN Systems

As shown experimentally for the TG/h-BN system in Ref. 4, the width of the valence and conduction bands can be tuned by applying perpendicular electric field $\propto U$ (please see Fig. 2). We further demonstrate this theoretically for the BG/h-BN system in Fig. 1.

FIG. 2: Bandwidth of valence band with the applied voltage U for the TG/h-BN system.

FIG. 3: Bandwidth of conduction band with twist angle for the BG/BG system.

III.2. Twisted Graphene/Graphene Systems

For twisted graphene/graphene systems, there exist "magic angles" at which the bandwidth is reduced to almost zero. This demonstrates that the existence of magic angles is a common feature for graphene/graphene systems and is not special to the twisted bilayer graphene system studied in Ref. 3. Given the discovery of correlated insulating and superconducting states in twisted bilayer graphene, we expect these other systems will also show interesting correlation driven physics.

For BG/BG and TG/BG system, the magic angle is the same as the twisted bilayer graphene: $\theta_{M}=1.08^{\circ}$. For TG/TG, we have $\theta_{M}=1.24^{\circ}$. A plot of bandwidth vs twist angle is shown in Fig. 3 for the BG/BG system. Details for the other two systems can be found in Appendix. C).

IV. ANALYSIS OF CHERN NUMBER FOR MOIRÉ MINI BAND

Our results for Chern numbers at small $|U|$ are summarized in Table. I. We only show the absolute value $|C|$ of the Chern number because the two valleys always have opposite Chern numbers. This table is one of the key results of this article. Below we explain these results.

For n-layer graphene/h-BN systems, the "mass" term U in Eq. 2 gaps out the band crossing at the Γ point, as shown in Fig. 1. Typically different directions of perpendicular electric field give very similar band structure. When the sign of U changes, there is a band inversion which changes the contribution to the Berry curvature from states near the band touching points. In ordinary n-layer graphene the two valleys are connected in momentum space and their opposite Berry curvatures implies that the net Chern number is zero. The moiré potential however detaches the minibands in each val-

Systems	$U<-\Delta_{0}$	$U>\Delta_{0}$
BG/h-BN,valence	0	2
TG/h-BN,valence	0	3
BG/h-BN,conduction	2	0
TG/h-BN,conduction	3	0
BG/BG	2	2
TG/TG	3	3
TG/BG, conduction	2	3
TG/BG, valence	3	2

TABLE I: Chern number $|C|$ of conduction/valence bands for twisting graphene/h-BN $\left(\Delta_{0}=0\right)$ and graphene/graphene systems $\left(\Delta_{0} \lesssim 2 \mathrm{meV}\right)$.
ley from the rest of the spectrum, and their individual Chern numbers $\pm C$ become well defined. The exact value of C of each miniband depends on contributions away from the band touching points, which do not change with sign of U. For n-layer graphene, Eq. 2 readily gives $\Delta C=C(U)-C(-U)=n$. Detailed calculations show that $C(U<0)=0$ and $C(U>0)=n$ for the valence band. We have verified that the Chern number is quite stable to different parameters used for the moiré superlattice potential.

For the graphene/graphene system with n_{1} and n_{2} layers, we found that there is already a small gap $\Delta_{0} \sim 2$ meV for the band crossing point at K and K^{\prime} point. We only discuss the case $|U|>\Delta_{0}$. With the same argument as in the graphene/h-BN system, we get $\Delta C=n_{1}+n_{2}$ for the valence band when U goes from negative to positive. For the BG/BG and TG/TG systems with $n_{1}=n_{2}=n$, there is a mirror reflection symmetry which requires $C(U)=-C(-U)$. Then we can show analytically that $C= \pm n$. For the TG/BG system, we rely on numerical calculations to get the results in Table. I.

The results above are based on the assumption that $|U|$ is small. For graphene/graphene systems, there is a phase boundary $U_{c}(\theta)$ across which the Chern number $|C|$ drops by 1. The phase diagram for the BG/BG system is shown in Fig. 4. $U_{c}(\theta)$ goes to almost zero at the magic angle θ_{M} in our simple continuum model. At U_{c}, the gap between the valence band and the band below closes. However, it is likely that lattice relaxation and interaction effects will enhance this hybridization gap and as a consequence $U_{c}\left(\theta_{M}\right)$ may remain large even at the magic angle in realistic experimental systems. We leave it to experiment to measure the true hybridization gap ${ }^{27}$.

V. HAMILTONIAN OF CHERN BANDS

Having shown that nearly flat Chern bands are possible in graphene based moiré systems we now discuss the Hamiltonian to model these \pm Chern bands. The model of course needs to have a global $U_{c}(1)$ charge conservation symmetry, and spin $S U(2)$ rotation symmetry. In addition the valley $U_{v}(1)$ symmetry is an excellent ap-

FIG. 4: Chern number $|C|$ of BG/BG for conduction band. U is in the unit of meV . There is a clear phase boundary $U_{c}(\theta)$, at which Chern number jumps from
$|C|=2$ to $|C|=1$ because the hybridization gap between conduction band and the band above closes at Γ point. $U_{c}\left(\theta_{M}\right)=0$ at magic angle θ_{M} in our simple model. As explained in the main text, our method may underestimate $U_{c}(\theta)$ and $U_{c}(\theta)$ may remain large even at magic angle in realistic systems.
proximate symmetry and we will treat it as exact.
The microscopic Hamiltonian is:

$$
\begin{equation*}
H=H_{b a n d}+H_{i n t} \tag{3}
\end{equation*}
$$

where $H_{b a n d}$ is the band dispersion and $H_{\text {int }}$ is the electron-electron interaction:

$$
\begin{equation*}
H_{i n t}=\sum_{a_{1}, a_{2} ; \sigma_{1}, \sigma_{2}} \sum_{\mathbf{q}} \rho_{a_{1}, \sigma_{1}}(\mathbf{q}) V(\mathbf{q}) \rho_{a_{2}, \sigma_{2}}(-\mathbf{q}) \tag{4}
\end{equation*}
$$

where summation of \mathbf{q} is in the whole R^{2} space instead of the Mini Brillouin Zone. We use the Coulomb potential $V(\mathbf{q}) \sim \frac{1}{|\mathbf{q}|}$.

A low energy Hamiltonian is obtained by projecting this microscopic Hamiltonian to the active bands near the Fermi energy. The kinetic term is then restricted to

$$
\begin{equation*}
H_{0}=\sum_{a \sigma} \sum_{k} c_{a \sigma}^{\dagger}(k) \xi_{a}(k) c_{a \sigma}(k) \tag{5}
\end{equation*}
$$

where $a=+,-$ is valley index and $\sigma=\uparrow, \downarrow$ is spin index. $\xi_{+}(k)=\xi_{-}(-k)$ is guaranteed by time reversal symmetry.

The leading term in the interaction part of the effective Hamiltonian will again be the density-density repulsion but we must use density operators projected to the active bands. For concreteness we will describe this below for the valence band. Valence band annihilation operator $c(\mathbf{k})$ can be expressed in terms of the microscopic electron operator $f_{\alpha ; a, \sigma}(\mathbf{k})$:

$$
\begin{equation*}
c_{a, \sigma}(\mathbf{k})=\sum_{m, n} \mu_{m n, \alpha ; a}(\mathbf{k}) f_{\alpha ; a, \sigma}\left(\mathbf{k}+m \mathbf{G}_{\mathbf{1}}+n \mathbf{G}_{\mathbf{2}}\right) \tag{6}
\end{equation*}
$$

where $\mu_{m n, \alpha ; a}(\mathbf{k})$ is the Bloch wave function of valence band. m, n is the label of the momentum points of $M \times M$ grid in free electron approximation. α is label of orbital for the microscopic electron $f_{\alpha ; a, \sigma}(k)$, for example $\alpha=$ t, b labels top layer and bottom layer of BG. In terms of $f_{\alpha ; a, \sigma}(\mathbf{k})$, we have $\rho_{a}(\mathbf{q})=\sum_{\sigma} f_{\alpha ; a, \sigma}^{\dagger}(\mathbf{k}+\mathbf{q}) f_{\alpha ; a, \sigma}(\mathbf{k})$. We emphasize that here we distinguish \mathbf{q} and $\mathbf{q}+m \mathbf{G}_{\mathbf{1}}+$ $n \mathbf{G}_{2}$ as different momenta.

From Eq. 6 we get:

$$
\begin{equation*}
f_{a ; \alpha}\left(\mathbf{k}+m \mathbf{G}_{\mathbf{1}}+n \mathbf{G}_{\mathbf{2}}\right)=\mu_{m n, \alpha ; a}^{*}(\mathbf{k}) c_{a}(\mathbf{k})+\ldots \tag{7}
\end{equation*}
$$

where ... denotes other bands and we have suppressed spin index.

We can now represent the projected density operator $\tilde{\rho}_{a}(\mathbf{q})$ in terms of $c_{a}(\mathbf{k}):$

$$
\begin{equation*}
\tilde{\rho}_{a, \sigma}(\mathbf{q})=\sum_{\mathbf{k}} \lambda_{a}(\mathbf{k}, \mathbf{k}+\mathbf{q}) c_{a, \sigma}^{\dagger}(P(\mathbf{k}+\mathbf{q})) c_{a, \sigma}(\mathbf{k}) \tag{8}
\end{equation*}
$$

where $P(\mathbf{k})=\mathbf{k}_{0}$ projects \mathbf{k} to \mathbf{k}_{0} in the Moiré Brillouin Zone(MBZ) if $\mathbf{k}=\mathbf{k}_{0}+m \mathbf{G}_{\mathbf{1}}+n \mathbf{G}_{\mathbf{2}}$.

The form factor λ_{a} is defined through the Bloch wave function $\mu_{a}(\mathbf{k})$:

$$
\begin{equation*}
\lambda_{a}(\mathbf{k}, \mathbf{k}+\mathbf{q})=\left\langle\mu_{a}(\mathbf{k}) \mid \mu_{a}(\mathbf{k}+\mathbf{q})\right\rangle \tag{9}
\end{equation*}
$$

If $\mathbf{k}=\mathbf{k}_{0}+m_{0} \mathbf{G}_{\mathbf{1}}+n_{0} \mathbf{G}_{\mathbf{2}}$ is not in the MBZ, $\mu_{m n, \alpha ; a}(\mathbf{k})$ is defined as:

$$
\begin{equation*}
\mu_{m, n, \alpha ; a}(\mathbf{k})=\mu_{m+m_{0}, n+n_{0}, \alpha ; a}\left(\mathbf{k}_{\mathbf{0}}\right) \tag{10}
\end{equation*}
$$

We emphasize again that $V_{a_{1}, a_{2}}\left(\mathbf{q}+m \mathbf{G}_{\mathbf{1}}+\right.$ $\left.n \mathbf{G}_{\mathbf{2}}\right) \neq V_{a_{1}, a_{2}}(\mathbf{q})$ unless $m, n=0$. Correspondingly $\lambda_{a}(\mathbf{k}, \mathbf{k}+\mathbf{q}) \neq \lambda_{a}\left(\mathbf{k}, \mathbf{k}+\mathbf{q}+\mathbf{m G}_{\mathbf{1}}+\mathbf{n} \mathbf{G}_{\mathbf{2}}\right)$ unless $m, n=0$. This is the reason we need to sum over $\mathbf{q} \in R^{2}$ in Eq. 12. In practice one can always truncate $\mathbf{q}=P(\mathbf{q})+m \mathbf{G}_{1}+n \mathbf{G}_{2}$ with $|m|,|n|<M . M=1$ corresponds to summation over only MBZ.
$c_{a}(k), \mu_{a}(\mathbf{k})$ and $\lambda_{a}(\mathbf{k}, \mathbf{k}+\mathbf{q})$ are all not gauge invariant. There is a gauge degree of freedom:

$$
\begin{align*}
c_{a}(k) & \rightarrow c_{a}(k) e^{i \theta_{a}(k)} \\
\mu_{a}(\mathbf{k}) & \rightarrow \mu_{a}(\mathbf{k}) e^{i \theta_{a}(k)} \\
\lambda_{a}(\mathbf{k}, \mathbf{k}+\mathbf{q}) & \rightarrow \lambda_{a}(\mathbf{k}, \mathbf{k}+\mathbf{q}) e^{i\left(\theta_{a}(\mathbf{k}+\mathbf{q})-\theta_{a}(\mathbf{k})\right)} \tag{11}
\end{align*}
$$

One can easily check that $\tilde{\rho}_{a}(\mathbf{q})$ is gauge invariant. For each valley a, if the band is topologically trivial, we can fix the gauge $\theta_{a}(\mathbf{k})$ globally. However, if the band for this valley has non-zero Chern number, there is no way to fix a global gauge in the whole Brillouin zone. For this situation, the density operator $\tilde{\rho}_{a}(\mathbf{q})$ is shown to satisfy Girvin-MacDonald-Platzman algebra ${ }^{28}$ (also called W_{∞} algebra) in the $q \rightarrow 0$ limit 29, which is familiar from the physics of a single Landau level for quantum hall systems in a high magnetic field.

The effective density-density interaction takes the form

$$
\begin{equation*}
H_{V}=\sum_{a_{1}, a_{2} ; \sigma_{1}, \sigma_{2}} \sum_{\mathbf{q}} \tilde{\rho}_{a_{1}, \sigma_{1}}(\mathbf{q}) V(\mathbf{q}) \tilde{\rho}_{a_{2}, \sigma_{2}}(-\mathbf{q}) \tag{12}
\end{equation*}
$$

where summation of \mathbf{q} is in the whole R^{2} space instead of the Moiré Brillouin Zone. We use the Coulomb potential $V(\mathbf{q}) \sim \frac{1}{|\mathbf{q}|}$.

Due to the non-trivial algebra satisfied by the $\tilde{\rho}$ operators, interaction effects are qualitatively different from the case with zero Chern number. Actually, it has been shown that for a single Chern band, interactions may drive the system into exotic topological ordered states similar to Fractional Quantum Hall states ${ }^{20}$. We will address this possibility in subsequent sections.

