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Since Ginzburg and Landau’s seminal work in 1950 superconducting states have been classified
by the hierarchy of the fundamental length scales of the theory; the magnetic field penetration
lengths and coherence lengths. In the simplest single-component case they form a dimensionless
ratio κ. The model was generalized by Ginzburg for anisotropic materials in 1952. In this paper
we expand the above length scale analysis to anisotropic multi-component superconductors, that
can have multiple coherence lengths as well as multiple magnetic field penetration lengths, leading
to unconventional length scale hierarchies. We demonstrate that the anisotropies in multi-band
superconductors lead to new regimes with various mixed hierarchies in different directions. For
example, a regime is possible, where for a field applied in a certain direction coherence lengths are
smaller than the magnetic field penetration lengths in one of the perpendicular directions, where
as the penetration lengths are larger in the other direction. Examples are shown of a new regime
where vortex cores overlap in one direction, resulting in attractive core-core interaction, while in the
orthogonal direction the magnetic field penetration length exceeds the coherence lengths leading to
dominance of repulsive current-current interaction resulting in an unconventional magnetic responce.

I. INTRODUCTION

The goal of this paper is to calculate and classify
the coherence and magnetic field penetration length hi-
erarchies and their effects on the magnetic properties
of anisotropic multiband superconductors. The origi-
nal Ginzburg-Landau theory1 classified superconductors
by a single number, the Ginzburg-Landau parameter
κ = λ/ξ, constructed from the ratio of the two funda-
mental length scales of the classical Ginzburg-Landau ef-
fective field theory; magnetic field penetration length λ
and coherence length ξ. Using this framework they iden-
tified two regimes in an externally applied magnetic field;
κ = λ/ξ < 1 where the free energy of a transnationally-
invariant superconductor-to-normal interface was posi-
tive and κ = λ/ξ > 1 where the interface energy was
negative [in the original paper the boundary (or criti-

cal) value of κ was 1/
√

2, we have absorbed the factor√
2 into the definition of the coherence length]. Later

it was firmly established that for κ = 1, any arbitrar-
ily shaped superconductor-to-normal metal interface in
critical magnetic field has zero energy2–5. Almost imme-
diately after the formulation of the theory, two important
generalisations were discussed. Superconducting materi-
als are in general anisotropic, with coherence and pene-
tration lengths having a directional dependence. A corre-
sponding generalization of the Ginzburg-Landau effective
theory was discussed in6–10. Shortly after the formulation
of Bardeen-Cooper-Schrieffer theory, the superconduct-
ing state was generalized to various non-s paring states.
It was demonstrated that superconducting states in gen-
eral break multiple symmetries and are thus described
by multicomponent Ginzburg-Landau theory. Multiple
components could originate from several superconducting
components in different bands, even without the break-
ing of multiple symmetries by the superconducting state.

Namely, in11,12 superconductivity models were generlized
to the case of multiple bands. A microscopic derivation
of the two-band generalization of the Ginzburg-Landau
model (using two complex fields), corresponding to su-
perconductivity in different bands, followed shortly1337.

The new regime that is possible in multicomponent
isotropic systems, compared to their single-component
counterparts, originates from some of the coherence
lengths being smaller and others larger than the magnetic
field penetration length14–18. I.e. in the n-component
case ξ1, < ξ2 < ...λ... < ξn−1 < ξn. This regime has been
termed “type-1.5” in the experimental paper19. For ar-
tificially layered systems, the case of more complicated
length scale hierarchies, stemming from different pene-
tration lengths in different layers, were considered20,21.

Hierarchy of magnetic length scales was classified at
the level of London model for anistropic systems. A new
feature that arises in single-component anisotropic model
is the appearance of two magnetic modes associated with
the different polarizations of the magnetic field, leading,
under certain conditions to field inversion22–24. In multi-
band anistropic models the situation is more involved.
In25 it was shown that qualitatively different electro-
magnetic effects arise when both anisotropy and multiple
bands are present. Namely it was demonstrated that a
London model with n bands with different anisotropies,
the magnetic mode hybridizes with Leggett’s modes and
as the result the systems have in general n+ 1 magnetic
modes with different magnetic field penetration lengths.
The magnetic field penetration is characterized by n+ 1
exponents that are different in different directions and
under certain conditions have oscillatory behaviour.

This calls for investigation of these superconducting
regimes including interplay between the coherence and
magnetic field penetration lengths which requires going
beyond the London models. In the present paper we
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present such an analysis by considering the non-liner
Ginzburg-Landau model of the multiband anisotropic su-
perconductors. That is, we discuss the most general sit-
uation when both the magnetic field is characterised by
multiple penetration depths and there are several distinct
and directional-dependent coherence lengths.

The outline of this paper is the following. First we
analyse the normal modes and calculate the coherence
lengths for a given anisotropic multiband model. We then
analyse and classify possible hierarchies of the length
scales. Then we discuss the implications of this for vortex
solutions, the magnetic response of the system and dis-
cuss asymptotic intervortex forces for simple inter-band
couplings. After that we focus on multivortex solutions
and the magnetic response in regimes that are not present
in the isotropic counterpart of the model, nor in the Lon-
don limit of the multiband model considered in25.

II. THE MODEL

We consider the multiband Ginzburg-Landau free en-
ergy for an n-component anisotropic system given by the
free energy in dimensionless units,

F =
1

2

∫
R3

{
n∑
α=1

(
γ−1
ijαDjψα

) (
γ−1
ikαDkψα

)
+ B2 + Fp

}
,

(1)
where Di = ∂i + ieAi is the covariant derivative and
ψα = |ψα| eiθα represents the different superconducting
components, that for example can be superconducting
components in different bands. Greek indices will always
be used to denote superconducting components and Latin
indices will be spatial, with the summation principle ap-
plied for repeated Latin indices only. The anisotropy of
the system is given by γijα which represents a 3 dimen-
sional diagonal matrix for each component,

γijα =

 γxα
γyα

γzα

 . (2)

Fp collects together the potential (non-gradient) terms
which can be any from a large range of gauge invari-
ant terms. The simplest example, and the one we will
mostly focus on, is the standard situation of a clean s-
wave multiband superconductor, with the potential terms
and the Josephson-Leggett inter-band coupling term.

