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In addition to the well known chiral anomaly, Dirac semimetals have been argued to exhibit mirror anomaly,
close analogue to the parity anomaly of (2 + 1)-dimensional massive Dirac fermions. The observable response
of such anomaly is manifested in a singular step-like anomalous Hall response across the mirror-symmetric
plane in the presence of a magnetic field. Although this result seems to be valid in type-II Dirac semimetals
(strictly speaking, in the linearized Hamiltonian), we find that type-I Dirac semimetals do not possess such an
anomaly in anomalous Hall response even at the level of the linearized Hamiltonian. In particular, we show
that the anomalous Hall response continuously approaches zero as one approaches the mirror symmetric angle
in a type-I Dirac semimetal as opposed to the singular Hall response in a type-II Dirac semimetal. Moreover,
we show that, under certain condition, the anomalous Hall response may vanish in a linearized type-I Dirac
semimetal, even in the presence of time reversal symmetry breaking.

I. INTRODUCTION

Dirac semimetals (DSMs) can be viewed as the three-
dimensional (3D) analogue of two-dimensional Graphene1,2.
The theoretical predictions and discoveries of DSMs have
led to an explosion of activity in recent years3–13. Due
to their distinct linearly dispersing bulk bands, 3D Dirac
and Weyl semimetals are found to exhibit several un-
conventional electronic properties such as giant diamag-
netism12, oscillating quantum spin Hall effect12,14, quan-
tum magnetoresistance15–18, and anomalous Hall effect19–24.
DSMs are known to host exotic quantum states such as topo-
logical insulators and Weyl metals under some external per-
turbations and symmetries such as time-reversal symmetry
(TRS), inversion symmetry (IS) and crystalline uniaxial ro-
tational symmetry Cn. With these symmetries, DSMs can be
divided into two classes- type-I and type-II10,25,26. In type-I
DSMs, Dirac points generally occur in pairs on the rotation
axis11,13 but away from the time reversal invariant momenta
(TRIM). The Dirac points here can be obtained through an
accidental band crossing or a band inversion. However, they
can be stabilized by crystalline symmetry other than the TRS
and IS. In contrast, in type-II DSMs, a single Dirac point oc-
curs at the TRIM on the rotation axis10,27, and band cross-
ing is ensured by the lattice symmetry. A series of recent
experiments confirmed that Na3Bi11,28,29 and Cd3As27,16,30–32

compounds show type-I behavior, while TlBi(S1−xSex)233,
(Bi1−xInx)2Se334, and ZrTe535,36 belong to the type-II Dirac
semimetals. We note that DSMs can also be classified based
on the tilting of the Dirac node37,38. In our work, we focus
on the low energy model of the DSMs containing Dirac node
without tilting, and the classification of type-I and type-II is
explained above.

The distinction of DSMs may not be limited to the num-
ber and location of Dirac points in the Brillouin zone, rather
it may be manifested in the observable responses in terms
of quantum anomaly in the presence of an external magnetic
field. The principal among such quantum anomalies is the chi-

ral anomaly which indicates the non-conservation of electric
charge of a given chirality in the presence of parallel electric
and magnetic fields. Although both types of Dirac semimetals
are supposed to show negative longitudinal magnetoresistance
and planar Hall effect as a manifestation of chiral anomaly in
the presence of parallel electric and magnetic field39–49, there
may exist another anomaly in DSMs namely mirror anomaly
which may give rise to different observable signatures in type
I and type II DSMs in the anomalous Hall effect. In par-
ticular, this anomaly gives rise to step-function dependence
of the anomalous Hall conductivity (AHC) as a function of
the polar angle of the applied magnetic field, resembling the
AHC due to parity anomaly in 2D systems with massive Dirac
fermions57. Recently it has been argued that type-II DSMs
show a singular step-like Hall response across the mirror sym-
metric angle of an applied magnetic field due to the mirror
anomaly51. This raises interesting questions: Is the Hall re-
sponse due to the mirror anomaly a generic feature of Dirac
semimetals? In other words, do type-I Dirac semimetals also
possess such anomaly?

