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Although spin cycloids and helices are quite common, remarkably little is known about the normal
modes of a spin cycloid or helix with finite length on a discrete lattice. Based on simple one-
dimensional lattice models, we numerically evaluate the normal modes of a spin cycloid or helix
produced by either Dzyaloshinskii-Moriya (DM) or competing exchange (CE) interactions. The
normal modes depend on the type of interaction and on whether the nearest-neighbor exchange is
antiferromagnetic (AF) or ferromagnetic (FM). In the AF/DM and FM/DM cases, there is only a
single Goldstone mode; in the AF/CE and FM/CE cases, there are three. For FM exchange, the
spin oscillations produced by non-Goldstone modes contain a mixture of tangential and transverse
components. For the DM cases, we compare our numerical results with analytic results in the
continuum limit. Examples are given of materials that fall into all four cases.

PACS numbers: 75.25.+z, 75.30.Ds, 78.30.-j, 75.50.Ee

I. INTRODUCTION

Spin cycloids and helices are ubiquitous in the field
of magnetism. They appear in most multiferroics1–3

and in many other materials like rare earths4,5,
intermetallics6–8, and even in some superconductors9,10.
Cycloids with spins in the same plane as the order-
ing wavevector Q and helices (also known as spirals or
proper screws) with spins perpendicular to Q partly sat-
isfy neighboring exchange interactions and some compet-
ing energy like Dzyaloshinskii-Moriya (DM) or competing
exchange (CE) interactions. Since DM interactions are
usually much weaker than the nearest-neighbor exchange
interactions whereas CE interactions are usually compa-
rable, cycloids or helices produced by DM interactions
typically have much longer periods than those produced
by CE. Cycloids and helices have attracted great atten-
tion not only for their accomodating response to com-
peting energies but also for applications based on their
control with electric or magnetic fields11. Such applica-
tions require a deep understanding of the properties of a
spin cycloid or helix.

A cycloid with spins in the xz plane propagating along
unit vector x can be written

Sr = S
(
sin(Qra), 0, cos(Qra)

)
, (1)
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FIG. 1: (Color online) Cycloids with (a) AF or (b) FM
nearest-neighbor coupling, both with M = 10. Spins Sr are
solid arrows, tangents tr are dashed arrows.

where S is the spin and R = ra is the position of site
r. With Sr+M = Sr, the magnetic unit cell contains M
spins with 0 ≤ r ≤ M − 1. For antiferromagnetic (AF)
or ferromagnetic (FM) nearest-neighbor interactions, cy-
cloids with M = 10 are sketched in Fig.1. The tangent
to the cycloid is given by

tr =
(
cos(2πδr), 0,− sin(2πδr)

)
, (2)

where Q = (2π/a)(1/2 + δ)x for AF nearest-neighbor
coupling and Q = (2π/a)δ x for FM nearest-neighbor
coupling. So tr does not alternate sign with the AF mod-
ulation in Fig.1(a).

Also known as a spiral or proper screw, a helix with
spins in the yz plane propagating along x can be written

Sr = S
(
0, sin(Qra), cos(Qra)

)
(3)

with the tangent

tr =
(
0, cos(2πδr),− sin(2πδr)

)
. (4)

Compared to the spin planes of the cycloids in Fig.1,
the spin plane of a helix is rotated by π/2 about z. For
either a cycloid or a helix, we define Q0 = Q− 2πδ/a so
that Q0 = 0 for FM interactions and Q0 = π/a for AF
interactions.

The excitation spectrum of a cycloid or helix provides
a dynamical “fingerprint” of the microscopic interactions
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and anisotropies responsible for its formation. Yet re-
markably little is known about the full spectrum of spin-
wave (SW) modes for a cycloid or helix, especially one
with a finite period on a discrete lattice. This paper stud-
ies simple one-dimensional lattice Hamiltonians for DM
and CE cycloids or helices with either AF or FM nearest-
neighbor exchange. Our work seeks to answer several
questions. Are the mode spectra and SW amplitudes dif-
ferent for the four cases (AF/DM, FM/DM, AF/CE, and
FM/CE) considered? Which SW modes can be observed
by inelastic neutron scattering (INS) and which by opti-
cal spectroscopy? When the period is much larger than
the lattice constant, how is the continuum limit (CL)
approached in these four cases?

This paper is divided into seven sections. Section II
describes the simple one-dimensional models for the four
cases described above. The mode spectra of these modes
are solved in Section III. Section IV describes the method
used to obtain the CL results and the CL solutions for
the AF/DM and FM/DM cases. Section V evaluates the
SW amplitudes for cycloids or helices of finite length in
all four cases. We demonstrate how these SW amplitudes
approach the CL. In Section VI, we discuss the observ-
ability of the SW modes by INS and THz spectroscopy.
Finally, Section VII contains a conclusion. Details of the
CL calculation for the FM/DM case are provided in the
Appendix.