Fp =

n∑
α=1

Γα
4

(
ψ0
α

2 − |ψα|2
)2

−
n∑
α=1

∑
β<α

ηαβ |ψα| |ψβ | cos (θαβ), (3)

where ψ0
α, Γα and η12 are positive real constants. The

second term above is the Josephson inter-band coupling,
where θαβ = θα − θβ is the inter-band phase difference

between components α and β. We especially focus here
on the case where the Josephson term locks all phase
differences to zero in the ground state, thus explicitly
breaking the symmetry from U(1)n to U(1). For a de-
tailed discussion of the microscopic justification of this
kind of multiband Ginzburg-Landau expansion see26.

Furthermore we focus on the two-dimensional case
when the magnetic field depends on the two coordinates
B = B(x, y). Besides that we consider the tetragonal
crystal symmetry and assume that the field is directed
along one of the crystal axes, to be definite B = Bz.
In this case there appear no additional components of
the field. Note that for such magnetic field direction the
anisotropy can be removed by a suitable spatial rescaling,
which has the effect of merely rescaling some of the pa-
rameters in the model. However in the two-band model
such rescaling is not possible, provided the matrices in
2 are linearly independent of each other for each order
parameter field component. By rescaling coordinates
it is now only possible to isotropise one of the bands,
while the others remain anisotropic e.g. for the 1st band
xi → γ−1

1ijxj and Ai → γ1ijAj .

In studying the magnetic response, we primarily fo-
cus on composite vortices (winding in each component is
equivalent) since fractional vortices have infinite energy
in a bulk sample27,28. Hence we can categorise each so-
lution by the winding number N of the complex phase
of both of the condensates. N also dictates the magnetic
flux through the plane which is quantised,

N =
Φ

Φ0
=

1

2π

∫
R2

Bd2x, (4)

where Φ0 is the flux quantum. As discussed the
anisotropy in general breaks the spatial symmetries to
lower subgroups, however there are a few special choices
of parameters, namely the isotropic case which would
lead to the familiar O(2) spatial symmetry in the 2-
dimensional model and also choices that lead to higher
D4 dihedral symmetries for even bands (combined with
an interchange of the fields ψα → ψβ).

We have previously demonstrated that physics, which
has no counterpart in the single-component models,
arises when the anisotropy in each band is not equiva-
lent. This condition leads to multiple magnetic field pen-
etration lengths in the London limit and, under certain
circumstances, to a non-local electromagnetic response
in the nominally local London model25. Importantly,
the non-locality scale in this case is determined by the
strength of inter-band Josephson coupling and has noth-
ing to do with the non-localities of the usual BCS theory,
associated with the Cooper pair dimension29,30.

These unusual electromagnetic properties lead to the
possibility of different length scale hierarchies in differ-
ent directions for anisotropic multi-band superconduc-
tors. As established in the London model25 the system
has multiple magnetic field penetration lengths. There-
fore the new possible hierarchies are:
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• In one direction (r̂) the system has all coher-
ence lengths smaller than all penetration lengths
ξ1(r̂), ξ2(r̂), ..., ξn(r̂) > λ1(r̂), λ2(r̂), ...λn+1(r̂)
(type-1)

• in another direction all penetration lengths
are smaller than the coherence lengths
ξ1(r̂), ξ2(r̂), ..., ξn(r̂) < λ1(r̂), λ2(r̂), ...λn+1(r̂)
(type-2)

• in some directions the hierarchy is mixed, i.e. some
penetration length(s) λi(r̂) are smaller and some
are larger than the coherence lengths ξi(r̂) (type-
1.5)

In an isotropic multiband superconductor, one of the
consequences (although not a state-defining one) of dif-
ferent length scale hierarchies is the following: interac-
tions between two vortices with similar phase windings
is isotropically attractive in the case where all coherence
lengths are larger than the penetration length, due to
domination of core-core interaction. Conversely it is re-
pulsive in the case where the magnetic field penetration
length is larger than coherence lengths, unless there is
a field inversion. In the case where magnetic field pen-
etration length falls between the coherence lengths the
inter-vortex interactions are attractive at longer and re-
pulsive at shorter range (see14,16–18,31 ). In the multi-
band anisotropic case, the fact that anisotropies cannot
be rescaled even for the fields directed along the crys-
tal axes, suggests that the typology of superconductivity
states require specifying length scale hierarchies for dif-
ferent directions in a plane. That is, since the hierarchy
of the fundamental length scales are different in differ-
ent directions, intervortex interactions in one direction
can be dominated by core-core intervortex forces and in
another direction by electromagnetic and current-current
interaction. To find the range of parameters where such
effect can take place we consider the linearised theory.
Then, to find the actual vortex configurations we need
to use numerics because of the highly complex and non-
linear nature of the problem of investigating these vortex
states.

III. SINGLE-VORTEX SOLUTIONS

To understand the basic properties of the vortex states
in anisotropic multiband superconductors we consider
first the single quanta N = 1 solutions.

For numerical calculations we use the FreeFem++ li-
brary on a finite element space. A conjugate gradient flow
method was utilised to minimise various initial conditions
to find the minimum that is displayed. All initial config-
urations took the form of perturbed spherically symmet-
ric vortices, either with higher winding number or well
separated such that they can still interact in a reason-
able time. The grid dimensions where chosen to be sub-
stantially larger than the scale of the vortices, such that
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FIG. 1: (Colour online) N = 1 one quanta numerical solution
for anisotropy in one band with no Josephson coupling Γ1 =
Γ2 = 2, η12 = 0, γ−1

1x = 2, γ−1
1y =

√
0.7 and γ2x = γ2y = 1. (a)

Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c)
E energy density, (d) |ψ1|2, (e) |ψ2|2, (f) θ12 phase difference.

vortices do not interact with boundaries. We have con-
sidered many parameters in our investigation and have
selected some particular choices that demonstrate the key
behaviour of the systems we are interested in.