To answer these, we consider a model Hamiltonian of a
type-I DSM, in particular Hamiltonian of Cd3As2, and study
the anomalous Hall effect in the presence of a rotating mag-
netic field. It is important to note that neither type-I nor type-II
DSMs are expected to show an anomalous Hall effect in the
absence of a magnetic field because of the presence of time re-
versal symmetry. In the presence of a Zeeman field, however,
time reversal is explicitly broken, resulting in the creation of
pairs of Weyl points with charges of opposite chirality, which
may produce anomalous Hall effect. Following Ref. 51, by
anomalous Hall effect in DSMs we consider the component
of the total Hall response created by the Zeeman effect of the
applied magnetic field, separable from the conventional or-
bital effect by its linear B dependence. We find that type-I
DSMs do not possess mirror anomaly across the plane pre-
serving mirror symmetry in the presence of an external mag-
netic field. Specifically, we do not find any step-function like
behavior in the AHC as a function of the angle of the applied
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field. This is in sharp contrast to the type-II DSMs51. We fur-
thermore show that, within linearized Hamiltonian, the AHC
vanishes under certain conditions. Thus AHC may be used as
a probe to identify two distinct types of Dirac semimetals.

The rest of the paper is organized as follows. In Sec. II,
we introduce the low energy model Hamiltonian of a time-
reversal- and inversion symmetric type-I Dirac semimetal. We
then discuss possible mirror symmetric planes and relevant
mirror-reflection operators. This is followed by the review of
the anomalous Hall response in a type-II DSM in Sec. III A,
where we compute Hall conductivity in the presence of a
magnetic field applied perpendicular to the mirror symmetric
plane and discuss the possibility of appearing mirror anomaly.
In Sec. III B, we compute AHC in a type-I DSM and compare
the results with the type-II DSM. Finally, we summarize our
results and discuss possible future direction in Sec. IV.

II. MODEL HAMILTONIAN

We begin with a discussion on the model Hamiltonian of
type-I Dirac semimetals, containing a pair of four-fold de-
generate Dirac nodes on a high symmetry axis. The Dirac
semimetals Na3Bi and Cd3As2, are both thought to be in this
class. In both of these materials, there are two pairs of rele-
vant orbitals near the Fermi level at the Γ point : the s orbitals
with jz = 1

2 and the p orbitals with jz = 3
2 . Because of

the atomic spin-orbit coupling, band inversion occurs in both
cases and the band crossing occurs at the Fermi level near
the Γ point. The pair of Dirac points occur along the kz axis
and stabilized due to discrete rotation symmetry about kz axis
(C4z for Cd3As2 and C6z for Na3Bi). In the basis of the rel-
evant spin-orbit coupled states |s, ↑〉, |px + ipy, ↑〉, |s, ↓〉 and
|px − ipy, ↓〉, the low energy effective k · p Hamiltonian for
the type-I Dirac semimetals near the Γ point can be written
as26,52–54

HI(k) = M(k)τzσ0 +A(k)τxσz +B(k)τyσ0 + C(k)τxσx

+D(k)τxσy, (1)

where τ i and σi are Pauli matrices in orbital and spin space
respectively, k‖ =

√
k2x + k2y is the momentum parallel to

the surface of the DSM, M(k) = M0 −M‖k2‖ −Mzk
2
z is the

Schrodinger/Dirac mass term, A(k) = A1kx, B(k) =
−A1ky , C(k) = (β + γ)kz(k

2
y − k2x), and D(k) =

−2(β − γ)kzkykx. The band parameters M0, M‖, Mz , A1,
β and γ are material dependents and can be obtained from
the first principles calculations. The low-energy spectrum of
Eq. (1) contains a pair of Dirac points without any tilt located

at (0, 0,±k0z) where k0z =
√

M0

Mz
as shown in Fig. (1a).