The terms $H_{0}+H_{V}$ (from Eqns. 5 and 12) define an approximate effective Hamiltonian for the partially filed valence band. At this level of approximation, the electron charge and the electron spin in each valley is separately conserved. With just these terms the effective Hamiltonian thus has a $U(2) \times U(2)$ symmetry. This will be further broken down to the assumed physical symmetries of just charge $U_{c}(1)$, valley $U_{v}(1)$, and total spin $S U(2)$ by weaker terms. The pertinent such weaker interaction is a Hund's coupling:

$$
\begin{equation*}
H_{J}=-J_{H} \int d^{2} x \sum_{a_{1}, a_{2}} \mathbf{S}_{a_{1}}(\mathbf{q}) \cdot \mathbf{S}_{a_{2}}(-\mathbf{q}) \tag{13}
\end{equation*}
$$

where $\mathbf{S}_{a}(q)$ is the spin operator associated with electrons in valley a at a momentum q. Like the density operator itself $S_{a}(q)$ is also projected to the valence band and takes the form
$\mathbf{S}_{a}(q)=\frac{1}{2} \sum_{\mathbf{k} ; \sigma_{1} \sigma_{2}} \lambda_{a}(\mathbf{k}, \mathbf{k}+\mathbf{q}) c_{a, \sigma_{1}}^{\dagger}\left(P(\mathbf{k}+\mathbf{q}) \sigma_{\sigma_{1} \sigma_{\mathbf{2}}} c_{a, \sigma_{2}}(\mathbf{k})\right.$
We expect that J_{H} is weaker than the Coulomb scale by roughly a factor $\frac{a}{a_{M}}$. We will therefore initially ignore it and will include its effects as needed later.

For completeness we note that we can also define the valley density, or more generally, a $S U(2)_{v}$ "valley pseudo-spin" operator projected to the valence band:

$$
\begin{equation*}
I_{\mu}(\mathbf{q})=\sum_{a b ; \mathbf{k} \sigma} \lambda_{a b}(\mathbf{k}, \mathbf{k}+\mathbf{q}) c_{a, \sigma}^{\dagger}(P(\mathbf{k}+\mathbf{q})) \tau_{a b}^{\mu} c_{b, \sigma}(\mathbf{k}) \tag{15}
\end{equation*}
$$

where,

$$
\begin{equation*}
\lambda_{a b}(\mathbf{k}, \mathbf{k}+\mathbf{q})=\left\langle\mu_{a}(\mathbf{k}) \mid \mu_{b}(\mathbf{k}+\mathbf{q})\right\rangle \tag{16}
\end{equation*}
$$

Only the $I_{z}(q=0)$ operator is conserved.
Our final approximate effective Hamiltonian for the partially filled valence band takes the form

$$
\begin{equation*}
H_{e f f}=H_{0}+H_{V}+H_{J} \tag{17}
\end{equation*}
$$

with each of the three terms on the right given by Eqns. 5,12 , and 13 respectively.

VI. QUANTUM ANOMALOUS HALL EFFECT AND QUANTUM VALLEY HALL EFFECT

We now discuss the possible insulating phases at integer filling ν_{T} of valence bands with non-zero Chern number. ν_{T} is defined as the total density for each moiré
unit cell. $\nu_{T}=4$ corresponds to filling four bands completely. Here we only focus on the case $|C| \neq 0$ and $\nu_{T}=1,2,3$. For $C=0$, there is a localized Wannier orbital for each valley and the physics is governed by an extended Hubbard model. The $C=0$ side of the ABC trilayer graphene/h-BN system is discussed in details elsewhere ${ }^{30}$. In this paper we focus on the topologically non-trivial side. For the $C \neq 0$ side, Wannier localization is not possible for each valley. Due to the Wannier obstruction, a simple Hubbard-like lattice model is impossible. Physically we can not think of correlated insulating phases at partial band filling in the traditional "charge frozen" picture of a Hubbard model. The systems discussed in the current paper thus pose the novel theoretical problem of correlation effects in a partially filled topological band. A general framework to deal with this kind of system is currently absent. If we initially ignore H_{J} the model has two energy scales: V for the Coulomb interaction and W for the band width. Here we restrict ourselves to the strong interaction limit $\frac{V}{W} \rightarrow 0$. Guided by previous studies on multi-component quantum hall systems, we propose that the insulating phases at $\nu_{T}=1,2,3$ are "ferromagnetic" fully polarized in spinvalley space so as to spontaneously yield completely filled bands. Hartree Fock calculation is enough to get the ground state. Below we will explore this proposal within a simple Hartree-Fock calculation.

VI.1. Hartree Fock Calculation of Quantum Hall Ferromagnetism

Similar to quantum Hall systems of graphene in a high magnetic filed, in the flat band limit, Coulomb interaction tends to drive the system to uniformly polarize spin or valley and fill band of the same species. Because of full $S U(2)$ spin rotation symmetry, different directions of spin polarization are degenerate. The valley degree of freedom only has $U(1)$ rotation symmetry in the z direction. Then we need to decide whether I_{z} or I_{x} (or equivalently I_{y} because of the rotation symmetry generated by $\left.I_{z}\right)$ is polarized. In the remaining part of this subsection we perform a Hartree Fock calculation to shows that the system prefers to polarize the valley in the z direction instead of in the $x y$ direction.

We consider the general repulsive interaction in Eqn. 12, and study the Hartree-Fock energy of fully polarized (in spin-valley space) states at integer ν_{T}. We assume that $V \gg W$ but do not simply take the exact flat band limit $W=0$. The Hartree energy is always the same for the state with the same density. The only difference comes from the Fock exchange energy:

$$
\begin{align*}
& H_{F}=-\sum_{a_{1} \sigma_{1} ; a_{2} \sigma_{2} ; \mathbf{k}, \mathbf{q}} V(\mathbf{q}) \lambda_{a_{1}}(k, q) \lambda_{a_{2}}(k+q,-q) \\
& \quad\left\langle c_{a_{1}, \sigma_{1}}^{\dagger}(\mathbf{k}+\mathbf{q}) c_{a_{2} ; \sigma_{2}}(\mathbf{k}+\mathbf{q})\right\rangle\left\langle c_{a_{2}, \sigma_{2}}^{\dagger}(\mathbf{k}) c_{a_{1} \sigma_{1}}(\mathbf{k})\right\rangle \tag{18}
\end{align*}
$$

First we consider a Hartree Fock state which does not
mix different a_{1}, σ_{1} and a_{2}, σ_{2} :

$$
\begin{equation*}
\left\langle c_{a_{1} \sigma_{1}}^{\dagger}(k) c_{a_{2} \sigma_{2}}(k)\right\rangle=\delta_{a_{1} a_{2}} \delta_{\sigma_{1} \sigma_{2}} F_{a_{1} \sigma_{1}}(\mathbf{k}) \tag{19}
\end{equation*}
$$

where $F_{a \sigma}(\mathbf{k})=\theta\left(\mu-\xi_{a}(\mathbf{k})\right)$ is Fermi-Dirac distribution at zero temperature limit. If the fermi energy contour is a circle, we can use $F_{a \sigma}(\mathbf{k})=\theta\left(k_{F}-k\right)$. We will assume this in the following. For the case where the full band is filled satisfied for integer ν_{T}, this assumption trivially holds and we can simply remove $F_{a \sigma}(\mathbf{k})$ factor.

For a state for which valley a is polarized ${ }^{31}$, the Fock exchange energy is simplified to:

$$
\begin{equation*}
E_{F}=-\sum_{\mathbf{k}, \mathbf{q}} V(\mathbf{q})\left|\lambda_{a}(\mathbf{k}, \mathbf{q})\right|^{2} \tag{20}
\end{equation*}
$$

where we have use $\lambda(k, q)=\lambda(k+q,-q)^{*}$.
The kinetic energy is

$$
\begin{equation*}
E_{K ; 0}=\sum_{\mathbf{k}} \xi_{a \sigma}(\mathbf{k}) \tag{21}
\end{equation*}
$$

Next we also calculate the energy of an inter-valleycoherent (IVC) state with full valley polarization in the I_{x} direction ${ }^{32}$.

Using Eq. 15 , the IVC state can be written:

$$
\begin{equation*}
\left|\Psi_{I V C} ; \sigma\right\rangle=\prod_{|k|<k_{F}} \frac{1}{\sqrt{2}}\left(e^{i \theta_{+}(k)} c_{+; \sigma}^{\dagger}(k)+e^{i \theta_{-}(k)} c_{-; \sigma}^{\dagger}(k)\right)|0\rangle \tag{22}
\end{equation*}
$$

where $\theta_{a}(\mathbf{k})$ is the phase of the Bloch-wavefunction $\mu_{a}(\mathbf{k})$. The above state is independent of the gauge choice for the Bloch wavefunction.

Then we calculate the expectation value of energy:

$$
\begin{equation*}
E_{I V C}=\left\langle\psi_{I V C}\right| H_{K}+H_{V}\left|\psi_{I V C}\right\rangle \tag{23}
\end{equation*}
$$

For simplicity we drop out the spin index. The kinetic energy is straightforward:

$$
\begin{equation*}
E_{K}=\sum_{k} \frac{1}{2}\left(\xi_{+}(\mathbf{k})+\xi_{-}(\mathbf{k})\right)=\sum_{\mathbf{k}} \xi_{+}(\mathbf{k}) \tag{24}
\end{equation*}
$$

which is the same as the kinetic energy of an I_{z} polarized state.

The Fock energy for the IVC state is:

$$
\begin{align*}
E_{F ; I V C}= & -\frac{1}{4} \sum_{a_{1}, a_{2} ; k, q}\left(V(\mathbf{q}) \lambda_{a_{1}}(\mathbf{k}, \mathbf{q}) \lambda_{a_{2}}(\mathbf{k}+\mathbf{q},-\mathbf{q})\right. \\
& e^{-i\left(\theta_{a_{1}}(\mathbf{k}+\mathbf{q})-\theta_{a_{1}}(\mathbf{k})\right)} e^{i\left(\theta_{a_{2}}(\mathbf{k}+\mathbf{q})-\theta_{a_{2}}(\mathbf{k})\right)} \\
= & -\frac{1}{4} \sum_{a_{1}, a_{2} ; k, q}\left(V(\mathbf{q})\left|\lambda_{a_{1}}(\mathbf{k}, \mathbf{q})\right|\left|\lambda_{a_{2}}(\mathbf{k}, \mathbf{q})\right|\right. \tag{25}
\end{align*}
$$

where the phase of $\lambda_{a}(\mathbf{k}, \mathbf{q})$ is removed by the additional phase factor $e^{i \theta_{a}(\mathbf{k})}$. As expected, the final expression does not depend on the phase of $\lambda_{a}(\mathbf{k}, \mathbf{q})$, which
is not gauge invariant. We have used the identity $\lambda_{a}(\mathbf{k}+\mathbf{q},-\mathbf{q})=\lambda_{a}^{*}(\mathbf{k}, \mathbf{q})$.

The Fock energy from the I_{z} polarized state is

$$
\begin{align*}
E_{F ; 0} & =-\sum_{\mathbf{k}, q} V(\mathbf{q})\left|\lambda_{+}(\mathbf{k}, \mathbf{q})\right|^{2} \\
& =-\frac{1}{4} \sum_{k, q} V(\mathbf{q})\left(2\left|\tilde{\lambda}_{+}(\mathbf{k}, \mathbf{q})\right|^{2}+2\left|\tilde{\lambda}_{-}(\mathbf{k}, \mathbf{q})\right|^{2}\right) \tag{26}
\end{align*}
$$

Finally, we can get the energy difference between IVC state and the I_{z} polarized state:

$$
\begin{align*}
\Delta E_{I V C} & =E_{F ; I V C}-E_{F ; 0}+E_{K ; I V C}-E_{K ; 0} \\
& =\frac{1}{4} \sum_{\mathbf{k}, \mathbf{q}} V(\mathbf{q})\left(\left|\lambda_{+}(\mathbf{k}, \mathbf{q})\right|-\left|\lambda_{-}(\mathbf{k}, \mathbf{q})\right|\right)^{2} \\
>0 & \tag{27}
\end{align*}
$$

Time reversal requires $\left|\lambda_{+}(\mathbf{k}, \mathbf{q})\right|=\left|\lambda_{-}(-\mathbf{k},-\mathbf{q})\right|$. However, generically $\left|\lambda_{+}(\mathbf{k}, \mathbf{q})\right|$ is not equal to $\left|\lambda_{-}(\mathbf{k}, \mathbf{q})\right|$ because inversion is broken for each valley. Therefore I_{z} polarization is always favored in the flat band limit for repulsive interaction $V(\mathbf{q})>0$. This conclusion is independent of the interaction used (as long as it is repulsive) and the details of the band structures. It is generically true for all of the spin-valley bands with opposite Chern numbers for the two valleys in the flat band limit. Once the bandwidth is large, the IVC order (I_{x} order) may indeed be favored compared to the I_{z} polarization because of the kinetic terms, as discussed in Ref. 25. In this paper we focus on the limit that bandwidth is much smaller than the interaction. Then we will only discuss the possibility of the I_{z} polarization.

Next we discuss the possible states for different integer fillings based on the favored I_{z} polarization from the Hartree Fock calculation. The TG/h-BN system has already been shown to have correlated insulators in $\nu_{T}=1$ and $\nu_{T}=2^{4}$. The following discussions can also apply to TG/h-BN system for one direction of the vertical displacement field.

At $\nu_{T}=1$, we expect one band is filled completely. Let us assume that it is the band $(+, \uparrow)$. For the next band, density density interaction gives the same energy to spin polarized state and valley polarized state. Including the Hund's coupling, we expect spin polarized state is selected. Therefore we expect that the next band to be filled after $\nu_{T}=1$ is $(-, \uparrow)$. The third and the fourth band to fill are either $(-, \downarrow),(+, \downarrow)$ or $(+, \downarrow),(-, \downarrow)$. These two choices do not make too much difference for the properties of the insulator at filling $\nu_{T}=3$. We therefore assume the four bands are filled in the following sequence: $(+, \uparrow),(-, \uparrow),(+, \downarrow),(-, \downarrow)$. This sequence is only meaningful at integer ν_{T}. For fractional filling of ν_{T}, spin singlet or valley singlet states are possible, which depend on energetics not captured by the simple Hartree Fock calculation.