The initial conditions used for introducing both single
and multi quanta vortices, when well separated, can be

written ψα =
(∏N

k=1 ψ
(k)
α (x)

)
/uN−1

α , where uα is the

ground state (vacua) value for the magnitude and the ra-

dial ansatz for a vortex at the origin is ψ
(k)
α (0) = fα(r)eiθ.

The profile functions have the limits fα(0) = 0, fα(∞) =
uα.

Using the above initial guess, along with perturba-
tions to ensure the radial symmetry is broken, we min-
imise using the conjugate gradient flow algorithm to find
the true minimal energy solutions for single quanta, sim-
ilar to those displayed in figures 1, 2 and 3. From these
solutions it is clear that the hierarchy of the length scales
associated with matter fields and magnetic fields can be
different in different directions.

As with the strong type-2 case25, we observe field inver-
sion (negative magnetic field). Additionally we observe
that the field inversion is present when the Josephson
coupling is set to zero (η12 = 0) in figure 3, but also
that the mode that mediates the negative magnetic field
become more long range but also weaker.

The main conclusion that can be drawn from the
single-vortex solutions presented in this section is that
the core can extend beyond the flux-carrying area in cer-
tain directions while being smaller than the magnetic
field localization in other directions, as seen in figure 2.
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FIG. 2: (Colour online) N = 1 one quanta numerical solution
for very strong anisotropy in opposite bands with Josephson
coupling and different parameters Γ1 = 4,Γ2 = 0.5, η12 = 1,
γ−1
1x = γ−1

2y = 4, γ−1
1y = γ−1

2x = 0.5. (a) Bz magnetic field, (b)
|Bz| − Bz negative magnetic field, (c) E energy density, (d)
|ψ1|2 (e) |ψ2|2, (f) θ12 phase difference. 2
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FIG. 4: (Colour online) N = 4 four quanta numerical so-
lution for anisotropy in one band exhibiting a chain solu-
tion Γ1 = Γ2 = 2, η12 = 0.5, γ−1

2x = 2, γ−1
2y =

√
0.7 and

γ1x = γ1y = 1. (a) Bz magnetic field, (b) |Bz| − Bz negative
magnetic field, (c) E energy density, (d) |ψ1|2, (e) |ψ2|2, (f)
θ12 phase difference.

FIG. 3: (Colour online) N = 1 one quanta numerical solution
for anisotropy in both bands with no Josephson coupling Γ1 =
4,Γ2 = 0.5, η12 = 0, γ−1

1x = γ−1
2y = 2, γ−1

1y = γ−1
2x =

√
0.7. (a)

Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c)
E energy density, (d) |ψ1|2, (e) |ψ2|2, (f) θ12 phase difference.

IV. VORTEX INTERACTION ENERGIES
WITHIN THE LINEARISED THEORY

In this section we consider the fundamental length
scales by performing an asymptotic analysis and linearis-
ing the Ginzburg-Landau model near its ground state.
We consider a system where the global minima occurs
at (|ψα| , θαβ) = (uα, 0) and uα ≥ 0. The trivial ground
state solution is then given to be ψα = uα, A = 0 and
θαβ = 0.

As we are interested in asymptotic interactions be-
tween vortices, we consider leading-order terms in the
free energy which are quadratic in the small fluctua-
tions of the vector field A and the real scalar fields
εα = |ψα| − uα and θ12. While for asymptotic inter-
vortex forces in the standard isotropic s-wave multiband
superconductor it can be assumed that θ12 = 015,32, this
is no longer the case for anisotropic systems, as gradients
of the phase difference and the magnetic field are coupled
due to the anisotropy25. The general leading-order terms
in free energy can be calculated as follows,

Flin =

n∑
α=1

(
γ−2
α ∇εα · ∇εα

)
+

1

2

n∑
α=1

n∑
β=1

εαHαβεβ +

n∑
α=1

(γ̂2
αjα · jα) +

1

2
(∂1A2 − ∂2A1)

2
+

n∑
α=1

∑
β<α

Jαβθ
2
αβ . (5)

Here jα are the partial superconducting currents

jα =
1

2e
γ̂−2
α (∇θα − eA) , (6)

where have set ~ = c = 1, γ̂k are coefficients charac-
terizing the contribution of each band to the Meissner
screening, A is the vector potential and Jαβ the Joseph-
son coupling. Additionally H is the Hessian of the po-

tential term Fp (|ψα|) evaluated about the field vacuum
values (uα),

Hαβ =
∂2Fp

∂ |ψα| ∂ |ψβ |

∣∣∣∣
(uα)

. (7)

If we consider the linear free energy in 5, the vector
potential A and the phase difference θαβ are decoupled
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from the magnitudes of the scalar fields |ψα|2. Due to this
decoupling we can see that 5 is split into two independent
parts. That is the London-like energy is given by the last
three terms and the first two terms yield the contribution
of scalar fields. The London-like part of the free energy
has rescaled parameters which are related to that of the
Ginzburg-Landau functional Eq.(1) by Jαβ = ηαβuαuβ
and γ̂−2

α = (2euα)2γ−2
α , where the spatial matrix indices

are suppressed for γ̂ in 6. Note that due to being rescaled
by the uα, if the vacuum value for the condensate magni-
tudes is not known analytically (for example in the case
of non-zero Josephson coupling) then γ̂α also can’t be
known analytically.