Eq. (1) is invariant under time-reversal (T = iτ0σyK ) and
inversion symmetry (I = τzσ0), where K is complex con-
jugation operator52. Additionally, Eq. (1) has several mirror
symmetric planes such as (100), (001) and (110)52. Now, we
focus only on (100) plane i.e. yz plane. In the yz plane, the

mirror symmetry operator is given by Myz = iτ0σx, satisfy-
ing

MyzH(kx, ky, kz)M
†
yz = H(−kx, ky, kz) (2)

Note that the mirror symmetry appears here as a result of the
combination of space inversion symmetry and a rotation about
the x− axis. This follows from the existence of the Cn sym-
metry26.

FIG. 1. (Color online) (a) 3D band dispersion of the four bands (kx
is suppressed) of the Dirac semimetal near Γ point obtained by di-
agonalizing Hamiltonian described in Eq. (1). The Dirac points are

located at (0, 0,±k0z) where k0z =
√

M0
Mz

. (b)-(c) depict the band
dispersions in the presence of magnetic field (B) applied along z di-
rection and x direction respectively. The parameters are chosen to
be M0 = −2A1, M‖ = −A1/5, Mz = −4A1, β = −A1/5 and
γ = A1, B = A1/5 and A1 = 0.05eV .55

III. ANOMALOUS HALL CONDUCTIVITY

Let us now consider an external magnetic field applied to
the Dirac semimetal. The presence of magnetic field breaks
time-reversal symmetry and leads to non-zero Berry curva-
ture. Consequently, one may obtain anomalous Hall conduc-
tivity induced by the non-trivial Berry curvature. The intrinsic
contribution of the anomalous Hall effect of a three dimen-
sional system can be written as56

σij =
e2

~
1

(2π)3

∫
d3kΩki,kjf0, (3)

where f0 is the equilibrium Fermi-Dirac distribution function
and Ωki,kj is the Berry curvature in the direction perpendicu-
lar to ki−kj plane. The Berry curvature of the nth band for a
Bloch Hamiltonian H(k), defined as the Berry phase per unit
area in the k space, is given by56

Ωki,kj = 2i
∑
n 6=n′

〈n| ∂H∂ki |n
′〉〈n′| ∂H∂kj |n〉

(εn − εn′)2
, (4)



3

0 30 60 90 120 150 180
θ (degree)

-1

0

1
σ

xyII

θ = π/2

FIG. 2. (Color online) Normalized anomalous Hall conductivity of
a type-II Dirac semimetal as a function of θ. Here, θ is the angle
between z axis and applied magnetic field. The sign of AHC changes
at the mirror symmetric angle (θ = π/2).

where εn is the energy dispersion of n−th band and |n〉 is the
corresponding eigenstate.

A. Type-II Dirac semimetals

To compare anomalous Hall response of a type-I DSM with
type-II DSM, we first review the response in the type-II DSM
as discussed in Ref. 51. The linearized low-energy model
Hamiltonian of a type-II Dirac semimetal is given by51

HII(k) = v(−kxτzσy + kyτzσx + kzτyσ0), (5)

where v is the quasiparticle velocity and τ ’s and σ’s are or-
bital and spin degrees of freedom of the corresponding model.
Eq. (5) contains single Dirac node without any tilt at Γ point
and possesses mirror symmetry in the yz plane and xz plane.

In what follows, we consider a magnetic field in the xz
plane as B = B(sin θ, 0, cos θ) where θ is the angle between
the z axis and B. This leads to the Zeeman term

HII
zmn(θ) = b cos θσz + b sin θσx, (6)

where b = gµBB, g is the Lande g factor and µB is the Bohr
magneton. For simplicity, we ignore orbital coupling of the
magnetic field to the Dirac electrons. In the presence ofHII

zmn,
the single Dirac node splits into two Weyl nodes with opposite
chirality located at kz = ±b/v. For a fixed B, the location of
these Weyl nodes does not move as we vary θ as clearly seen
from Fig. 4. However, the Weyl nodes interchange their topo-
logical charge with each other as θ crosses mirror symmetric
value, i.e., θ = π/2. This fact will be manifested in the Hall
conductivity.