Below we will discuss the property of insulators at these filling $\nu_{T}=1,2,3$.

$$
\begin{gathered}
\text { VI.2. } \nu_{T}=4 \text { : Quantum Valley Hall Insulator with } \\
\sigma_{x y}^{v}=4 C \frac{e^{2}}{h}
\end{gathered}
$$

We start with the trivial case $\nu_{T}=4$ when we get a band insulator from fully filling all four bands. It has quantized integer "valley hall conductivity" $\sigma_{x y}^{v}=4 C \frac{e^{2}}{h}$. If $U_{v}(1)$ valley symmetry is preserved at the sample edge, there are $4 C$ number of helical edge modes: $2 C$ edge modes of one valley moving in one direction and $2 C$ edge modes of the other valley moving in the opposite direction. Ideally, there should be a quantized conductance $G=4 C \frac{e^{2}}{h}$ coming from these $4 C$ edge channels. However, impurities at the edge may back-scatter the two different valley modes and hence reduce the conductance. To reduce valley scattering, it may be easier to observe these edge modes at the domain wall between $\mathrm{AB}(\mathrm{ABC})$ stacked and BA (CBA) stacked BG (TG) on h-BN systems. It has been shown experimentally that such a smooth domain wall can preserve the valley index ${ }^{33}$. For BG/h-BN and TG/h-BN system, at the domain wall (as opposed to the sample edge), we expect to observe $4 C$ edge modes for one valley and $4 C$ edge modes going in the opposite direction for the other valley.

VI.3. $\quad \nu_{T}=2$: Spin polarized Quantum Valley Hall Insulator with $\sigma_{x y}^{v}=2 C \frac{e^{2}}{h}$

At $\nu_{T}=2$, the spin-valley polarized state will have two filled bands. We expect that the Hund coupling selects the spin polarized state. Then we have a quantum valley hall insulator with $\sigma_{x y}^{v}=2 C \frac{e^{2}}{h}$. Properties are quite similar to $\nu_{T}=4$ IQVHE effect, except that the number of helical edge modes is C (one half of the $\nu_{T}=4$ case). Besides, as usual, there will be a skyrmion defect of the ferromagnetic order parameter that carries a valley charge $Q_{v}=2 C$ but is electrically neutral.
VI.4. $\quad \nu_{T}=1$ and $\nu_{T}=3$: Quantum Anomalous Hall Insulator with $\sigma_{x y}^{c}=C \frac{e^{2}}{h}$

For $\nu_{T}=1$ and $\nu_{T}=3$, valley and spin are both polarized to form a filled band. Then there is an IQHE effect with Hall conductivity $\sigma_{x y}^{v}=C \frac{e^{2}}{h}$. This is a Quantum Anomalous Hall insulator, and depending on the system, has Chern number $C>1$ for which there is no previous experimental realization in a solid state system. At $\nu_{T}=3$, the quantum hall insulator is built on top of the quantum valley hall insulator at $\nu_{T}=2$.

The IQHE state should have C chiral edge modes which contribute a Hall conductance $G=C \frac{e^{2}}{h}$. For
$\nu_{T}=3$, these additional C chiral modes are robust, compared to the $2 C$ helical modes from IQVHE effect. Also, the system may form domains with opposite valley polarization which have opposite Chern number and Hall conductivity. It may be possible to align the domains by cooling in a magnetic field. We expect typical behavior of hysteresis loops of Hall resistance for QAHE to be observed in a magnetic field ${ }^{34}$.

For both $\nu_{T}=1$ and $\nu_{T}=3$, when the state is both spin and valley polarized, there is a skyrmion defect in the spin ferromagnetic order parameter. Following standard arguments, such a skyrmion carries charge $Q_{c}=C$. Valley polarization breaks time reversal but preserves $U(1)_{v}$ symmetry. So there is no meron excitation associated with valley. For $C=2$, the skyrmion is a charge $2 e$ boson while for $C=3$ it is a charge $3 e$ fermion. Similar to quantum Hall systems, the skyrmion excitation is actually the cheapest charged excitation for this insulating state in some parameter range (see Appendix. D for detailed calculation). Thus for $C=2$ these QAH insulating states at $\nu_{T}=1,3$ have pair binding: we can regard the bosonic charge- $2 e$ skyrmion as a Cooper pair. It is interesting to consider the effects of doping away from $\nu_{T}=1$ or $\nu_{T}=3$. For small dopings the excess charge will be accommodated by introducing skyrmions. A natural possibility, which is well established in $\nu=1$ quantum hall systems ${ }^{35}$, is that the skyrmions form a lattice. It is interesting however to consider the alternate possibility that, for $C=2$ systems, the bosonic skyrmions condense into a liquid, instead of forming skyrmion lattice. Due to the charge- $2 e$ on the skyrmion, this is a superconducting phase. It is interesting to search for this kind of skyrmion superconductor close to $\nu_{T}=1$ or $\nu_{T}=3$ in BG/h-BN system or twisted BG/BG system. If such a superconductor is indeed found close to the ferromagnetic quantum hall insulator, the phase diagram may be quite interesting. There may be two energy scales: T_{c}, the critical temperature of superconductor and T^{*}, the energy scale for single electron gap. Below T^{*} there are only bosonic excitations. T_{c} should be proportional to the skyrmion density (thus doping level), while T^{*} decreases with doping. At small doping, we expect $T_{c} \ll T^{*}$. At intermediate temperatures $T_{c}<T<T^{*}$, we may find a skyrmion metal with "gapped" fermionic excitation. Skyrmion condensation provides a mechanism to get superconductivity starting from an insulator, instead of normal fermi liquid.

VII. FRACTIONAL QUANTUM ANOMALOUS HALL EFFECT

We now briefly consider the physics at fractional fillings ν_{T}. Based on some simple observations, we suggest situations which are ripe for realization of a Fractional Quantum Anomalous Hall Effect (FQAHE), though a very clean sample and strong correlation may be necessary.

Upon electron doping the spin and valley polarized
state at $\bar{\nu}_{T}=1$ or $\bar{\nu}_{T}=3$, the next band to be filled is likely the one with the same spin and opposite valley because of Hund's coupling. This also gives fractional filling of a Chern band with effective filling $\nu_{e f f}=\nu_{T}-\bar{\nu}_{T}$. Therefore it is promising to search for valley polarized FQAHE states at these fillings.

It has been established that there is a series of Abelian states at filling $\nu_{\text {eff }}=\frac{m}{2 k m|C|+1}$ with k, m integers for flat Chern band with Chern number C^{36-39}. For example, if $k=1, m=-1$, we can have an Abelian FQHE state at $\nu_{\text {eff }}=\frac{1}{2|C|-1}$. For $k=1, m=1$, FQHE state happens at $\nu_{e f f}=\frac{1}{2|C|+1}$. These states will have a quantized electrical Hall conductivity $\sigma_{x y}^{c}=\left(\bar{\nu}_{T}-\nu_{e f f}\right) C$ where we also include the contribution from QAHE at filling $\bar{\nu}_{T}=1$ or 3 . The fully filled and partially filled bands reside in opposite valleys which have opposite Chern numbers thus their Hall conductivities subtract.

Other topological ordered states may also be possible in these nearly flat \pm Chern bands, including those with non-Abelian quasiparticles and fractional topological insulators.

VIII. SIMILARITIES WITH TWISTED BILAYER GRAPHENE

When the bands have zero Chern number, it is possible to build a tight binding model by constructing Wannier orbitals for each valley in triangular lattice. A discussion of TLG/h-BN in this case was already given in Ref. 25 and the resulting theory is a Hubbard model on triangular lattice with both spin and valley degrees of freedom at each site. In this paper, our focus is on the cases with nonzero Chern number for each valley. For this case, it is clearly not possible to construct maximally localized Wannier orbital for each valley. This feature is also present - in a more subtle form - in the treatment in Ref. 25 of the small angle twisted bilayer graphene system. In that case there are two bands per valley which have Dirac crossings. The obstruction to constructing maximally localized Wannier functions can be traced to the same sign chirality of the two Dirac points within a single valley. The systems with $\pm C$ Chern bands studied in this paper thus provide a conceptually simpler version where the Wannier obstruction of valley filtered bands is "obvious". These systems lend further credence to this aspect of the theoretical treatment of Ref. 25 of the twisted bilayer graphene.

However, just like in Ref. 25 it should be possible to build Wannier orbitals for two valleys together because the total Chern number is 0 for two valleys. The cost is that $U_{v}(1)$ valley symmetry can not be easily implemented in the resulting tight binding models. We leave the construction of this kind of tight binding model, using the methods introduced in Ref. 25, to future work. In this paper, we have instead tried to understand the resulting states phenomenologically by working in mo-
mentum space directly.
Theoretically all these systems present a new experimental context in which the physics is controlled by correlation effects on bands with non-trivial topological aspects. This makes them likely different from "ordinary" correlated solids which can be faithfully modeled through interacting lattice tight binding models with ordinary action of all physical symmetries.

IX. CONCLUSION

In conclusion, we propose graphene based moiré superlattice systems to get nearly flat \pm Chern bands with Chern number $|C|=2,3$. Remarkably the Chern number can be controlled simply by a vertical electric field which further also tunes the bandwidth, and enhances interaction effects. This should enable not only a study of correlated \pm Chern bands but also to cleanly experimentally isolate the effects of band Chern number from other effects in an interacting system. We proposed $\nu_{T}=2,4$ and $\nu_{T}=1,3$ insulating phases to be Quantum Valley Hall insulator and Quantum Anomalous Hall insulator respectively in the limit of strong interaction. For other rational fractional fillings, we propose to search for FQAE states and FQVHE states. Realization of such exotic
topological ordered states at zero field could provide a powerful platform to have more control over anyons, for example, to explore non-Abelian anyons bounded to lattice defects ${ }^{40}$. For $C= \pm 2$ system, we also suggest the possibility of an exotic superconductor from condensation of charge $2 e$ bosonic skyrmions close to filling $\nu_{T}=1$ or $\nu_{T}=3$. Finally we note conceptual similarities between the systems with $\pm C$ Chern bands studied here and the twisted bilayer graphene system.

X. ACKNOWLEDGEMENT

We thank Valla Fatemi, and Joe Checkelsky for many inspiring discussions. TS is grateful to Adrian Po, Liujun Zou, and Ashvin Vishwanath for a previous collaboration which paved the way for the present paper. Y-H.Z thanks Shaowen Chen for very helpful explanations of experimental details. Y.H. Z, DM, and TS were supported by NSF grant DMR-1608505, and partially through a Simons Investigator Award from the Simons Foundation to Senthil Todadri. YC and PJH were primarily supported by the Gordon and Betty Moore Foundations EPiQS Initiative through grant GBMF4541 and the STC Center for Integrated Quantum Materials (NSF grant number DMR-1231319).
${ }^{1}$ Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, et al., Nature 556, 80 (2018).
${ }^{2}$ Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 43 (2018).
${ }^{3}$ R. Bistritzer and A. H. MacDonald, Proceedings of the National Academy of Sciences 108, 12233 (2011).
${ }^{4}$ G. Chen, L. Jiang, S. Wu, B. Lv, H. Li, K. Watanabe, T. Taniguchi, Z. Shi, Y. Zhang, and F. Wang, arXiv preprint arXiv:1803.01985 (2018).
${ }^{5}$ E. M. Spanton, A. A. Zibrov, H. Zhou, T. Taniguchi, K. Watanabe, M. P. Zaletel, and A. F. Young, Science 360, 62 (2018).
${ }^{6}$ F. Wu, T. Lovorn, E. Tutuc, and A. MacDonald, arXiv preprint arXiv:1804.03151 (2018).
${ }^{7}$ D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Physical Review Letters 49, 405 (1982).