As noted above, the magnetic and phase difference
modes decouple from the condensate magnitudes and
form an alternative London model, that has already been
considered in25. For completeness we reproduce here the
solutions to the linearised alternate London equations
from that paper. Ultimately if we reduce to the sim-
plest case of n = 2, the London model leads to multiple
modes being produced for both the magnetic field B and
the phase difference θ12. In the London model25, these
modes take the form,

Bz(r, ϕ) = Φ0

(
h1(ϕ)

e−k1r√
k1r
− h2(ϕ)

e−k2r√
k2r

)
, (8)

hj(ϕ) =
k2
j (γ̂−2

1x γ̂
−2
2x γ̂

2
Lx cos2 θ + γ̂−2

1y γ̂
−2
2y γ̂

2
Ly sin2 θ)− k2

0

a(k2
1 − k2

2)
,

(9)

where the k’s are merely the wavevectors that are pro-
duced from the Fourier transform used to find the solu-
tion and r,θ represent the physical space in polar coordi-

nates and γ̂2
Li =

(∑
α γ̂

−2
αi

)−1
.

k2
1,2 =

−b±
√
b2 − 4ac

2a
, (10)

where,

a =
(
γ̂−2

1y cos2 θ + γ̂−2
1x sin2 θ

) (
γ̂−2

2y cos2 θ + γ̂−2
2x sin2 θ

)
,

(11)

b = γ̂−2
1y γ̂

−2
2y γ̂

−2
Lx cos2 θ + γ̂−2

1x γ̂
−2
2x γ̂

−2
Ly sin2 θ

+ k2
0

(
γ̂−2
Ly cos2 θ + γ̂−2

Lx sin2 θ
)
, (12)

c = k2
0 γ̂

−2
Ly γ̂

−2
Lx . (13)

Note that there is a four fold symmetry in equation 8
around the vortex solution, which matches the maximal
general symmetry of the original free energy.

Comparing with the numerical results of the previous
section, one can see that distributions of magnetic field
and the phase difference θ12 are qualitatively similar to
that of the London model prediction. Thus we suggest
to use the pattern of London model solution to approxi-
mate the field obtained in the full non-linear model, when
matched with a general profile function b(r) which is a

monotonic function running from b(0) = 1 to b(∞) = 0:

B = b(r)Φ0

(
h1(ϕ)

e−k1r√
k1

− h2(ϕ)
e−k2r√
k2

)
. (14)

However the London model symmetries say little about
the behaviour of the scalar fields (condensate magni-
tudes). In the linearised theory the order parameter
amplitudes decouple from the magnetic field and phase
difference in this model. From the numerical solutions
obtained for the single-quantum vortex in the previous
section we get that the amplitudes can be well descried
by the axially-symmetric solutions in the rescaled coor-
dinates xi → γijαxj ,

ψ1 = f1 (r1) eiθ1 , ψ2 = f2 (r2) eiθ2 , (15)

where rα =
√
γ2
αxx

2 + γ2
αyy

2. Here fα(rα) are real profile

functions with the boundary values fα(0) = 0, fα(∞) =
uα which is dependent on the potential Fp. We ex-
pect that this approximation is accurate when inter-
condensate couplings do not dominate. However when
used in numerics even in the regime with strong Joseph-
son coupling it provides very good initial guess for the
solutions.

The phase of each of the condensates in Eq.(15) can be
written θ1 = (θΣ + θ12) /2 and θ2 = (θΣ − θ12) /2, where
θΣ = θ1 + θ2. The phase difference symmetry is deter-
mined in a similar way to the magnetic field above from
the London model, equipped with an additional profile
function. The phase sum however is determined entirely
by the gauge choice we make along with the chosen wind-
ing number.

Here we focus on the effects which appear beyond the
London model due to the spatial variations of density
fields, i.e. at the scales determined by coherence lengths
and especially on their effect on the vortex states. To
that end, for the model in question, one should analyse
H the Hessian of the potential term Fp (|ψα|), which ap-
pears in eq. 5 (for a detailed discussion in the istropic
counterpart of the model see31,32) . The remaining part
of the free energy, once the decoupled London part is
dealt with, is dependent on the magnitude of the scalar
fields alone. In general these scalar fields εα are coupled
through the Hessian Hαβ . This coupling can be simpli-
fied by diagonalising the Hessian in 7 using it’s eigenvec-

tors vα =
(
v1
α, v

2
α

)T
and corresponding eigenvalues µα.

This leads to a linear combination of the fields χ where

(ε1, ε2)
T

= χ1v1 + χ2v2. In the isotropic case this would
lead to a simple linear PDE for each decoupled field χ.
However the non-trivial anisotropy leads to additional
cross terms which have the form of gradient couplings
between the fields χα. Note that these fields cannot in
general be thought of as the individual condensate am-
plitudes. Then the part of free energy which depends on
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the order parameter amplitude fields χ1,2 becomes,

F conlin =
1

2

2∑
α=1

(
γ̃−1
αij∂jχαγ̃

−1
αik∂kχα +Qij∂iχ1∂jχ2 + µ2

αχ
2
α

)
(16)

where Qij = (v1
1v

1
2γ

−2
1ij + v2

1v
2
2γ

−2
2ij ) which vanishes in the

isotropic case, due to v1 · v2 = v1
1v

1
2 + v2

1v
2
2 = 0 and

γ̃−2
1 = γ−2

2 .
The presence of tensor Qij in the anisotropic case leads

to rather involved expressions for length-scales in general,
even in the simplest minimal model of a two-band super-
conductor Eq. 3. In order to consider the technically sim-
plest case it is instructive to focus on the U(1)n model,
namely the regime of zero Josephson coupling η12 = 0. In
this case the interband phase difference degree of freedom
becomes massless and decouples from the magnetic field.
In this case we have only a single magnetic field although
directional-dependent penetration length λL. Later, we
will return the case of finite Josephson coupling. If we re-
turn to a general number of bands we have the following
linearised contribution to the free energy

F conlin =
1

2

n∑
α=1

(
γ−1
αij∂jεαγ

−1
αik∂kεα + µ2

αε
2
α

)
(17)

where µ2
α = 1

2Γαψ
0
α

2
. From this linearized theory one

can extract long-range core-core contribution to inter-
vortex forces by generalising the procedure from32,33 to
the multicomponent anisotropic case. Namely we first
find the equations of motion from the contribution to the
free energy from equation 17. We then spatially rescale
each of these equations such that r → rα for the equa-
tion dependent on εα. Note that εα is only dependent
on this quantity due to our approximation presented in
15. We then wish to replicate the asymptotics of the
vortex scalar fields in the linear system above by includ-
ing a point source ρψ such that our system of decoupled
linearised equations become the familiar wave equations,

(
�α + µ2

α

)
|ψα| = ρα (18)

where �α is the rescaled d’Alembert operator such that

x → γαxx and y → γαyy or r → rα =
√
γ2
αxx

2 + γ2
αyy

2.