To provide an intuitive understanding of the anomalous
behavior of the Hall conductance (σxy) related to the mir-
ror anomaly, we block-diagonalize HII(k) + HII

zmn(θ) by
rotating the spin quantization axis along the direction of B
and using similarity transformations51 σx,y → τzσx,y and

τx,y → σzτx,y , we obtain

H2×2 = vky cos θσx − vkxσy +mrσz, (7)

where mr = b + rv
√
k2y sin2 θ + k2z with r = ±. With this,

the z-component of Berry curvatures of lowest two bands read
off

Ωz(k)± =
v2 cos θ(b± vk2z√

k2y sin2 θ+k2z
)

4ε3k,±
, (8)

where εk,± =
√
v2k2x + v2k2y cos2 θ +m2

±. For Fermi en-
ergy in the middle of the gap, i.e., εF = 0, the contribution
from both the Berry curvatures Ωz(k)+ and Ωz(k)− lead to

σxy(θ) =
e2

h

b

vπ
sgn(cos θ) (9)

Evidently at θ = π/2, the σxy vanishes due to mirror symme-
try. However, for θ → π/2, it does not vanish from both side
of θ = π/2. This fact is called mirror anomaly analogous
to the parity anomaly57,58 in a massive (m) Dirac Fermion
with Hall conductivity σxy = e2

2hsgn(m). Thus we show that
the anomalous Hall conductivity described in Eq. (9) indicates
mirror anomaly in the linearized type-II DSMs. The AHC as
a function of θ for type-II DSMs is depicted in Fig. 2. The
sign change of AHC at θ = π/2 can be attributed to the in-
terchange of topological charge of the Weyl nodes with each
other at the mirror symmetric plane. It is worth pointing out
that the addition of cubic term (k2z − k2x)kyτzσz in Eq. (5)
breaks mirror symmetry, hence step-function like singularity
in the anomalous Hall conductivity becomes broadened across
the mirror symmetric plane51.

B. Type-I Dirac semimetals

Having discussed the Hall response in a type-II DSM, we
now investigate if similar physics holds in a type-I DSM. To
study this, we consider a magnetic field rotated in the xz plane
as before. The Zeeman field term can be written as52

HI
zmn(θ) = b sin θ

(τ0 + τz)

2
σx + b cos θτ0σz. (10)

To compare with the results obtained from the linearized
form of the type-II Hamiltonian in Eq. (5), we first neglect
the cubic terms C(k) and D(k) in Eq. (1). Note that, in this
case, a pair of momentum-resolved energy degenerate Dirac
points occur at (0, 0,±k0z). The presence of magnetic field in
the z-direction (θ = 0) lifts the degeneracy of the four bands
at each Dirac point and leads to a double pair of Weyl points
along the same axis as shown in Fig. 1b. These four Weyl

points are located at (0, 0,±
√
±Bz+M0

Mz
). However, for θ 6=

0, the rotated magnetic field gives rise to momentum resolved
Weyl points that move in the energy momentum phase space
as θ is varied. First, we compute the Hall conductance of the
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FIG. 3. (Color online) (a)-(b) depict z component of the Berry cur-
vature (Ωz(k)) at θ = π/4 in kx − ky plane for lowest two bands
of type-I Dirac semimetal respectively. Here we have neglected the
cubic terms of the Hamiltonian described in Eq. (1). (c) depicts the
normalized AHC for type-I DSM in the absence of cubic terms.

Hamiltonian in Eq. (1) (with C = D = 0) when the magnetic
field is along the z-direction. This particular case allows us to
write HI +HI

zmn(θ = 0) in the block-diagonalized form as

Hr = [M(k)σz −A1kyσy + r(A1kxσx + bσ0)], (11)

where r = ± are the two eigenvalues of τz . Then the z com-
ponent of the Berry curvatures of the lowest two bands turn
out to be