8 J. C. Song, P. Samutpraphoot, and L. S. Levitov, Proceedings of the National Academy of Sciences 112, 10879 (2015).
${ }^{9}$ Q. Tong, H. Yu, Q. Zhu, Y. Wang, X. Xu, and W. Yao, Nature Physics 13, 356 (2017).
${ }^{10}$ P. San-Jose, A. Gutiérrez-Rubio, M. Sturla, and F. Guinea, Physical Review B 90, 115152 (2014).
${ }^{11}$ T. M. Wolf, O. Zilberberg, I. Levkivskyi, and G. Blatter, Physical Review B 98, 125408 (2018).
${ }^{12}$ D. Sheng, Z.-C. Gu, K. Sun, and L. Sheng, Nature communications 2, 389 (2011).
${ }^{13}$ T. Neupert, L. Santos, C. Chamon, and C. Mudry, Physical review letters 106, 236804 (2011).
${ }^{14}$ Y.-F. Wang, Z.-C. Gu, C.-D. Gong, and D. Sheng, Physical review letters 107, 146803 (2011).
${ }^{15}$ E. Tang, J.-W. Mei, and X.-G. Wen, Physical review letters 106, 236802 (2011).
${ }^{16}$ N. Regnault and B. A. Bernevig, Physical Review X 1, 021014 (2011).
${ }^{17}$ K. Sun, Z. Gu, H. Katsura, and S. D. Sarma, Physical review letters 106, 236803 (2011).
${ }^{18}$ E. J. Bergholtz and Z. Liu, International Journal of Modern Physics B 27, 1330017 (2013).
${ }^{19}$ T. Neupert, C. Chamon, T. Iadecola, L. H. Santos, and C. Mudry, Physica Scripta 2015, 014005 (2015).
${ }^{20}$ S. A. Parameswaran, R. Roy, and S. L. Sondhi, Comptes Rendus Physique 14, 816 (2013).
${ }^{21}$ C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, et al., Science, 1232003 (2013).
22 J. Checkelsky, R. Yoshimi, A. Tsukazaki, K. Takahashi, Y. Kozuka, J. Falson, M. Kawasaki, and Y. Tokura, Nature Physics 10, 731 (2014).
${ }^{23}$ X. Kou, S.-T. Guo, Y. Fan, L. Pan, M. Lang, Y. Jiang, Q. Shao, T. Nie, K. Murata, J. Tang, et al., Physical review letters 113, 137201 (2014).
${ }^{24}$ A. Kandala, A. Richardella, S. Kempinger, C.-X. Liu, and N. Samarth, Nature communications 6, 7434 (2015).
${ }^{25}$ H. C. Po, L. Zou, A. Vishwanath, and T. Senthil, arXiv preprint arXiv:1803.09742 (2018).
${ }^{26}$ N. Ashcroft and N. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).
${ }^{27}$ For a clean sample, the valley contrasting Chern number may also be extracted from the conductance of the helical edge modes in the fully filled Quantum Valley Hall insulator at $\nu_{T}=4$.
${ }^{28}$ S. Girvin, A. MacDonald, and P. Platzman, Physical Review B 33, 2481 (1986).
${ }^{29}$ S. A. Parameswaran, R. Roy, and S. L. Sondhi, Phys. Rev. B 85, 241308 (2012).
${ }^{30}$ Y.-H. Zhang and T. Senthil, arXiv preprint arXiv:1809.05110 (2018).
${ }^{31}$ Such a state can be thought as the ground state of an I_{z} polarized mean field Hamiltonian: $H_{M}=H_{K}-M I_{z}(\mathbf{q}=$ $0)$ with $M \rightarrow \infty)$.
${ }^{32}$ Such a state can be viewed as the ground state of the following I_{x} polarized mean field Hamiltonian $H_{M}=H_{K}-$ $M I_{x}(\mathbf{q}=0)$ with $M \rightarrow+\infty$.
${ }^{33}$ L. Ju, Z. Shi, N. Nair, Y. Lv, C. Jin, J. Velasco Jr, C. Ojeda-Aristizabal, H. A. Bechtel, M. C. Martin, A. Zettl, et al., Nature 520, 650 (2015).
${ }^{34}$ K. He, Y. Wang, and Q.-K. Xue, Annual Review of Condensed Matter Physics 9, 329 (2018).
${ }^{35}$ S. Sondhi, A. Karlhede, S. Kivelson, and E. Rezayi, Physical Review B 47, 16419 (1993).
${ }^{36}$ Y.-F. Wang, H. Yao, C.-D. Gong, and D. Sheng, Physical Review B 86, 201101 (2012).
${ }^{37}$ Z. Liu, E. J. Bergholtz, H. Fan, and A. M. Läuchli, Physical review letters 109, 186805 (2012).
${ }^{38}$ A. Sterdyniak, C. Repellin, B. A. Bernevig, and N. Regnault, Physical Review B 87, 205137 (2013).
${ }^{39}$ G. Möller and N. R. Cooper, Physical review letters 115, 126401 (2015).
${ }^{40}$ M. Barkeshli and X.-L. Qi, Physical Review X 2, 031013 (2012).
${ }^{41}$ J. Jung, A. Raoux, Z. Qiao, and A. H. MacDonald, Physical Review B 89, 205414 (2014).
${ }^{42}$ T. Fukui, Y. Hatsugai, and H. Suzuki, Journal of the Physical Society of Japan 74, 1674 (2005).
${ }^{43}$ S. M. Girvin, in Aspects topologiques de la physique en basse dimension. Topological aspects of low dimensional systems (Springer, 1999) pp. 53-175.

Appendix A: Methods for Modeling Moiré Mini Bands

1. Band Structure

For the calculation of band structure, we follow the continuum model approach in Ref. 41 and Ref. 3. If the two layers have different lattice constants with $\xi=\frac{a_{1}-a_{2}}{a_{2}}$ or a twist angle θ, there is a moiré super lattice with lattice constant $a_{M} \approx \frac{a}{\sqrt{\xi^{2}+\theta^{2}}}$. For the systems considered here, $a_{M} \sim 50-60 \sim 10-15 \mathrm{~nm}$. In the limit $a_{M} \gg a$, it is appropriate to work in the continuum limit. We ignore inter-valley scatterings and treat the two valleys separately. This is an excellent approximation for small twist angles. The two valleys are related by time reversal transformation. Therefore, we can do calculations for only one valley, for example, valley + .

We start from a continuum model of graphene for the valley + :

$$
\begin{equation*}
H_{0}=\sum_{\mathbf{k}} c_{a}^{\dagger}(\mathbf{k}) h_{a b}(k) c_{b}(\mathbf{k}) \tag{A1}
\end{equation*}
$$

where a, b are collection of layer and orbital indexes.
Then moiré lattice gives super-lattice potentials:

$$
\begin{equation*}
H_{M}=\sum_{a b ; \mathbf{k}, \mathbf{G}_{\mathbf{j}}} c_{a}^{\dagger}(\mathbf{k}) V_{a b}\left(\mathbf{G}_{j}\right) c_{b}\left(\mathbf{k}+\mathbf{G}_{\mathbf{j}}\right)+h . c . \tag{A2}
\end{equation*}
$$

where G_{j} is the moiré super-lattice reciprocal vector. We choose $\mathbf{G}_{\boldsymbol{1}}=\left(0, \frac{4 \pi}{\sqrt{3} a_{M}}\right)$ and $\mathbf{G}_{\mathbf{2}}=\left(-\frac{2 \pi}{\sqrt{3} a_{M}}, \frac{2 \pi}{a_{M}}\right)$ for the moiré Brillouin zone (MBZ) of the moiré super-lattice. The form of the H_{M} is model dependent and details are shown in Section. B and Section. C.

The moiré potential reconstructs the original band into a small Moiré Brillouin Zone(MBZ) which is a hexagon with size $|K|=\frac{4 \pi}{3 a_{M}}$. The calculation of band structure is very similar to the classic example of free electron approximation in elementary solid state textbooks. For each momentum \mathbf{k} in the MBZ, we build a large matrix $H(k)$ whose bases include states for $M * M$ momentum points: $\mathbf{k}+m \mathbf{G}_{1}+n \mathbf{G}_{2}, m, n=-M / 2, \ldots, M / 2$. Typically we use $M=11$ for calculation of band structure and $M=7$ for calculation of Berry curvature. Diagonalization of $H(k)$ gives both the energy dispersion and the Bloch wave function $|\mu(\mathbf{k})\rangle$.

We focus on the conduction and valence bands close to the neutrality point. In contrast to twisted bilayer graphene (i.e monolayer on monolayer), here there is no C_{6} (and hence inversion symmetry) rotation symmetry even approximately. Hence we do not expect any generic protected crossings between the valence and conduction bands.

2. Numerical calculation of Berry Curvature and Chern number

In addition to the band structure, we can also easily calculate the Berry curvature and Chern number of the valence band.

Our calculation of Berry curvature and Chern number follows Ref. 42. We discretize the Moiré Brillouin Zone(MBZ) with a $N_{x} \times N_{y}$ grid and then we have a lattice in momentum space. For each momentum \mathbf{k} in MBZ, we diagonalize the large matrix $H(\mathbf{k})$ and extract the eigenvector $\mu(\mathbf{k})$ corresponding to the valence band. We calculate the following two complex quantities:

$$
\begin{equation*}
U_{\hat{x}}(\mathbf{k})=\left\langle\mu\left(\mathbf{k}+\delta k_{x} \hat{k}_{x}\right) \mid \mu(\mathbf{k})\right\rangle \tag{A3}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{\hat{y}}(\mathbf{k})=\left\langle\mu\left(\mathbf{k}+\delta k_{y} \hat{k}_{y}\right) \mid \mu(\mathbf{k})\right\rangle \tag{A4}
\end{equation*}
$$

where \hat{k}_{x} and \hat{k}_{y} are unit vectors in momentum space in k_{x} and k_{y} directions. δk_{x} and δk_{y} are lattice constants in k_{x} and k_{y} directions for our momentum lattice. The phases of $U_{\hat{x}}$ and $U_{\hat{y}}$ are Berry connections on the links of our momentum space lattice. They are not gauge invariant under a gauge transformation $\mu(\mathbf{k}) \rightarrow \mu(\mathbf{k}) e^{i \theta(\mathbf{k})}$. However, we can calculate the Wilson loop for one plaquette at \mathbf{k} :

$$
\begin{equation*}
W(\mathbf{k})=U_{\hat{x}}(\mathbf{k}) U_{\hat{y}}\left(\mathbf{k}+\delta k_{x} \hat{k}_{x}\right) U_{x}^{*}\left(\mathbf{k}+\delta k_{y} \hat{k}_{y}\right) U_{y}^{*}(\mathbf{k}) \tag{A5}
\end{equation*}
$$

$W(\mathbf{k})$ is gauge invariant and Berry curvature at \mathbf{k} can be approximated as :

$$
\begin{equation*}
\mathbf{B}(\mathbf{k})=\frac{\arg W(\mathbf{k})}{\delta k_{x} \delta k_{y}} \tag{A6}
\end{equation*}
$$

We emphasize that we need to guarantee that $|\arg W(\mathbf{k})|<\pi$ for any \mathbf{k}. This condition is crucial to avoid ambiguity in the calculation. So long as Berry curvature has no singularity, we can always fulfill this condition by reducing the size of the plaquette. The error of this approximation can be reduced by increasing N_{x} and N_{y}, which decreases δk_{x} and δk_{y}. The Chern number is calculated by:

$$
\begin{equation*}
C=\frac{1}{2 \pi} \sum_{\mathbf{k}} \mathbf{B}(\mathbf{k}) \delta k_{x} \delta k_{y} \tag{A7}
\end{equation*}
$$

To get accurate results in our continuum model, we also need $M \rightarrow \infty$. Therefore, the calculation of Chern number is exact at the limit $N_{x}, N_{y}, M \rightarrow \infty$. Fortunately, we found that $M=3-5, N_{x}, N_{y}=40$ is enough to get an accurate Chern number.

Appendix B: Models for Bilayer Graphene on Boron Nitride

We give some details of our continuum models for calculation of $\mathrm{BG} / \mathrm{h}-\mathrm{BN}$ or $\mathrm{TG} / \mathrm{h}-\mathrm{BN}$ systems, following Ref. 41.

1. Moiré Hamiltonians

We label the microscopic real space electron operators as $c_{A_{1}}, c_{B_{1}}, c_{A_{2}}, c_{B_{2}}$. We assume B_{1} is on top of A_{2}.
For convenience, we label $\psi_{a}=\binom{c_{A_{a}}}{c_{B_{a}}}$ where $a=1,2$ is layer index.
The Hamiltonian is

$$
\begin{equation*}
H=H_{0}+H_{M} \tag{B1}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{0}=t \sum_{a} \sum_{k} \psi_{a}^{\dagger}(k)\left(k_{x} \sigma_{x}+k_{y} \sigma_{y}\right) \psi_{a}(k)+\gamma_{1}\left(\sum_{k} \psi_{1}^{\dagger}(k) \sigma_{-} \psi_{2}(k)+h . c .\right)+t_{3}\left(\sum_{k}\left(k_{x}+i k_{y}\right) \psi_{1}^{\dagger}(k) \sigma_{+} \psi_{2}(k)+h . c .\right) \tag{B2}
\end{equation*}
$$

where $t=2676 \mathrm{meV}$ and $\gamma_{1}=340 \mathrm{meV} . t_{3}=0.051 t$ is the trigonal warping term.
The moiré super-lattice potential acts only on the first layer, which is closest to h-BN.

$$
\begin{equation*}
H_{M}=\sum_{\mathbf{G}} \psi_{1}^{\dagger}(\mathbf{k}+\mathbf{G}) H_{V}(\mathbf{G}) \psi_{1}(\mathbf{k})+U \psi_{1}^{\dagger}(\mathbf{k}) \psi_{1}(\mathbf{k}) \tag{B3}
\end{equation*}
$$

U is the energy difference between top layer and bottom layer, which is controlled by perpendicular electric field.
$H_{V}(\mathbf{G})$ can be expanded in terms of $I, \sigma_{x}, \sigma_{y}, \sigma_{z}$

$$
\begin{equation*}
H_{V}(\mathbf{G})=H_{0}(\mathbf{G})+H_{z}(\mathbf{G}) \sigma_{z}+\operatorname{Re}\left(H_{A B}(\mathbf{G})\right) \sigma_{x}+\operatorname{Im}\left(H_{A B}(\mathbf{G})\right) \sigma_{y} \tag{B4}
\end{equation*}
$$

In the following we list parameters for $H_{V}(\mathbf{G})$. They are fit from the ab initio calculation in Ref. 41.

$$
\begin{align*}
& H_{a}\left(\mathbf{G}_{\mathbf{1}}\right)=H_{a}\left(\mathbf{G}_{\mathbf{3}}\right)=H_{a}\left(\mathbf{G}_{\mathbf{5}}\right)=C_{a} e^{i \varphi_{a}} \\
& H_{a}\left(\mathbf{G}_{\mathbf{2}}\right)=H_{a}\left(\mathbf{G}_{\mathbf{4}}\right)=H_{a}\left(\mathbf{G}_{\mathbf{6}}\right)=C_{a} e^{-i \varphi_{a}} \tag{B5}
\end{align*}
$$

where $a=0, z$. We have $C_{0}=-10.13 \mathrm{meV}, \varphi_{0}=86.53^{\circ}$ and $C_{z}=-9.01 \mathrm{meV}, \varphi_{z}=8.43^{\circ}$.
For $H_{A B}$, we have

$$
\begin{align*}
& H_{A B}\left(\mathbf{G}_{\mathbf{1}}\right)=H_{A B}^{*}\left(\mathbf{G}_{\mathbf{4}}\right)=C_{A B} e^{i\left(\frac{2 \pi}{3}-\varphi_{A B}\right)} \\
& H_{A B}\left(\mathbf{G}_{\mathbf{3}}\right)=H_{A B}^{*}\left(\mathbf{G}_{\mathbf{2}}\right)=C_{A B} e^{-i \varphi_{A B}} \\
& H_{A B}\left(\mathbf{G}_{\mathbf{5}}\right)=H_{A B}^{*}\left(\mathbf{G}_{\mathbf{6}}\right)=C_{A B} e^{i\left(-\frac{2 \pi}{3}-\varphi_{A B}\right)} \tag{B6}
\end{align*}
$$

where $C_{A B}=11.34 \mathrm{meV}$ and $\varphi_{A B}=19.60^{\circ}$.
All possible \mathbf{G} can be written as

$$
\begin{equation*}
\mathbf{G}=m \mathbf{G}_{\mathbf{1}}+n \mathbf{G}_{\mathbf{2}} \tag{B7}
\end{equation*}
$$

where $\mathbf{G}_{\mathbf{1}}=\left(0, \frac{4 \pi}{\sqrt{3} a_{M}}\right)$ and $\mathbf{G}_{\mathbf{2}}=\left(-\frac{2 \pi}{a_{M}}, \frac{2 \pi}{\sqrt{3} a_{M}}\right)$.
ABC Trilayer graphene on Boron Nitride can be modeled similarly. Because we can assume that only the layer closest to the h-BN layer is influenced, we can use the same parameters as above.