We have thus acquired multiple decoupled wave equa-
tions that are of the form of that considered in33. We
follow the procedure presented in detail there for solv-
ing this equation and finding the corresponding inter-
action energy. We will not reproduce the details here,
see Refs32,33 for further detail. This will lead to a point
source of the form ρα = qαδ(x) and yields the long-range
interaction energy in the form of modified bessel func-
tionsK0 that exponentially decay at the coherence length
scales (which are the inverse masses µα of the fields of
the above linearised theory). The resulting core-core in-
teraction energy is,

Ecore−coreint = − q
2
1

2π
K0 (µ1r1)− q2

2

2π
K0 (µ2r2) (19)

where K0 is the Macdonald function. The core-core
interaction is attractive and contains multiple coherence
lengths, as is already understood for multi-band models.
Adding the interaction which originates from magnetic
and current-current forces, calculated in25, gives a com-
plete picture of the long-range forces between the com-
posite vortices:

Eint =
m2

1

2π
K0

(
λ−1
L r
)
− q

2
1

2π
K0 (µ1r1)− q

2
2

2π
K0 (µ2r2) (20)

The first term in Eq.(20) represents the linear interaction
of the magnetic origin that has the range of the London
penetration length, given from 10 λ−1

L = −ik−1
1 . In the

limit of vanishing Josephson coupling there is only one
magnetic length scale (see detail in25):

k1 =
i
√
γ̂−2

1y γ̂
−2
2y γ̂

−2
Lx cos2 θ + γ̂−2

1x γ̂
−2
2x γ̂

−2
Ly sin2 θ√(

γ̂−2
1y cos2 θ + γ̂−2

1x sin2 θ
) (
γ̂−2

2y cos2 θ + γ̂−2
2x sin2 θ

)
(21)

We stress that in general (when the Hessian is not diago-
nalised) these interaction terms can not be directly asso-
ciated with a particular band, but are formed from com-
binations of parameters from all the bands. The conden-
sate interaction terms are attractive, however with coher-
ence lengths being rescaled by the anisotropy and hence
are directionally dependent. The magnetic field however
is repulsive, with it’s directional dependence given by the
anisotropies in the two condensates. If we reintroduced
the Josephson term however we would observe an addi-
tional magnetic/current-current interaction contribution,
associated with a new magnetic mode25, with a more
complex directional dependence, and also a non-trivial
form for µ2

α.
We now consider the possible fundamental lengths

scale hierarchies for a two band superconductor with no
Josephson inter-band coupling and general anisotropy.
For this purpose we analyse the interaction energy be-
tween two vortices separated by a given distance along
the x and y directions. The above parameters µα give the
exponential decay of a small perturbation in the modu-
lus of the complex superconducting field components and
thus coherence lengths: (cf the analysis in the isotropic
case15,32,

ξαi = µ−1
α γαi = Γ−1

α u−1
α γ̂αi (22)

As we are purely interested in the difference between the
coherence lengths in the two directions and not the ab-
solute scales, we can choose an arbitrary spatial rescal-
ing without loss of generality. It is easiest to work with
γ̂Lx = γ̂Ly = 1, such that the magnetic field penetration
length becomes 1 in both the x and y directions. This
leads to the following relation γ̂−2

2x = 1 − γ̂−2
1x and thus

for the two band case, leaves us with effectively 4 param-
eter choices µ1, µ2, γ1x and γ1y such that our correlation
lengths are ξ1i = µ1γ1i and ξ2i = µ2γ2i. Finally this
leads to the following interaction energies,
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Exint =
m2

1

2π
K0 (x)− q2

1

2π
K0

(
ξ−1
1x x

)
− q2

2

2π
K0

(
ξ−1
2x x

)
(23)

Eyint =
m2

1

2π
K0 (y)− q2

1

2π
K0

(
ξ−1
1y y

)
− q2

2

2π
K0

(
ξ−1
2y y

)
(24)

At large radial distance, the interaction energy Eint
is dominated by the mode with the longest coher-
ence/penetration length. In 24 the magnetic field pen-
etration length has been rescaled by a spatial rescaling
such that λ−1

L = I and with loss of generality set uα = 1
as any change in uα can be absorbed into Γα and γα. For
the condensate correlation lengths ξαi, are directionally
dependent. The new feature that appears in the system
in question is that they can be longer or shorter than
the magnetic field penetration length in various direc-
tions, leading to different hierarchies in one direction as
opposed to another. We outline below that even with no
interband coupling, there are new regimes in the param-
eter space where the hierarchies are a mixture of other
more familiar types, that do not exist in the isotropic
case,

• Type-1/Type-1.5 - in the x-direction both co-
herence lengths are larger than the penetration
length of the magnetic field µ−1

1 > γ1x, µ−1
2 >(

1− γ−2
1x

)− 1
2 and in the y-direction there is a mix-

ture of hierarchies µ−1
1 > γ1y, µ−1

2 <
(
1− γ−2

1y

)− 1
2 .

• Type-2/Type-1.5 - in the x-direction both co-
herence lengths are smaller than the penetration
length of the magnetic field µ−1

1 < γ1x, µ−1
2 <(

1− γ−2
1x

)− 1
2 and in the y-direction there is a mix-

ture of hierarchies µ−1
1 > γ1y, µ−1

2 <
(
1− γ−2

1y

)− 1
2 .