Ω(k) = ∓
(M0 +M‖k

2
‖ −Mzk

2
z)A2

1

4E(k)3
, (12)

where E(k) =
√
M(k)2 +A2

1(k2x + k2y). Evidently, Ω for
the lowest two bands are equal and opposite in sign. Thus
for the Fermi level (εF ) in the middle of the band spectrum,
the sum of the two Berry curvatures vanishes, and so does the
AHC. This is in contrast to the case of type-II DSM, where the
magnetic field along z gives finite conductivity (see Fig. 2).
We next move to the case of rotated magnetic field (θ 6= 0),
but still within the linearized Hamiltonian. This case does
not allow us to express HI + HI

zmn(θ) in a block-diagonal
form. Thus we compute Hall conductance numerically using
Eq. (4). The total contribution to the AHC in type-I DSM
comes from the region between the Weyl nodes. Since in our
case, type-I DSM possesses four Weyl nodes in the presence
of B, there exist three such regions. Fig. 3(a)-(b) illustrate
Ω(k) of the lowest two bands for arbitrary θ (θ = π/4) for
a particular kz value. It turns out that the Ω(k)’s are oppo-
site in sign but unequal in magnitude as opposed to the case
of θ = 0. Thus, the sum of the Berry curvatures gives rise to
finite contribution to the AHC as shown in Fig. (3c). It is clear
from the figure that the magnitude of AHC changes smoothly
across the mirror symmetric angle θ = π/2. We furthermore
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FIG. 4. (Color online) (Left) Schematic diagram of the mirror sym-
metric plane (yz) and the applied magnetic field is rotated in xz plane
perpendicular to the mirror symmetric plane. (Right) depicts the po-
sition of the rightmost Weyl node as a function of θ for type-II (Upper
curve) and type-I (Lower curve) Dirac semimetals. It is clear that the
position of Weyl node is changing with the rotation of magnetic field
in type-I DSM whereas the position of Weyl node remains same in
type-II DSM. The values of the parameters are same as mentioned in
caption of Fig 1.

checked that, for magnetic field in the xy plane, Ω’s for each
band identically vanishes. Thus, indeed, the low-energy lin-
earized Hamiltonian of type-I DSM does not show any sig-
nature of mirror anomaly and this is in contrast to the type-II
DSM where the linearized Hamiltonian produces a sharp step-
function like signature in the AHC at the mirror symmetric
angle θ = π/2.

Including the cubic terms C(k) and D(k) in Eq. (1) does
not allow simple block-diagonal form for the Hamiltonian
even for the magnetic field along the z-direction. Thus we
again numerically find eigenstates of HI + HI

zmn(θ) and use
them in Eq. (4) to obtain AHC. Fig. 5 shows the anoma-
lous Hall conductivity for the full Hamiltonian in Eq. (1) as
a function of θ. It is clear from the figure that magnitude of
AHC changes smoothly as the angle θ approaches π/2 and
becomes zero at θ = π/2 as a manifestation of mirror sym-
metry. After passing through the mirror symmetric angle,
AHC changes sign from positive to negative and its magni-
tude increases smoothly. Thus, in contrast to type-II DSM, in
which the behavior of AHC as a function of the polar angle
θ of the applied magnetic field is akin to a broadened step-
function centered at the mirror symmetric value θ = π/2, in
type-I DSM the AHC in the presence of the cubic terms of
the Hamiltonian, smoothly evolves as a function of the polar
angle, without showing any evidence of mirror anomaly. In
order to get a deeper understanding of our result we plot the
position of a representative Weyl node (the Weyl node located

at (0, 0,
√
−Bz+M0

Mz
) for θ = 0) of Eq. (1) in the presence of

a magnetic field as a function of θ as shown in Fig. 4. Evi-
dently, the positions of the Weyl points change with the angle
(θ) smoothly in such a way that the separation between the
opposite chirality Weyl nodes also changes smoothly. That is
why the magnitude of AHC varies smoothly across the mirror
symmetric value of the polar angle θ of the applied magnetic
field.
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FIG. 5. (Color online) Normalized anomalous Hall conductivity of
type-I Dirac semimetal as a function of θ for both the low energy
Hamiltonian (Eq. (1)) and the full lattice model (Eq. (13)). Here, θ is
the angle between z axis and the applied magnetic field rotated in xz
plane, see Fig 4. The sign of AHC changes at the mirror symmetric
angle (θ = π/2) while the magnitude evolves smoothly. The results
of the low energy Hamiltonian and the full lattice model are qualita-
tively consistent, as is expected for anomalous Hall effect. The val-
ues of the parameters of the low energy model of Eq. (1) are given in
caption of Fig. 1. The values of the parameters for the lattice model
in Eq. (13) are taken so as to be consistent with the low energy model
of Eq. (1).