2. Gate Tunable Band Dispersions

FIG. 5: Band width and band gap (in units of meV) with applied voltage difference U.
Qualitatively, different direction of applied vertical field does not change band dispersion, as is obvious in Fig. 5. Increasing $|U|$ can reduce the bandwidth and increase the band gap between the conduction and the valence bands.

3. Chern number of BG/h-BN and TG/h-BN systems

The Chern number for valence band of valley + jumps by $\Delta C=n$ when changing U from negative to positive. To extract the value of Chern number of each side, we perform numerical calculation as explained in Appendix. 2. As shown in Fig. 6, Chern number $(C(U<0), C(U>0))$ is $(0,2)$ for $\mathrm{BG} / \mathrm{h}-\mathrm{BN}$ and $(0,3)$ for $\mathrm{TG} / \mathrm{h}-\mathrm{BN}$.

FIG. 6: Integration of Berry curvature in region within MBZ with distance smaller than r to Γ point. r has been normalized by $\left|\mathbf{K}_{M}\right|=\frac{4 \pi}{3 a_{M}}$. The value at $r=1$ is the Chern number.

We also want to discuss the stability of Chern number at the band structure level, i.e. whether it changes for other parameters of moiré super-lattice potential terms.

For this purpose, we can use the two band continuum model model in Eq. 2 for BG and TG before adding moiré potentials.

The main effect from the moiré pattern is a moiré super-lattice potential for the first graphene layer. It can always be written as:

$$
\begin{equation*}
H_{M}=\sum_{\mathbf{G}} c_{a 1}^{\dagger} H_{a b}(\mathbf{G}) c_{b 1} \tag{B8}
\end{equation*}
$$

where $a, b=A, B$ is sublattice index for first graphene layer.
At low energy for BG, only A_{1} and B_{2} need to be kept. Projecting to these lowest bands A_{1} and B_{2}, only $H_{A A}(\mathbf{G})$ in Eq. B8 is kept for layer 1. The low energy mode can be expressed as a spinor $\psi=\binom{c_{t}}{c_{b}}$ with $c_{t}=c_{A_{1}}$ and $c_{t}=c_{B_{2}}$. For ABC stacked TG, similarly $\left(B_{1}, A_{2}\right)$ and $\left(B_{2}, A_{3}\right)$ are dimerized. We only keep $c_{t}=c_{A_{1}}$ and $c_{b}=c_{B_{3}}$. $h-B N$ is a strong insulator and therefore all of electronic degrees of freedom come from the graphene. We consider the systems for which only h-BN layer on top of the graphene is aligned. As a result, the superlattice potential only acts on the the first layer of BG or TG. For both BG/h-BN and TG/h-BN, the only important term from the moiré super-lattice is:

$$
H_{M}=\sum_{\mathbf{G}_{\mathbf{j}}} \sum_{\mathbf{k}} \psi^{\dagger}\left(\mathbf{k}+\mathbf{G}_{j}\right)\left(\begin{array}{cc}
V_{0} e^{i \theta_{j}} & 0 \tag{B9}\\
0 & 0
\end{array}\right) \psi(\mathbf{k})+\text { h.c. }
$$

In summary, for both BG and TG, essential properties of band structure are well described by Eq. 2 and Eq. B9. Only two parameters V_{0} and θ are important. In this system C_{2} symmetry is broken and the only point group symmetry remaining is C_{3} rotation.

Then with similar methods as in previous sections, we calculate Berry curvature by keeping M^{2} momentum points and $2 M^{2}$ bands. With this simple model, we study the full phase diagram as a function of V_{0} and θ_{0}. The result is that Chern number is quite stable. Chern number in one direction of perpendicular electric field $\left(E_{z}<0\right)$ is robustly $C=2$ for $\mathrm{BG} / \mathrm{h}-\mathrm{BN}$ and $C=3$ for $\mathrm{TG} / \mathrm{h}-\mathrm{BN}$.

Appendix C: Twisted Graphene on Graphene Systems

In this section we discuss the possibility of nearly flat Chern bands in twisted graphene + graphene systems close to the magic angle $\left(\theta_{M}=1.08^{\circ}\right.$ for $\mathrm{BG} / \mathrm{BG}$ and $\mathrm{TG} / \mathrm{TG} ; \theta_{M}=1.24^{\circ}$ for $\left.\mathrm{TG} / \mathrm{TG}\right)$. Each graphene layer is either AB stacked bilayer graphene or ABC stacked trilayer graphene. We will study the following three different systems: BG/BG,TG/TG and TG/BG. Typically there are two different patterns of stacking, depending on whether two graphenes have the same chirality or not. We define the stacking pattern with the same chirality as type I and the other one with opposite chirality as type II. Taking BG/BG as an example, we call AB on AB as type I and AB on BA as type II. In the following we give a short summary of our results for BG/BG system with type I stacking. The other two systems have similar magic angles. For each specific valley, we place the original quadratic band touching point of one BG at K point of the MBZ, and place the band touching point of the other BG at K^{\prime} of the MBZ. We use the same model for moiré hopping terms between the middle two layers as in Ref. 3. There is only one parameter t_{M} in this model. We use $t_{M}=110 \mathrm{meV}$ which is fit from ab initio numerics ${ }^{41}$.

First, at $U=0$, we found that the original band touching point is gapped out. The gap is quite small: $\Delta \lesssim 1.5 \mathrm{meV}$. Similar to the twisted monolayer graphene on monolayer graphene system ${ }^{3}$, there is magic angle where bandwidth goes to below 1 meV , as shown in Fig. 7a. For $t_{M}=110 \mathrm{meV}$, magic angle is at $\theta \approx 1.08^{\circ}$. For type I BG/BG, we show the band structure at $\theta=1.08^{\circ}$ for several perpendicular U in Fig. 9. At $U=0$, two cones at K and K^{\prime} are gapped with different sign of mass. After we add positive $U=1.8 \mathrm{meV}$, the cone at K with negative mass closes its gap and changes to positive mass. Similarly if we add negative $U=-1.8 \mathrm{meV}$, the cone at K^{\prime} with positive mass closes its gap and change mass to negative.

FIG. 7: BG/BG system with both type I and type II stackings. At magic angle $\theta \approx 1.08^{\circ}$, band width reduces to almost zero. Meanwhile the hybridization gap between conduction band and the band above also goes to zero.
Roughly $U_{c}(\theta) \sim \Delta_{\Gamma}(\theta)$. AB on BA stacking has very different $U_{c}(\theta)$ when $\theta>\theta_{M} . t_{M}=110 \mathrm{meV}$ in these calculations.

Let us focus on the region far away from the magic angle. If we neglect the moiré hopping term t_{M}, there is a band crossing described by Eq. 2 with chirality n_{1} at K point and there is another band crossing with chirality n_{2} at K^{\prime} point of MBZ. For $\mathrm{BG} / \mathrm{BG}$ with AB on AB stacking pattern, $n_{1}=n_{2}=2$. When we change U from negative to positive, both band crossings change mass from negative to positive. The sign change of mass can be seen in Fig. 9.

There is another feature associated with the magic angle. For each twist angle θ, there is a critical $U_{c}(\theta)$ through which the hybridization gap between conduction band and the band above closes. At magic angle $U_{c}(\theta)$ goes to zero. To see $U_{c}(\theta)$, we plot the dispersion around Γ point for type I BG/BG system at twist angle $\theta=1.17^{\circ}$ in Fig. 8 . Clearly at $U_{c}=12 \mathrm{meV}$ the hybridization gap between conduction band and the band above closes to a Dirac cone and reopens at Γ point.

We have shown results of Chern numbers for $\mathrm{BG} / \mathrm{BG}$ system in the main text. Here we list some results for TG/TG and TG/BG systems. We focus on type I stacking for these systems. For TG/TG system, there is a Mirror reflection symmetry M_{x} which acts in the same way as $\mathrm{BG} / \mathrm{BG}$ system.

We show the bandwidth for type I TG/TG and TG/BG system in Fig. 10. Clearly the first magical angle is at

FIG. 8: Dispersion around Γ point for type I BG/BG system. Twist angle is $\theta=1.17^{\circ}$. Gap closing is obvious at $U_{c}(\theta)=12 \mathrm{meV}$.

FIG. 9: Band structures for type I BG/BG system. Twist angle is $\theta=1.08^{\circ} . K^{\prime}=\left(0, \frac{4 \pi}{3 a_{M}}\right) . K^{\prime \prime}=\left(\frac{2 \pi}{\sqrt{3} a_{M}}, \frac{2 \pi}{3 a_{M}}\right)$ and $K=\left(0,-\frac{4 \pi}{3 a_{M}}\right)$ are equivalent. At $U= \pm 1.8 \mathrm{meV}$, mass term of one cone at K or K^{\prime} changes sign.
$\theta_{M} \approx 1.08^{\circ}$ for TG/BG while it is at $\theta_{M} \approx 1.24^{\circ}$ for TG/TG.
We also lists Chern number C of valley + for $\mathrm{BG} / \mathrm{BG}$ systems with both stacking patterns and type I TG/TG and TG/BG systems in Fig. 11. For type I BG/BG and TG/TG system, there is a reflection symmetry which requires that $C(U)=-C(-U)$ and $C(U=0)=0$.

Below we give a more detailed description of models and symmetries for twisted graphene/graphene systems using BG/BG as an example.

1. Model and Symmetry of BG/BG system

We first show details of our models for the following two different stacking patterns of $\mathrm{BG} / \mathrm{BG}$ system: AB on AB (type I), AB on BA (type II).

FIG. 10: Magic angle for type I TG/TG and TG/BG systems. t_{M} are hopping parameter for modeling moiré hopping term. Real system corresponds to $t_{M}=110 \mathrm{meV}$.

FIG. 11: Chern number C for valley + of twisted graphene on graphene systems.
a. Type I $B G / B G$

Here we perform a numerical simulation of continuum models. Again we focus only on one valley + ; valley - is just its time reversal partner. For top and bottom BG, we define a four component spinor $\psi_{a}=\left(\begin{array}{c}c_{A_{1}}^{a} \\ c_{B_{1}}^{a} \\ c_{A_{2}}^{a} \\ c_{B_{2}}^{a}\end{array}\right)$ where $a=t, b$ labels top BG or bottom BG layer.

For valley,$+ k^{t}$ of $\psi_{t}\left(k^{t}\right)$ is defined relative to the band touching point of the original large Brillouin Zone of top layer and similarly k^{b} of $\psi_{b}\left(k^{b}\right)$ is defined relative to the band touching point of bottom layer. In our set up, $k^{t}=0$
is at $K=\left(-\frac{2 \pi}{\sqrt{3} a_{M}},-\frac{2 \pi}{3}\right)$ point of MBZ while $k^{b}=0$ is at $K^{\prime}=\left(-\frac{2 \pi}{\sqrt{3} a_{M}}, \frac{2 \pi}{3}\right)$ point of MBZ. We use k instead of k^{t} or k^{b} in the following just for simplicity.

The Hamiltonian of valley + for twisted BG/BG system is:

$$
\begin{align*}
H & =\sum_{a, \mathbf{k}} \psi_{a}^{\dagger}(\mathbf{k}) H_{a}^{0}(\mathbf{k}) \psi_{a}(\mathbf{k}) \\
& +\sum_{\mathbf{k}, \mathbf{Q}_{\mathbf{j}}}\left(\psi_{t}^{\dagger}(\mathbf{k}) T_{j} \psi_{b}\left(\mathbf{k}+\mathbf{Q}_{\mathbf{j}}\right)+h . c .\right) \tag{C1}
\end{align*}
$$

where

$$
\begin{align*}
& H_{a}^{0}(\mathbf{k}) \\
& =\left(\begin{array}{cccc}
U_{1}^{a} & v\left(k_{x}-i k_{y}\right) & 0 & t_{3}\left(k_{x}+i k_{y}\right) \\
v\left(k_{x}+i k_{y}\right) & U_{1}^{a} & \gamma_{1} & 0 \\
0 & \gamma_{1} & U_{2}^{a} & v\left(k_{x}-i k_{y}\right) \\
t_{3}\left(k_{x}-i k_{y}\right) & 0 & v\left(k_{x}+i k_{y}\right) & U_{2}^{a}
\end{array}\right) \tag{C2}
\end{align*}
$$

Here U_{1}^{a} and U_{2}^{a} means the energy of first and second layers of top or bottom BG. This term comes from the applied voltage difference. γ_{1} is the vertical hopping term between B_{1} and $A_{2} . t_{3}$ is the trigonal warping term.