• Type-1.5/Type-1.5 - in the x-direction there is a
mixture of hierarchies µ−1

1 > γ1x, µ−1
2 < 1 − γ1x

and in the y-direction there is also a mixture of
hierarchies but in the opposite order µ−1

1 < γ1y,

µ−1
2 > 1− γ1y.

The type 1.5/type 1.5 may look similar to the isotropic
type 1.5 multicomponent system, however the domi-
nant interaction in each band switches between the x
and y direction so the structure of vortex clusters
should not be expected to be the same. One may note
that Type 1/Type 2 is not featured above, this is due
to not having enough parameters, as in the same for-
malism it requires that in the x-direction µ−1

1 > γ1x,

µ−1
2 >

(
1− γ−2

1x

)− 1
2 and in the y-direction µ−1

1 < γ1y,

µ−1
2 <

(
1− γ−2

1y

)− 1
2 . But when combining these inequal-

ities it leads to γ−1
1x < γ−1

1y and −γ−1
1x < −γ−1

1y which is a
contradiction. Note that this statement applies only to
the simplest Josephson-decoupled model, but clearly that

hierarchy of the length scales is possible in more general
models.

We note that the addition of the Josephson coupling
above would lead to hybridization of the Leggett’s and
London’s modes25 and thus to an additional penetration
length for the magnetic field, which has to be taken into
account when considering inter-vortex interactions. This
leads to non-monotonic field behaviour with field inver-
sion at some distance from the vortex center, just as in
the London model25. For this it is necessary and suf-
ficient to satisfy two conditions: h2 < 0 and k1 > k2,
so that the magnetic mode with negative amplitude can
become dominating at some distance from the vortex.
Importantly, the Josephson term causes Qij 6= 0 in equa-
tion 16. The resulting mixed-gradient terms will lead to
non-trivial inter-vortex interactions.

Finally we reiterate the key point of this section, that
unlike in isotropic multicomponent systems, it is no
longer sufficient to consider the form of Fp alone to deter-
mine the long-range interactions, the crystal anisotropies
must be also be taken into account to determine what
type a system is and different hierarchies of the length
scales in different directions become possible.

V. MULTI-VORTEX SOLUTIONS

In the previous section we demonstrated the interac-
tions between vortices in the Ginzburg-Landau model of
anisotropic superconductor are different from that ob-
tained in the isotropic case and also, in general, dif-
ferent from that in the London model25. These inter-
actions are characterised by different invervortex forces
in different directions. We must also consider the effect
of magnetic field inversion caused by the Leggett mode.
We already know that the magnetic field inversion can
produce weakly bound vortex states even in the strongly
type-2 region of parameter space25. Here we are inter-
ested in a different kind of multi-soliton or multi-quanta
solution, that can be formed at different length scales
due to core-core interactions. To find such bound states,
we consider numerical solutions to the Ginzburg-Landau
energy functional with winding N > 1. All the param-
eters we have selected are not well approximated by the
London limit, considered in the previous paper25. The
numerical scheme used is explained in section III.

We have considered a number of (N = 4) four quanta
solutions with a selection of parameters plotted in figures
4,5,6 that demonstrate chain-like solutions. These are
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FIG. 4: (Colour online) N = 4 four quanta numerical so-
lution for anisotropy in one band exhibiting a chain solu-
tion Γ1 = Γ2 = 2, η12 = 0.5, γ−1

2x = 2, γ−1
2y =

√
0.7 and

γ1x = γ1y = 1. (a) Bz magnetic field, (b) |Bz| − Bz negative
magnetic field, (c) E energy density, (d) |ψ1|2, (e) |ψ2|2, (f)
θ12 phase difference.

FIG. 4: (Colour online) N = 4 four quanta numerical so-
lution for anisotropy in one band exhibiting a chain solu-
tion Γ1 = Γ2 = 2, η12 = 0.5, γ−1

2x = 2, γ−1
2y =

√
0.7 and

γ1x = γ1y = 1. (a) Bz magnetic field, (b) |Bz| − Bz negative
magnetic field, (c) E energy density, (d) |ψ1|2, (e) |ψ2|2, (f)
θ12 phase difference. 3
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FIG. 5: (Colour online) N = 4 four quanta numerical solu-
tion for anisotropy in one band with split parameters across
the two bands allowing a clear chain to form. Γ1 = 4,Γ2 = 2,
η12 = 0.5, γ−1

2x = 2, γ−1
2y =

√
0.7 and γ1x = γ1y = 1. (a) Bz

magnetic field, (b) |Bz| − Bz negative magnetic field, (c) E
energy density, (d) |ψ1|2, (e) |ψ2|2, (f) θ12 phase difference.

the multi-quanta solutions obtained in different regimes
discussed in the previous section. Namely, selecting the
parameters such that a different correlation length dom-
inates in the x and y direction.

In figure 4 we show the distributions of fields generated
by the the cluster of four vortices in the superconductor
whoch has type 1.5 behaviour in the x direction and the
type 2 one in the y direction. The bound states take
the form of chains which increase in length as the wind-
ing number increases. The chain looks similar to a 1.5
type solution with visibly separated fractional vortices in
the first component but with the zeros very close. The
binding of vortices is due to the attractive core-core in-
teraction which dominates in the x-direction. Note that

3
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FIG. 6: (Colour online) N = 4 four quanta numerical solu-
tion for anisotropy in one band with no Josephson coupling,
allowing the chain to breathe out Γ1 = Γ2 = 2, η12 = 0,
γ−1
1x = 2, γ−1

1y =
√

0.7 and γ2x = γ2y = 1. (a) Bz magnetic
field, (b) |Bz| −Bz negative magnetic field, (c) E energy den-
sity, (d) |ψ1|2, (e) |ψ2|2, (f) θ12 phase difference.

the magnetic field inversion occurs at much larger dis-
tances, meaning the field inversion has a much weaker
contribution to the interaction. We also observe that the
separation of the solitons on the end of the chain is higher
and with smaller solitons. Additionally the energy shown
in figure 4(c) has peaks at the ends of the chain.