So far, we have used the low energy Hamiltonian given in
Eq. (1) to calculate the AHC in the presence of a rotating ex-
ternal magnetic field. The low energy Hamiltonian is useful
because it allows, in some cases, to analytically evaluate the
Berry curvatures, and also to compare the results with the low
energy treatment of type-II DSM given in Ref. 51. To con-
firm our main conclusion – the absence of mirror anomaly
signature in AHC in type-I DSM (e.g., Cd3As2, Na3Bi) as a
function of rotating magnetic field – we now use the follow-
ing lattice model for a type-I DSM valid in the first Brillouin
zone. The lattice model for type-I DSM can be written as,26

H(k)= [M − txy(cos kx + cos ky)− tz cos kz]τzσ0 +

A1 sin kxτxσz −A1 sin kyτyσ0 + (β1 + γ1) sin kz(cos ky

− cos kx)τxσx − (β1 − γ1) sin kz sin kx sin kyτxσy (13)

where M , txy , tz , A1, β1 and γ1 are real constants. As shown
in Fig. 5 the behavior of AHC from the full lattice model
given in Eq. (13) is qualitatively consistent with the behav-
ior of AHC from the low energy model given in Eq. 1. In
particular the anomalous Hall conductivity smoothly evolves

as a function of polar angle θ near the mirror symmetric value
θ = π/2.

IV. CONCLUSION

In conclusion, quantum anomalies often manifest in observ-
able consequences in condensed matter realizations of quan-
tum systems such as Dirac and Weyl fermions. The most
well known example is the chiral anomaly, which implies the
non-conservation of chiral charge in Weyl semimetals in the
presence of parallel electric and magnetic fields, resulting in
observable signatures such as negative longitudinal magne-
toresistance and planar Hall effect. Recently it has been ar-
gued that mirror symmetry in type-II DSMs across certain
lattice planes constrains the behavior of the anomalous Hall
effect with a rotating magnetic field. In particular, it has
been shown that, due to an emergent mirror symmetry, the
linearized Hamiltonian of the type-II DSMs gives rise to a
step-function dependence of the anomalous Hall conductiv-
ity on the sign of the departure of the polar angle (θ) from
the mirror symmetric value θ = π/2 of the applied magnetic
field. This behavior, termed mirror anomaly in analogy with
the similar behavior of anomalous Hall conductivity due to
parity anomaly in 2D systems of massive Dirac fermions, has
raised the interesting question if this behavior is generic for
DSMs as negative longitudinal magnetoresistance and planar
Hall effect.

To answer this, we have computed the anomalous Hall con-
ductivity for both type-I and type-II Dirac semimetals in the
presence of an external magnetic field applied perpendicu-
lar to the mirror symmetric plane and rotated in the normal
plane. Interestingly, we find that while the type-II DSMs
possess mirror anomaly in AHC (defined as a step-function
dependence of the AHC on the polar angle of the applied
magnetic field applied perpendicular to the mirror symmet-
ric plane), type-I DSMs show no such step function like be-
havior in AHC. Within the linearized Hamiltonian of type-I
DSM, the AHC vanishes even in the absence of time-reversal
symmetry (applied magnetic field is along z direction). In-
cluding cubic terms, we find that the AHC is non-zero in the
presence of applied magnetic field, but evolves smoothly with
the polar angle across the mirror symmetric value θ = π/2,
showing no evidence of mirror anomaly. In contrast to chiral
anomaly, the observable consequences of mirror anomaly in
DSMs are thus not generic and can be used to distinguish be-
tween the types of DSMs in experiments. More generally, we
have predicted the behavior of the anomalous Hall conductiv-
ity for type-I DSMs such as Cd3As2 and Na3Bi which can be
tested in experiments.
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