Moiré hopping matrix T_{j} only hybridize $\left(c_{A_{2}}^{t}, c_{B_{2}}^{t}\right)$ with $\left(c_{A_{1}}^{b}, c_{B_{1}}^{b}\right)$. It is

$$
T_{j}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{C3}\\
0 & 0 & 0 & 0 \\
t_{M} & t_{M} e^{-i j \varphi} & 0 & 0 \\
t_{M} e^{i j \varphi} & t_{M} & 0 & 0
\end{array}\right)
$$

where $\varphi=\frac{2 \pi}{3}$ and $j=0,1,2$.
One can check that this Hamiltonian is invariant under C_{3} rotation with $\mathbf{k} \rightarrow C_{3} \mathbf{k}$, and

$$
\begin{align*}
& c_{A_{1}}^{t}(\mathbf{k}) \rightarrow c_{A_{1}}^{t}\left(C_{3} \mathbf{k}\right) e^{i \varphi} \\
& c_{B_{1}}^{t}(\mathbf{k}) \rightarrow c_{B_{1}}^{t}\left(C_{3} \mathbf{k}\right) e^{-i \varphi} \\
& c_{A_{2}}^{t}(\mathbf{k}) \rightarrow c_{A_{2}}^{t}\left(C_{3} \mathbf{k}\right) e^{-i \varphi} \\
& c_{B_{2}}^{t}(\mathbf{k}) \rightarrow c_{B_{2}}^{t}\left(C_{3} \mathbf{k}\right) \\
& c_{A_{1}}^{b}(\mathbf{k}) \rightarrow c_{A_{1}}^{b}\left(C_{3} \mathbf{k}\right) e^{-i \varphi} \\
& c_{B_{1}}^{b}(\mathbf{k}) \rightarrow c_{B_{1}}^{b}\left(C_{3} \mathbf{k}\right) \\
& c_{A_{2}}^{b}(\mathbf{k}) \rightarrow c_{A_{2}}^{b}\left(C_{3} \mathbf{k}\right) \\
& c_{B_{2}}^{b}(\mathbf{k}) \rightarrow c_{B_{2}}^{b}\left(C_{3} \mathbf{k}\right) e^{i \varphi} \tag{C4}
\end{align*}
$$

In addition to the C_{3} symmetry, we have a mirror reflection symmetry M_{x} which exchanges top and bottom graphene layers without flipping the valley index.

The action of M_{x} is:

$$
\begin{gather*}
c_{A_{1}}^{t}(k) \rightarrow c_{B_{2}}^{b}\left(M_{x} k\right) \\
c_{B_{1}}^{t}(k) \rightarrow c_{A_{2}}^{b}\left(M_{x} k\right) \tag{C5}\\
c_{A_{2}}^{t}(k) \rightarrow c_{B_{1}}^{b}\left(M_{x} k\right) \\
c_{B_{2}}^{t}(k) \rightarrow c_{A_{1}}^{b}\left(M_{x} k\right),
\end{gather*}
$$

where $M_{x}\left(k_{x}^{t}, k_{y}^{t}\right)=\left(k_{x}^{b},-k_{y}^{b}\right)$. It is easy to check that H_{0} is invariant under the above transformation. For the terms in T_{j}, we have,

$$
\begin{align*}
c_{A_{2}}^{t \dagger}(k) c_{A_{1}}^{b}\left(k+Q_{j}\right) & \rightarrow c_{B_{1}}^{b \dagger}\left(M_{x} k\right) c_{B_{2}}^{t}\left(M_{x}\left(k+Q_{j}\right)\right) \\
c_{B_{2}}^{\dagger \dagger}(k) c_{B_{1}}^{b}\left(k+Q_{j}\right) & \rightarrow c_{A_{1}}^{b \dagger}\left(M_{x} k\right) c_{A_{2}}^{t}\left(M_{x}\left(k+Q_{j}\right)\right) \tag{C6}\\
c_{A_{2}}^{t \dagger}(k) c_{B_{1}}^{b}\left(k+Q_{j}\right) e^{-i j \varphi} & \rightarrow c_{B_{1}}^{\dagger \dagger}\left(M_{x} k\right) c_{A_{2}}^{t}\left(M_{x}\left(k+Q_{j}\right)\right) e^{-i j \varphi} \\
c_{B_{2}}^{t \dagger}(k) c_{A_{1}}^{b}\left(k+Q_{j}\right) e^{i j \varphi} & \rightarrow c_{A_{1}}^{b \dagger}\left(M_{x} k\right) c_{B_{2}}^{t}\left(M_{x}\left(k+Q_{j}\right)\right) e^{i j \varphi},
\end{align*}
$$

Note that $M_{x} Q_{0,1,2} \rightarrow-Q_{0,2,1}$, so the Hamiltonian $H(k) \rightarrow H\left(M_{x} k\right)$.
In experiments an energy difference U between top layer and bottom layer can be induced by a perpendicular electric field. We simply model this energy difference by adding an on-site energy $U_{1}^{t}=U, U_{2}^{t}=\frac{2 U}{3}, U_{1}^{b}=\frac{U}{3}$ and $U_{2}^{b}=0$. Basically we assume voltage increase $V_{12}=V_{23}=V_{34}=\frac{U}{3 e}$, where $1,2,3,4$ labels the four layers from top to bottom.

It is easy to see that M_{x} maps U to $-U$ (up to an constant energy shift). Therefore for each band, Chern number satisfies the following equation: $C(U)=-C(U)$ which naturally implies that $C(U=0)=0$.

b. Type II $B G / B G$

There is a different system setup: AB stacked BG on BA stacked BG. To model this different system, we label $\psi_{t}=\left(\begin{array}{c}c_{A_{1}}^{t} \\ c_{B_{1}}^{t} \\ c_{A_{2}}^{t} \\ c_{B_{2}}^{t}\end{array}\right)$ for top layer and $\psi_{b}=\left(\begin{array}{c}c_{B_{1}}^{b} \\ c_{A_{1}}^{b} \\ c_{B_{2}}^{b} \\ c_{A_{2}}^{b}\end{array}\right)$ for bottom layer.

The Hamiltonian of valley + for this system is:

$$
\begin{align*}
H & =\sum_{a, \mathbf{k}} \psi_{a}^{\dagger}(\mathbf{k}) H_{a}^{0}(\mathbf{k}) \psi_{a}(\mathbf{k}) \\
& +\sum_{\mathbf{k}, \mathbf{Q}_{\mathbf{j}}}\left(\psi_{t}^{\dagger}(\mathbf{k}) T_{j} \psi_{b}\left(\mathbf{k}+\mathbf{Q}_{\mathbf{j}}\right)+h . c .\right) \tag{C7}
\end{align*}
$$

H_{t}^{0} should be the same as AB stacked BG on AB stacked BG case, while H_{b}^{0} should change to

$$
\begin{align*}
& H_{b}^{0}(\mathbf{k}) \\
& =\left(\begin{array}{cccc}
U_{1}^{b} & v\left(k_{x}+i k_{y}\right) & 0 & t_{3}\left(k_{x}-i k_{y}\right) \\
v\left(k_{x}-i k_{y}\right) & U_{1}^{b} & \gamma_{1} & 0 \\
0 & \gamma_{1} & U_{2}^{b} & v\left(k_{x}+i k_{y}\right) \\
t_{3}\left(k_{x}+i k_{y}\right) & 0 & v\left(k_{x}-i k_{y}\right) & U_{2}^{b}
\end{array}\right) \tag{C8}
\end{align*}
$$

The moiré hopping matrix T_{j} also should change to

$$
T_{j}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{C9}\\
0 & 0 & 0 & 0 \\
t_{M} e^{-i j \varphi} & t_{M} & 0 & 0 \\
t_{M} & t_{M} e^{i j \varphi} & 0 & 0
\end{array}\right)
$$

where $\varphi=\frac{2 \pi}{3}$ and $j=0,1,2$.
One can check that this Hamiltonian is invariant under C_{3} rotation with $\mathbf{k} \rightarrow C_{3} \mathbf{k}$, and

$$
\begin{align*}
& c_{A_{1}}^{t}(\mathbf{k}) \rightarrow c_{A_{1}}^{t}\left(C_{3} \mathbf{k}\right) e^{i \varphi} \\
& c_{B_{1}}^{t}(\mathbf{k}) \rightarrow c_{B_{1}}^{t}\left(C_{3} \mathbf{k}\right) e^{-i \varphi} \\
& c_{A_{2}}^{t}(\mathbf{k}) \rightarrow c_{A_{2}}^{t}\left(C_{3} \mathbf{k}\right) e^{-i \varphi} \\
& c_{B_{2}}^{t}(\mathbf{k}) \rightarrow c_{B_{2}}^{t}\left(C_{3} \mathbf{k}\right) \\
& c_{A_{1}}^{b}(\mathbf{k}) \rightarrow c_{A_{1}}^{b}\left(C_{3} \mathbf{k}\right) e^{-i \varphi} \\
& c_{B_{1}}^{b}(\mathbf{k}) \rightarrow c_{B_{1}}^{b}\left(C_{3} \mathbf{k}\right) \\
& c_{A_{2}}^{b}(\mathbf{k}) \rightarrow c_{A_{2}}^{b}\left(C_{3} \mathbf{k}\right) e^{i \varphi} \\
& c_{B_{2}}^{b}(\mathbf{k}) \rightarrow c_{B_{2}}^{b}\left(C_{3} \mathbf{k}\right) e^{-i \varphi} \tag{C10}
\end{align*}
$$

For AB on $\mathrm{BA} \mathrm{BG} / \mathrm{BG}$, there is a mirror symmetry M_{y} which flips the valley index.

The transformation is:

$$
\begin{gather*}
c_{A_{1}}^{t}(k) \rightarrow \tilde{c}_{A_{2}}^{b}\left(M_{y} k\right) \\
c_{B_{1}}^{t}(k) \rightarrow \tilde{c}_{B_{2}}^{b}\left(M_{y} k\right) \tag{C11}\\
c_{A_{2}}^{t}(k) \rightarrow \tilde{c}_{A_{1}}^{b}\left(M_{y} k\right) \\
c_{B_{2}}^{t_{2}}(k) \rightarrow \tilde{c}_{B_{1}}^{b}\left(M_{y} k\right),
\end{gather*}
$$

where \tilde{c} is for another valley in the large Brillouin zone. $M_{y}\left(k_{x}^{t}, k_{y}^{t}\right)=\left(-\tilde{k}_{x}^{b}, \tilde{k}_{y}^{b}\right)$, where \tilde{k}^{b} is defined as relative to the band touching point of valley - for bottom graphene at large BZ.

For terms in T_{j}, we have,

$$
\begin{align*}
c_{A_{2}}^{t \dagger}(k) c_{A_{1}}^{b}\left(k+Q_{j}\right) & \rightarrow \tilde{c}_{A_{1}}^{b \dagger}\left(M_{y} k\right) \tilde{c}_{A_{2}}^{t}\left(M_{y}\left(k+Q_{j}\right)\right) \\
c_{B_{2}}^{t \dagger}(k) c_{B_{1}}^{b}\left(k+Q_{j}\right) & \rightarrow \tilde{c}_{B_{1}}^{b \dagger}\left(M_{y} k\right) \tilde{c}_{B_{2}}^{t}\left(M_{y}\left(k+Q_{j}\right)\right) \tag{C12}\\
c_{A_{2}}^{t \dagger}(k) c_{B_{1}}^{b}\left(k+Q_{j}\right) e^{-i j \varphi} & \rightarrow \tilde{c}_{A_{1}}^{b \dagger}\left(M_{y} k\right) \tilde{c}_{B_{2}}^{t}\left(M_{y}\left(k+Q_{j}\right)\right) e^{-i j \varphi} \\
c_{B_{2}}^{t \dagger}(k) c_{A_{1}}^{b}\left(k+Q_{j}\right) e^{i j \varphi} & \rightarrow \tilde{c}_{B_{1}}^{b_{1}}\left(M_{y} k\right) \tilde{c}_{A_{2}}^{t}\left(M_{y}\left(k+Q_{j}\right)\right) e^{i j \varphi},
\end{align*}
$$

where $M_{y} Q_{0,1,2}=Q_{0,2,1}$. Note that the matrix element for another valley is the time reversal partner of the original valley. For example $\left.\tilde{c}_{A_{1}}^{\dagger \dagger}(k) \tilde{c}_{B_{2}}^{t}\left(k+Q_{j}\right)\right) e^{i j \varphi}$. The Hamiltonian $H(k) \rightarrow \tilde{H}\left(M_{y} k\right)$. \tilde{H} is the Hamiltonian of another valley.

Combination of M_{y} and time reversal T gives an anti-unitary symmetry which preserves valley index. Because we have $S U(2)$ spin rotation symmetry, time reversal can be implemented as simply complex conjugation without flipping the spin. Therefore we have an anti-unitary $M_{y} T$ symmetry which maps $\left(k_{x}^{t}, k_{y}^{t}\right)$ to $\left(k_{x}^{b},-k_{y}^{b}\right)$.
$M_{y} T$ does not flip the sign of Berry curvature. It also reverses the direction of perpendicular electric field. Therefore we have requirement of Chern number of each band: $C(U)=C(-U)$. As a result, there is no constraint for Chern number at $U=0$ and an arbitrary Chern number is possible at $U=0$.

c. Magic angle for $B G / B G$

Within the continuum model, it is known that the twisted bilayer graphene system has magic angles where velocity of Dirac cone is zero ${ }^{3}$. In this section we follow Ref. 3 to derive an analytical expression for the renormalized mass at band touching point with twist angle θ for $\mathrm{BG} / \mathrm{BG}$ system. We assume that the stacking pattern is AB on AB .