In figure 5 we show a similar system that is type 1.5/
type-2 but with one of the modes being closer to type-2
regime, so that the vortices are more separated. Note
that for this choice of parameters the additional separa-
tion and energy on the ends of the chain is less noticeable.
Figure 5 shows the parameter set which is closer to type-1
behaviour.

The binding of vortices into the chain is due to core-
core interaction and the existence of long coherence
length in the horizontal direction. At the same time ex-
istence of a short coherence length prevents megavortex
formation: clearly there are spatially separated core sin-
gularities for both parameters. If a vortex is placed above
or below a chain but very close such that non-linear ef-
fects are at play, it will be pulled into the chain, forcing
other vortices out of it’s way.

If other chains or vortices are placed with a large y
separation then they repel, due to the magnetic field pen-
etration length being the largest length scale in this di-
rection and hence dominating at long range. Ultimately
they will form a bound state based on the negative mag-
netic field (the field effect considered in25) however as
shown in the figures this is very weak, so any bound state
will have negligible binding energy.

We interpret the above solutions as having type-2 be-
haviour in the y-direction and type-1.5 in the x-direction
respectively. The new features here are (i) the separation
of bound vortex cores forms in one direction rather than
forming compact clusters (the consequence of the differ-
ent length scale hierarchies in different directions), and



9

3

(a)

y

x

(b)

x

(c)

x

(d)

y

x

(e)

x

(f)

x

FIG. 5: Fig.5

(a)

y

x

(b)

x

(c)

x

(d)

y

x

(e)

x

(f)

x

FIG. 6: Fig.6

(a)

y

x

(b)

x

(c)

x

(d)

y

x

(e)

x

(f)

x

FIG. 7:
FIG. 7: (Colour online) Magnetisation numerical solution
for anisotropy in one band γ1x = 0.7, γ1y = 0.4γ, γ2x = γ2y,
η12 = 0.5 and Γ1 = Γ2 = 2. The contour plots are (a) Bz

magnetic field, (b) |Bz|−Bz negative magnetic field, (c) E en-
ergy density, (d) |ψ1|2, (e) |ψ2|2, (f) θ12 phase difference. The
picture shows a clear tendency for vortex stripes formation
with the stripes being vortex bound states due to core-core
interaction.

(ii) type-2 like behaviour in the direction perpendicular
to the chain.

VI. MAGNETIZATION

The above demonstrated different hierarchies of the
length scales in different directions, as well as the struc-
ture of isolated solutions. We are now interested in the
question of how these chain/stripe solutions enter into
a magnetised sample in experiment. To model the mag-
netisation of a finite domain or sample we must introduce
the external field H (in the previous sections the vor-
tices were created by an initial guess and stayed in the
sample because of negligible interaction with the bound-
ary). Hence in this section we minimize the Gibbs free
energy on a finite domain G = F − 2

∫
R2 H · B d2x. We

impose the condition ∇×A = H on the boundary of the
superconductor. If we then slowly increase the external
field value in steps of 10−2 we can simulate the turning
up of an external field and the subsequent magnetisation
of the theory over our finite domain.

The results of such simulations for the parameters
γ−1

1x =
√

4.5, γ−1
1y =

√
0.7, γ−1

1x = γ−1
1y = 1, Γ1 = Γ2 = 2

and η12 = 0.5 are shown in figure 7. If we consider the
results here we can see that the vortices are interacting
in very different ways in the x and y directions in the
domain. This causes vortex chains to form. The entire
domain from the simulation is plotted and only one value
of external magnetic field is shown. The magnetization
process has the form of a first order phase transition
associated with the sudden entry of a large number of
vortices due to attractive core-core interaction.

Analysing how the chains interact is challenging and

we must use an alternative method.

VII. INTERACTION OF VORTEX CHAINS

In this section we are interested in demonstrating
that chain-like solutions do form in the bulk of super-
conductors subject to an external magnetic field. Also
we discuss how such objects are formed and interact
with each other. We have already demonstrated that a
regime exists in parameter space where vortex solutions
in an anisotropic multiband model tend to form bound
states in some direction while repelling in other direction.
However this does not necessarily mean that clear well-
separated chains can form in a magnetised sample. To
study this we must study the chain solutions themselves,
which is easiest to achieve by studying vortex solutions
in a periodic space.

The easiest way to achieve this is to consider a do-
main that is periodic in one direction (namely the di-
rection that the stripes/chains prefer to form). We
have therefore introduced periodic boundary conditions
in this direction, such that ψα(L, y) = ψα(0, y) and
A(L, y) = A(0, y). The other two boundary conditions
are then just the standard zero normal-current condition.
These boundary conditions allow the correct winding for
map to occur and thus for vortex solutions to traverse the
space. All the winding will be located on the boundaries
with zero normal-current condition due to the periodic
conditions.

We then introduce a 4-quanta solution into the domain
and track what happens as L is varied. Specifically we
are interested in what happens as L is reduced, effectively
squashing our 4-quanta solution and increasing the mag-
netic field density. This is achieved by using a conjugate
gradient flow method as detailed in section III to min-
imise the configuration, then reducing L and minimising
again. This process is repeated until the desired magnetic
field density is achieved. The field configurations for ap-
plying this method are plotted for various parameters in
figures 8 and 9.

There are a few different categories that the various
parameters which give chain like solutions can fall into.
Firstly as the periodic length L is reduced the stripe ho-
mogenises in the x-direction and then continues to ex-
pand into the y-direction, eventually filling the space with
the homogeneous value |ψ|2α = 0.

All the other categories that solutions can fall into ex-
hibit some form of chain splitting as the magnetic field
density is increased. In figure 8 we can see that the fa-
miliar chain solution initially forms and as it is squashed
it buckles forming a zig-zag and then splits into multiple
chains. These multiple chains still have some separation
in the zeroes of the second condensate which interlace
with the zeroes in the other chain. Note that these are
the same parameters as for the magnetisation shown in
figure 7.