For an isolated A-B stacked bilayer graphene, the Hamiltonian of one valley is:

$$
h_{0}(k, \theta)=\left(\begin{array}{cccc}
0 & t_{3} k_{\theta}^{*} & 0 & -v k_{\theta} \tag{C13}\\
t_{3} k_{\theta} & 0 & -v k_{\theta}^{*} & 0 \\
0 & -v k_{\theta} & 0 & \gamma_{1} \\
-v k_{\theta}^{*} & 0 & \gamma_{1} & 0
\end{array}\right)
$$

with basis $\left(c_{A 1} c_{B 2} c_{A 2} c_{B 1}\right)^{T}$ and $k_{\theta}=\left(k_{x}+i k_{y}\right) e^{-i \theta / 2}$. Subscript 1,2 are for layer 1 and $2, A, B$ are for different sub-lattices. For layer 3 and 4 , replace 1 by 3,2 by 4 . Here γ_{1} is the hopping term between B_{1} and A_{2}.

We consider bilayer 1,2 on top of bilayer 3,4 and hopping only between layer 2 and 3 . The hopping matrix is,

$$
T_{32}\left(k+Q_{j}, k\right)=t_{M}\left(c_{A 3}^{\dagger}\left(k+Q_{j}\right) c_{B 3}^{\dagger}\left(k+Q_{j}\right)\right)\left(\begin{array}{cc}
1 & e^{i j \phi} \tag{C14}\\
e^{-i j \phi} & 1
\end{array}\right)\binom{c_{A 2}(k)}{c_{B 2}(k)}
$$

Q_{j} is moiré reciprocal lattice vector, $Q_{0}=K_{\theta}(0,-1), Q_{1}=K_{\theta}(\sqrt{3} / 2,1 / 2)$, and $Q_{2}=K_{\theta}(-\sqrt{3} / 2,1 / 2)$.
Integrating the higher energy orbitals $B_{1}, A_{2}, B_{3}, A_{4}$, the effective Hamiltonian is,

$$
h_{e f f}\left(k+Q_{j}, k\right)=\left(\begin{array}{cccc}
0 & t_{3} k_{\theta}^{*}-v^{2} k_{\theta}^{2} / \gamma_{1} & t_{M} v k_{\theta} / \gamma_{1} & t_{M} v^{2} k_{\theta}\left(k+Q_{j}\right)_{-\theta} e^{i j \phi} / \gamma_{1}^{2} \tag{C15}\\
c . c & 0 & t_{M} e^{-i j \phi} & t_{M} v\left(k+Q_{j}\right)_{-\theta} / \gamma_{1} \\
c . c & c . c & 0 & t_{3}\left(k+Q_{j}\right)_{-\theta}^{*}-v^{2}\left(k+Q_{j}\right)_{-\theta}^{2} / \gamma_{1} \\
c . c & c . c & c . c & 0
\end{array}\right)
$$

where $c . c$ stands for complex conjugate. The basis is $\left(c_{A 1} c_{B 2} c_{A 3} c_{B 4}\right)^{T}$.
We can write down an 8 -band model to gain some insight. We focus on the band touching point for valley + of the top graphene layer, which is at K point of the MBZ. In the limit $k^{t} \rightarrow 0$, each momentum k^{t} connects to three momentums of the bottom graphene layer: $k^{b}=k^{t}+Q_{j}$. Keeping these four momentum points, we can write an eight band model.

At small $|k|, H(k)=H^{(0)}+H^{(1)}(k)$, where,

$$
H^{(0)}=\left(\begin{array}{cccc}
h_{0} & T_{1} & T_{2} & T_{3} \tag{C16}\\
T_{1}^{\dagger} & h_{1} & 0 & 0 \\
T_{2}^{\dagger} & 0 & h_{2} & 0 \\
T_{3}^{\dagger} & 0 & 0 & h_{3}
\end{array}\right),
$$

h_{j}, T_{j} are 2×2 matrix, for $j=1,2,3$,

$$
\begin{gather*}
h_{j}=\left(\begin{array}{cc}
0 & -\frac{v^{2}}{\gamma_{1}}\left(Q_{j}\right)_{-\theta}^{2} \\
-\frac{v^{2}}{\gamma_{1}}\left(\left(Q_{j}\right)_{-\theta}^{2}\right)^{*} & 0
\end{array}\right) \tag{C17}\\
T_{j}=\left(\begin{array}{cc}
0 & 0 \\
t_{M} e^{-i j \phi} & \frac{t_{M v}}{\gamma_{1}}\left(Q_{j}\right)_{-\theta}
\end{array}\right) \tag{C18}
\end{gather*}
$$

The zero-eigenvalue states can be written as $\psi=\left(\psi_{0}, \psi_{1}, \psi_{2}, \psi_{3}\right)$, where each entry is a 2 -component spinor. We can obtain the wavefunction of the zero energy state as:

$$
\begin{equation*}
\psi_{j}=-h_{j}^{-1} T_{j}^{\dagger} \psi_{0}=\frac{t_{M}}{v K_{\theta}^{4}}\binom{K_{\theta}^{2}\left(Q_{j}\right)_{\theta}}{\frac{\gamma_{1}}{v} e^{j j \phi}\left(Q_{j}\right)_{\theta}^{2 *}} \psi_{0}^{(2)}, \tag{C19}
\end{equation*}
$$

and the square-norm of ψ is,

$$
|\psi|^{2}=\psi_{0}^{\dagger}\left(\begin{array}{lc}
1 & 0 \tag{C20}\\
0 & 1+3 \frac{\gamma_{1}^{2} t_{M}^{2}}{v^{4} K_{\theta}^{4}}\left(1+\frac{v^{2} K_{\theta}^{2}}{\gamma_{1}^{2}}\right)
\end{array}\right) \psi_{0}
$$

Note that ψ_{0} forms a two dimensional Hilbert space. Therefore ψ also forms a two dimensional space. The block between k and $k+Q_{j}$ in the perturbation term $H^{(1)}(k)$ is,

$$
H^{(1)}\left(k+Q_{j} ; k\right)=\left(\begin{array}{cccc}
0 & -v^{2} k_{\theta}^{2} / \gamma_{1} & t_{M} v k_{\theta} / \gamma_{1} & t_{M}\left(v k_{\theta} / \gamma_{1}\right)\left(v\left(k+Q_{j}\right)_{-\theta} / \gamma_{1}\right) e^{i j \phi} \tag{C21}\\
c . c & 0 & 0 & t_{M} v k_{-\theta} / \gamma_{1} \\
c . c & c . c & 0 & -v^{2} k_{-\theta}\left(k+2 Q_{j}\right)_{-\theta} / \gamma_{1} \\
c . c & c . c & c . c & 0
\end{array}\right) \text {, }
$$

where $j=1, \ldots, 3, H^{(1)}(k)$ is an 8×8 matrix.
We can obtain the elements of $H^{(1)}(k)$ in the ψ basis, where the θ dependence of wave vectors are ignored,

$$
\begin{align*}
& H^{(1)}(k)_{11}=0 \tag{C22}\\
& H^{(1)}(k)_{12}=-\frac{v^{2}}{\gamma_{1}}\left(k_{x}+i k_{y}\right)^{2}\left(1-3 \frac{t_{M}^{2}}{v^{2} K_{\theta}^{2}}\right) / \alpha \tag{C23}\\
& H^{(1)}(k)_{22}=0 \tag{C24}
\end{align*}
$$

where the normalization factor $\alpha=\sqrt{1+3 \frac{\gamma_{1}^{2} t_{M}^{2}}{v^{4} K_{\theta}^{4}}\left(1+\frac{v^{2} K_{\theta}^{2}}{\gamma_{1}^{2}}\right)}$.
One can see that the mass of the original quadratic band is enhanced by a factor $m^{*}=\alpha m_{0} /\left(1-3 \frac{t_{M}^{2}}{v^{2} K_{\theta}^{2}}\right)$.
Interestingly $m^{*} \rightarrow \infty$ at magic angle decided by $1-3 \frac{t_{M}^{2}}{v^{2} K_{\theta}^{2}}=0$. This equation gives $\theta_{M}=1.08^{\circ}$ which is equal to the magic angle value of twisted monolayer graphene on monolayer graphene system ${ }^{3}$.

2. Analysis of Chern number

In the following we give some insights about the phase diagram of Chern number for twisted graphene on graphene systems.
a. Type I: Double graphenes with opposite chirality

For either BG or TG, we can only keep two bands. We label the number of layers for top graphene as n_{t} and the number of layers for bottom graphene as n_{b}. The Hamiltonian of each graphene is:

$$
H_{a}=\psi^{\dagger}(k)\left(\begin{array}{cc}
m_{a} & \frac{v^{n_{a}}}{\gamma_{1}^{n_{a}-1}}\left(k_{x}-i k_{y}\right)^{n_{a}} \tag{C25}\\
\frac{v^{n_{a}}}{\gamma_{1}^{n_{a}-1}}\left(k_{x}+i k_{y}\right)^{n_{a}} & -m_{a}
\end{array}\right) \psi(k)
$$

where $\psi_{a}=\binom{c_{1}^{a}}{c_{2}^{a}} \cdot c_{1}^{a}$ and c_{2}^{a} are the first layer and the second layer for graphene $a=t, b$. Layer 1 is always fixed to be on top of layer 2. Therefore mass m_{a} is proportional to energy difference between top layer and bottom layer, up to an offset. We put ψ_{t} at K_{M} of MBZ and ψ_{b} at K_{M}^{\prime} of MBZ. Momentum \mathbf{k} in the above hamiltonian is defined relative to K_{M} or K_{M}^{\prime}.

Moiré hopping Hamiltonian is:

$$
\begin{equation*}
H_{M}=\sum_{\mathbf{k}, \mathbf{Q}_{\mathbf{j}}}\left(t_{M} e^{i j \varphi} c_{2}^{t \dagger}(\mathbf{k}) c_{1}^{b}\left(\mathbf{k}+\mathbf{Q}_{\mathbf{j}}\right)+\text { h.c. }\right) \tag{C26}
\end{equation*}
$$

where $\varphi=\frac{2 \pi}{3}$.
We have projected moiré hopping matrix in Eq. C3 to low energy band ψ_{a} here.
There are also term from higher order perturbations when we integrate higher energy degree of freedoms $c_{B_{1}}^{t}, c_{A_{2}}^{t}$, $c_{B_{1}}^{b}$ and $c_{A_{2}}^{b}$. The most important term is the following mass term $A c_{2}^{t \dagger}(k) c_{2}^{t}(k)+A c_{1}^{b \dagger}(k) c_{1}^{b}(k)$. Therefore at $U=0$, we have mass term m_{t} and m_{b} with opposite sign. For BG/BG and TG/TG system, M_{x} symmetry requires $m_{t}=-m_{b}$. These mass terms gap out quadratic band touching at K and K^{\prime} with opposite sign.

At $U=0$, contributions to Chern number from K_{M} and K_{M}^{\prime} are $C_{K}=\frac{n_{t}}{2}, C_{K^{\prime}}=-\frac{n_{b}}{2}$. For BG/BG and TG/TG system, at $U=0$, Chern number is $C(U=0)=0$ as required by M_{x} symmetry. For TG/BG system, we find that $C(U=0)=-1$, resulting from an additional contribution at Γ point.

Next we can easily understand Chern numbers at non-zero $|U|$. When $U>\Delta_{0}>0, m_{b}$ changes to positive through a gap closing and reopening process. It is easy to figure out that Chern number of the conduction band need to change by $-n_{b}$. Therefore $C\left(U>\Delta_{0}\right)=-n_{b}$ for TG/TG and BG/BG system. For TG/BG system, $C\left(U>\Delta_{0}\right)=-1-n_{b}=-3$.

Similarly, when $U<-\Delta_{0}, m_{t}$ changes to negative and total Chern number of the conduction band needs to change by n_{t}. Therefore $C\left(U<-\Delta_{0}\right)=n_{t}$ for TG/TG and BG/BG system. For TG/BG, $C\left(U<-\Delta_{0}\right)=n_{t}-1=2$.

When we further increase $|U|$, the hybridization gap between the conduction band and the band above closes at U_{c} and reopens after $|U|>U_{c}$. Through this process Chern number $|C|$ drops by 1. $U_{c}(\theta)$ vanishes at magic angle θ_{M}.

b. Type II: Double graphenes with opposite chirality

When the top and bottom graphenes have the opposite chirality, the Hamiltonians for them are:

$$
H_{t}=\psi^{\dagger}(k)\left(\begin{array}{cc}
m_{t} & \frac{v^{n_{t}}}{\gamma_{1}^{n_{t}-1}}\left(k_{x}-i k_{y}\right)^{n_{t}} \tag{C27}\\
\frac{v^{n_{t}}}{\gamma_{1}^{n_{t}-1}}\left(k_{x}+i k_{y}\right)^{n_{t}} & -m_{t}
\end{array}\right) \psi(k)
$$

and

$$
H_{b}=\psi^{\dagger}(k)\left(\begin{array}{cc}
m_{b} & \frac{v^{n_{b}}}{\gamma_{1}^{n_{b}-1}}\left(k_{x}+i k_{y}\right)^{n_{b}} \tag{C28}\\
\frac{v^{n_{b}}}{\gamma_{1}^{n_{b}-1}}\left(k_{x}-i k_{y}\right)^{n_{b}} & -m_{b}
\end{array}\right) \psi(k)
$$

We still put ψ_{t} on K and ψ_{b} on K^{\prime} of MBZ.
The moiré hopping Hamiltonian is:

$$
\begin{equation*}
H_{M}=\sum_{\mathbf{k}, \mathbf{Q}_{\mathbf{j}}}\left(t_{M} c_{2}^{t \dagger}(\mathbf{k}) c_{1}^{b}\left(\mathbf{k}+\mathbf{Q}_{\mathbf{j}}\right)+\text { h.c. }\right) \tag{C29}
\end{equation*}
$$

where $\varphi=\frac{2 \pi}{3}$.

We also simulate the above Hamiltonian numerically.
At $U=0$, we still have m_{t} and m_{b} with opposite sign. However, quadratic band touching at K and K^{\prime} have the opposite chirality. Therefore contributions to Chern number are $C_{K}=\frac{n_{t}}{2}, C_{K^{\prime}}=\frac{n_{b}}{2}$. This is also consistent with symmetry requirements for $\mathrm{BG} / \mathrm{BG}$ and $\mathrm{TG} / \mathrm{TG}$ system, for which $M_{y} T$ symmetry requires that K and K^{\prime} contribute the same berry curvature. The contribution from region close to Γ point is arbitrary. Therefore there is no constraint for Chern number at $U=0$. We have $C(U=0)=C_{0}$ with C_{0} a general integer which depends on the system and twist angle.

When $U>\Delta_{0}, m_{b}$ becomes positive and Chern number should change by n_{b}. Therefore conduction band $C(U>$ $\left.U_{c}\right)=C_{0}+n_{b}$.

When $U<-\Delta_{0}, m_{t}$ changes to negative and Chern number changes by n_{t}. Therefore conduction band $C(U<$ $\left.-U_{c}\right)=C_{0}+n_{t}$.

The change of Chern number for the valence band across $\left|\Delta_{0}\right|$ is opposite to the conduction band, although C_{0} of conduction and valence bands have no obvious correlation.

When further increasing $|U|$, the hybridization gap between conduction band and the band above closes at U_{c} and reopens, resulting a further drop of Chern number by 1 , similar to type I system. $U_{c}(\theta)$ also vanishes at the magic angle.

Appendix D: Skyrmion Energy of IQAH Insulator

We try to estimate the energy cost of skyrmion excitation of the spin and valley polarized integer QAH state at total filling $\nu_{T}=1$ or $\nu_{T}=3$. We focus on the $C=2$ case, though the following calculation can be easily generalized to other Chern number.

We assume the band filled is $(-, \downarrow)$, in the following we ignore valley index because we expect valley flip excitation is not important. The ground state wavefunction is:

$$
\begin{equation*}
|\Omega\rangle=\prod_{\mathbf{k}} c_{\downarrow}^{\dagger}(\mathbf{k})|0\rangle \tag{D1}
\end{equation*}
$$

To estimate the energy cost of skyrmion, we should estimate spin phase stiffness ρ_{s} first. This can be done by calculating the dispersion of spin wave. Spin wave with momentum \mathbf{q} is created by

$$
\begin{equation*}
S^{\dagger}(\mathbf{q})=\sum_{\mathbf{k}} c_{\uparrow}^{\dagger}(\mathbf{k}+\mathbf{q}) c_{\downarrow}(\mathbf{k}) \lambda(\mathbf{k}, \mathbf{k}+\mathbf{q}) \tag{D2}
\end{equation*}
$$

where we still need to include the form factor because we're projecting microscopic spin operator to the Chern band.
Again we only consider interaction energy:

$$
\begin{equation*}
H_{V}=\sum_{\mathbf{q}} V(|\mathbf{q}|) \tilde{\rho}(\mathbf{q}) \tilde{\rho}(-\mathbf{q}) \tag{D3}
\end{equation*}
$$

where we only consider density operator of valley -.
To make analytical calculation possible, we assume Berry curvature is uniform in BZ and then we can write the form factor in the following form:

$$
\begin{equation*}
\lambda(\mathbf{k}, \mathbf{k}+\mathbf{q})=F(|\mathbf{q}|) e^{\frac{B}{2} i \mathbf{k} \wedge \mathbf{q}} \tag{D4}
\end{equation*}
$$

where $F(|q|)$ is a real function which decays with $|\mathbf{q}| . B=C \frac{2 \pi}{A_{B Z}}$ is the uniform Berry curvature.
Then it is easy to get the following commutation relation:

$$
\begin{gather*}
{\left[\tilde{\rho}\left(\mathbf{q}_{\mathbf{1}}\right), \tilde{\rho}\left(\mathbf{q}_{\mathbf{2}}\right)\right]=\frac{F\left(\left|\mathbf{q}_{1}\right|\right) F\left(\left|\mathbf{q}_{2}\right|\right)}{F\left(\left|\mathbf{q}_{\mathbf{1}}+\mathbf{q}_{\mathbf{2}}\right|\right)} 2 i \sin \left(B \frac{\mathbf{q}_{\mathbf{1}} \wedge \mathbf{q}_{\mathbf{2}}}{2}\right) \tilde{\rho}\left(\mathbf{q}_{\mathbf{1}}+\mathbf{q}_{\mathbf{2}}\right)} \tag{D5}\\
{\left[\tilde{\rho}\left(\mathbf{q}_{\mathbf{1}}\right), S^{\dagger}\left(\mathbf{q}_{\mathbf{2}}\right)\right]=\frac{F\left(\left|\mathbf{q}_{1}\right|\right) F\left(\left|\mathbf{q}_{2}\right|\right)}{F\left(\left|\mathbf{q}_{\mathbf{1}}+\mathbf{q}_{\mathbf{2}}\right|\right)} 2 i \sin \left(B \frac{\mathbf{q}_{\mathbf{1}} \wedge \mathbf{q}_{\mathbf{2}}}{2}\right) S^{\dagger}\left(\mathbf{q}_{\mathbf{1}}+\mathbf{q}_{\mathbf{2}}\right)} \tag{D6}
\end{gather*}
$$

which resemble the GMP algebra in Projected Landau Level except an additional factor B.
Then it is easy to calculate spin wave dispersion following the standard approach.

$$
\begin{equation*}
\left[H_{V}, S^{\dagger}(\mathbf{q})\right]|\Omega\rangle=4 \sum_{\mathbf{p}} \sin ^{2}\left(B \frac{\mathbf{p} \wedge \mathbf{q}}{2}\right) F^{2}(|\mathbf{p}|) V(|\mathbf{p}|) S^{\dagger}(\mathbf{q})|\Omega\rangle \tag{D7}
\end{equation*}
$$

During this derivation we use the fact that $\rho(\mathbf{q})|\Omega\rangle=0$ for any $\mathbf{q} \neq 0$.
Therefore the dispersion of spin-wave excitation is:

$$
\begin{equation*}
\xi(\mathbf{q})=4 \sum_{\mathbf{p}} \sin ^{2}\left(B \frac{\mathbf{p} \wedge \mathbf{q}}{2}\right) V(|\mathbf{p}|) F^{2}(|\mathbf{p}|) \tag{D8}
\end{equation*}
$$

At $|\mathbf{q}| \rightarrow 0$ limit, we get dispersion of spin wave:

$$
\begin{equation*}
\xi(\mathbf{q})=A|\mathbf{q}|^{2} \tag{D9}
\end{equation*}
$$

with

$$
\begin{equation*}
A=\frac{B^{2}}{2} \sum_{\mathbf{p}}|\mathbf{p}|^{2} V(|\mathbf{p}|) F^{2}(|\mathbf{p}|) \tag{D10}
\end{equation*}
$$

where we used the fact that $\left\langle\sin ^{2} \theta\right\rangle=\frac{1}{2}$ when integrating over $\theta \in[0,2 \pi)$.
From the spin wave dispersion we can easily extract the spin phase stiffness and then estimate the energy of skyrmion. Following Ref. ${ }^{43}$, the phase stiffness is

$$
\begin{equation*}
\rho_{s}=\frac{n B^{2}}{4} \sum_{\mathbf{p}}|\mathbf{p}|^{2} V(|\mathbf{p}|) F^{2}(|\mathbf{p}|) \tag{D11}
\end{equation*}
$$

We can define length in the unit of a_{M} and momentum in the unit of $\frac{1}{a_{M}}$. Therefore density of electrons is $n=1$. There is a $\frac{1}{2}$ factor coming from spin $S=\frac{1}{2}$. In the following we will keep n to make the dimension of the equation obvious.

Energy of skyrmion is

$$
\begin{equation*}
E_{\text {skyrmion }}=4 \pi \rho_{s}=n \pi B^{2} \sum_{\mathbf{p}}|\mathbf{p}|^{2} V(|\mathbf{p}|) F^{2}(|\mathbf{p}|) \tag{D12}
\end{equation*}
$$

and energy of widely separated skyrmion-antiskyrmion pair is

$$
\begin{equation*}
E_{\text {skyrmionpair }}=2 \pi n B^{2} \sum_{\mathbf{p}}|\mathbf{p}|^{2} V(|\mathbf{p}|) F^{2}(|\mathbf{p}|) \tag{D13}
\end{equation*}
$$

When $|\mathbf{q}|$ is large, essentially $S^{\dagger}(\mathbf{q})=\sum_{\mathbf{k}} c_{\uparrow}^{\dagger}(\mathbf{k}+\mathbf{q}) c_{\downarrow}(\mathbf{k}) \lambda(\mathbf{k}, \mathbf{k}+\mathbf{q})$ creates an electron-hole pair with total momentum \mathbf{q}. Because of GMP algebra implicitly hidden in $\lambda(\mathbf{k}, \mathbf{k}+\mathbf{q})$, the distance r of this electron-hole pair is proportional to $|\mathbf{q}| \cdot \xi(|\mathbf{q}| \rightarrow \infty)$ actually corresponds to energy cost of infinitely separated charge e particle-hole pair.

$$
\begin{equation*}
E_{1 e ; P H}=2 \sum_{\mathbf{p}} V(|\mathbf{p}|) F^{2}(|\mathbf{p}|) \tag{D14}
\end{equation*}
$$

where we approximate $\sin ^{2}$ term with its averaged value $\frac{1}{2}$.
Correspondingly energy cost of charge $2 e$ particle-hole pair should be:

$$
\begin{equation*}
E_{2 e ; P H}=4 \sum_{\mathbf{p}} V(|\mathbf{p}|) F^{2}(|\mathbf{p}|) \tag{D15}
\end{equation*}
$$

The energy cost is apparently sensitive to the form of $F(|\mathbf{p}|)$, which can only be calculated numerically.
To gain some intuition, we assume the following form of $F(|\mathbf{p}|): F^{2}(|\mathbf{p}|)=e^{-\frac{\alpha}{2}|\mathbf{p}|^{2}} . V(|\mathbf{p}|)=\frac{1}{|\mathbf{p}|}$ is Coulomb interaction. Then it is easy to get:

$$
\begin{equation*}
\frac{E_{\text {skyrmionpair }}}{E_{2 e ; P H}}=\frac{\pi n B^{2}}{2 \alpha} \tag{D16}
\end{equation*}
$$

where we add electron density n to make the above quantity dimensionless.
For classic $\nu_{T}=1$ Lowest Landau Level problem, we have $\alpha=1, B=1, n=\frac{1}{2 \pi}$ for which the fundamental unit of length is $l_{B} \cdot \frac{E_{\text {skyrmionpair }}}{E_{2 e ; P H}}=\frac{1}{4}$ is in agreement with the well-known fact that $\frac{E_{s k y r m i o n p a i r}}{E_{1 e ; P H}}=\frac{1}{2}{ }^{35}$.

For the systems we studied in this paper, we use a_{M} as the unit of length and then we have Hexagonal BZ with $A_{B Z}=\frac{8 \pi^{2}}{\sqrt{3}}$ and density $n=1$. Then the uniform Berry curvature is $B=\frac{2 \pi C}{A_{B Z}}=\frac{\sqrt{3}}{4 \pi} C$. Therefore for $C=2$:

$$
\begin{equation*}
\frac{E_{\text {skyrmionpair }}}{E_{2 e ; P H}}=\frac{3}{8 \pi \alpha} \tag{D17}
\end{equation*}
$$

Therefore when $\alpha>\frac{3}{8 \pi}$, Skyrmion is the cheapest charged excitation.
For the moiré super-lattice system, we can numerically calculate $F^{2}(|\mathbf{q}|)=|\lambda(0, \mathbf{q})|^{2}$. We can also numerically do the integration in Eq. D13 and Eq. D10 directly.

For valence band of $\mathrm{BG} / \mathrm{h}-\mathrm{BN}$ at $\theta=0$, we get $\frac{E_{\text {skyrmionpair }}}{E_{2 e ; P H}}=0.58$ by directly integrating Eq. D13 and Eq. D10. Therefore we expect finite densities of skyrmions emerge even in the ground state upon doping away from $\nu_{T}=1$.

For conduction band of type I BG/BG, at $\theta=1.17^{\circ}$ and $U=8 \mathrm{meV}$, we get $\frac{E_{\text {skyrmionpair }}}{E_{2 e ; P H}}=1.35$. At $\theta=0.9^{\circ}$ and $U=8 \mathrm{meV}, \frac{E_{s k y r m i o n p a i r}}{E_{2 e} ; P H}=0.87$. Therefore whether skyrmions emerge upon doping is quite sensitive to twist angle for this system. Smaller twist angle may be favorable to search for skyrmion superconductor.

Appendix E: Fractional Quantum Valley Hall Effect

We focus on filling $\nu_{T}=2+\nu_{\text {eff }}$. As we argued in the main text, $\nu_{T}=2$ is a spin polarized QVH state. Then if we dope additional $\nu_{\text {eff }}$ electrons, they must carry the other spin. Therefore we expect to have spin polarized topological ordered state with effective filling $\nu_{e f f}=\nu_{T}-2$.

One option is that valley is also polarized and we get a FQAH state with effective filling $\nu_{e f f}$. However, it may also be possible to have a state for which two valleys have equal density. This state is likely to be Fractional Quantum Valley Hall(FQVH) state with different valleys having opposite hall conductivity. Based on our discussion of FQAH state, there could be spin polarized FQVH state at filling $\nu_{e f f}=\frac{2 m}{2 k m|C|+1}$. These states have zero charge hall conductivity and valley hall conductivity $\sigma_{x y}^{v}=\nu_{e f f} C$.

Taking $|C|=1$ as an example, we can have a FQVH state at effective filling $\nu_{e f f}=\frac{2}{3}$, which is a $\frac{1}{3}$ Laughlin state for one valley plus $-\frac{1}{3}$ Laughlin state for another valley. For $|C|>1$ bands, we can have similar states.

One interesting direction to explore in the future is to construct new topological ordered state beyond two decoupled FQHE states with opposite Hall conductivities.

[^0]: * senthil@mit.edu