In figure 9 we see a similar effect in that the chain starts
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to buckle and splits. However we now see as the magnetic
field density increases that the individual chains repel
each other in a stronger fashion. This leads ultimately to
two well separated stripes. In that case we have the type-
2 magnetic-dominated repulsive interaction in vertical di-
rection and type-1.5 core-core-interaction-dominated in-
tervortex forces in x-direction. Note however that simi-
larly to the extreme type-2 case25 in such a regime there
can appear a small attractive force between stripes due
to field inversion at a wide separation and hence not an
infinite optimal separation.

This behaviour is the best demonstration of the vor-
tices acting very differently in different directions in the
domain. Attracting vortices in one direction onto the end
of the chains and repelling vortices in the other direction.

VIII. CONCLUSION

In conclusion, we have discussed generalisation
of the length-scale-hierarchy-based typology of
superconductors1,6 to the case where both multiple
components and anisotropies are present. In an isotropic
multicomponent case, the earlier discussed regimes
were type-1 where all coherence lengths are larger than
the magnetic field penetration length ξi > λ, type-2
where λ < ξi and a mixed case where some of the
coherence lengths are larger and some are smaller than
the magnetic field penetration lengths (that was termed
earlier “type-1.5”). Besides that one should distinguish
the special zero-measure Sarma-Kramer-Bogomolny
critical point, where all these length scales are equal
and the Bogomolny bound is saturated. We have
demonstrated that in the multi-component case the
length-scale-based typology is quite different from the
anisotropic single-component counterpart6,10. The
considered anisotropic n-band multicomponent system
is characterized by n-coherence lengths that differ in
different directions, ξ1(r̂), ξ2(r̂), ..., ξn(r̂) as well as mul-
tiple directionally dependent magnetic field penetration
lengths λ1(r̂), λ2(r̂), ...λn+1(r̂) (of which there are n + 1
when the Leggett and magnetic modes are hybridized25).
The new feature that arises is that the hierarchies of
these length scales are different for different directions
in a crystal. From the obtained asymptotic intervortex
forces it is clear that vortex structure formation in these
systems should in general be quite complicated and
warrants further study. A new regime that we discussed
in particular is where, for a magnetic field applied in the
z direction, the length scale hierarchy is type-1.5 in the
x-direction and type-2 in y direction. In that regime the
system forms vortex bound states in the form of stripes
or chains, where the intervortex attraction is mediated
by core-core overlap in x-direction while the stripes have
type-2 interaction in the y direction, mediated by the
magnetic and current-current forces. In the language
of interface energies, the system tries to maximize
interfaces in the y direction while in x-direction there

are different interfaces, some of which the system tries
to maximize and some that the system tries to minimize
(i.e. in some of the regime the components clearly forms
a “mega-vortex-like” core extending in x-direction). By
the same token the non-re-scalability of length scale
hierarchies suggests mixed type-1/type-2 regimes where
the system goes into a stripe pattern that maximizes
superconductor-to-normal interfaces in one direction,
while being translationally invariant in a perpendicular
direction. In Ref.25 we gave some simple estimates that
disparity of magnetic field penetration lengths should
arise for realistic multiband materials. Besides crys-
talline anisotropies, the effect of vortex chains formation
due to length scale anisotropies can arise in muliband
system with strains, that can lead to the locally type-1.5
hierarchy of the length scales. This calls for further
calculations regarding which microscopic parameters
realize the above regimes in multiband materials.
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FIG. 8: N = 4 four quanta global minimal energy solutions, with periodicity enforced in the horizontal direction,

is successively squeezed (periodic length is shortened). This squeezing results in an effective increase in magnetic field density.
Note that the Joephson coupling is switched on here, which has a marked effect on the length scales. We observe the chain
buckling and then splitting, with the chains having an optimal separation which remains stable for long run times. The
parameters are Γ1 = Γ2 = 2 γ−2

1x = 4.5, γ−2
1y = 0.7, γ2x = γ2y = 1 and k0 = 1.

FIG. 8: N = 4 four quanta global minimal energy solutions, with periodicity enforced in the horizontal direction, is successively
squeezed (periodic length is shortened). This squeezing results in an effective increase in magnetic field density. Note that
the Josephson coupling is switched on here, which has a marked effect on the length scales. We observe the chain buckling
and then splitting, with the chains having an optimal separation which remains stable for long run times. The parameters are
Γ1 = Γ2 = 2 γ−2

1x = 4.5, γ−2
1y = 0.7, γ2x = γ2y = 1 and k0 = 1.
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FIG. 9: The plots show the minimal energy solutions for a space that is periodic in the horizontal direction where the periodic
length L is continuously decreased, representing an effective increase in magnetic field density. Note that the Josephson term
has been switched off here. The chain starts to buckle and eventually splits into two chains. These two chains ultimately
repel each other becoming well seperated. This demonstrate direction-depdent typology of the superconducting state: it is
type-1.5-like vortex bound states formation in x-direction (dominated by core-core interaction) and type-2-like vortex chain
repulsion in y-direction (dominated by current-current and magnetic interactions).The parameters are Γ1 = Γ2 = 2 γ−2

1x = 4,
γ−2
1y = 0.7, γ2x = γ2y = 1 and k0 = 0.

FIG. 9: The plots show the minimal energy solutions for a space that is periodic in the horizontal direction where the periodic
length L is continuously decreased, representing an effective increase in magnetic field density. Note that the Josephson term
has been switched off here. The chain starts to buckle and eventually splits into two chains. These two chains ultimately
repel each other becoming well seperated. This demonstrate direction-depdent typology of the superconducting state: it is
type-1.5-like vortex bound states formation in x-direction (dominated by core-core interaction) and type-2-like vortex chain
repulsion in y-direction (dominated by current-current and magnetic interactions).The parameters are Γ1 = Γ2 = 2 γ−2

1x = 4,
γ−2
1y = 0.7, γ2x = γ2y = 1 and k0 = 0.
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