II. MODELS

A one-dimensional lattice Hamiltonian for a DM cy-
cloid or helix is

HDM = −J1
∑
i

Si · Si+1 +D
∑
i

u · (Si+1 × Si), (5)

where neighboring sites i and i+1 are separated by lattice
constant a along the x axis. For local-moment systems,
perturbation theory indicates that the DM vector Du
must lie perpendicular to the bond between two spins so
that u must lie along y or z in Eq. (5), as first shown
by Moriya12 and Keffer13. As a consequence, only cy-
cloids would be allowed. However, the DM vector may
have a component along the bond direction due to orbital
magnetism14 or if magnetic interactions beyond nearest
neighbors are taken into account15.

As a starting point, we define u = y for a cycloid and
u = −x for a helix with DM vector Du. This definition
assures that

Sr × u = −S(−1)Q0ra tr, (6)

Sr × tr = S(−1)Q0ra u (7)

for both cycloids and helices. For either sign of J1, a
cycloid or helix of period Ma is produced by the DM
interaction D when

D = J1 tan(2πδ). (8)

For AF J1 < 0, δ = p/2M where p is the number of 2π
rotations (not counting the AF oscillations) in distance
2Ma. The cycloid or helix is periodic in distance Ma
with Sr = Sr+M if integer p is odd (even) and M is odd
(even). Otherwise, the AF modulation (−1)r will give
Sr = −Sr+M . For FM J1 > 0, δ = p/M where p is the
number of 2π rotations in distance Ma.

A one-dimensional lattice Hamiltonian for a CE cycloid
or helix is

HCE = −J1
∑
i

Si · Si+1 − J2
∑
i

Si · Si+2, (9)

where J2 is the next-nearest-neighbor exchange coupling
between sites i and i+ 2. When |J2| is sufficiently large,
AF exchange J2 < 0 frustrates simple AF or FM order
to produce a cycloid or helix regardless of the sign of
J1. The next-nearest-neighbor exchange J2 produces a
cycloid or helix with period Ma when

J2 = −|J1|
4

sec(2πδ). (10)

For J1 < 0, δ = p/2M and for J1 > 0, δ = p/M as
above. Only collinear AF or FM order is possible when
|J2| < |J1|/4.

In HDM, the classical-spin plane is constrained by
the DM interaction to lie perpendicular to u. But the
classical-spin plane is not fixed by the CE interactions in
HCE. The classical-spin plane can then be constrained
to lie perpendicular to u by adding a small (infinitesi-
mal) easy-plane anisotropy energy −K

∑
i(Si · u)2 with

K < 0.

III. MODE SPECTRA

We solve for the SW modes of these two models by
performing a 1/S expansion about the classical limit
and then diagonalizing a 2M × 2M equation-of-motion
matrix16,17. Taking S = 5/2, the predicted INS inten-
sities S(q, ω) are plotted in Fig.2 for all four cases with
δ = 1/10 (M = 10 with p = 2 and δ = p/2M = 1/10 for
AF interactions or p = 1 and δ = p/M = 1/10 for FM
interactions). Reciprocal lattice units are defined with
q = 2πH/a. Clear signatures are exhibited by the spectra
of cycloids or helices produced by DM or CE interactions.
For CE cycloids and helices, the SW modes always fall
within the first structural Brillouin zone between H = 0
and 1, as can be seen by using symmetry to mirror the
AF/CE frequencies in Fig.2(c) about H = 0.5. For DM
cycloids and helices, the SW branches extend beyond the
first Brillouin zone. For example, three SW branches
arise from H = ±1/10 and H = 0 for the FM/DM case
in Fig.2(b).

Normal modes evaluated at wavevector H = mδ (in-
teger m) can appear in optical measurements since zone
folding maps those wavevectors onto q = 0. To under-
stand the different mode spectra in our four cases, we
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FIG. 2: (Color online) The INS intensity S(q, ω) with q =
2πH/a and δ = 1/10 for (a, b) DM and (c, d) CE cycloids or
helices with either (a, c) AF or (b, d) FM exchange |J1| = 1
meV. For reference, the INS intensities for simple AF or FMs
with D = 0 and J2 = 0 are given in (e) and (f). Frequencies of
modes with significant intensity are drawn as dashed curves.

plot the SW dispersions versus wavevector q in Fig.3.
Any normal mode crossed by two SW branches is doubly
degenerate. In Fig.3(a), only one SW branch crosses Ψ0

because the frequencies of Φ±1 are slightly lower than
that of Ψ0 when δ > 0.

For AF interactions, we obtain two classes of modes
labeled Φ±n and Ψ±n (doubly degenerate for n > 0).
In the AF/DM case, the single Goldstone mode Φ0 cor-
responds to a uniform spin rotation about u. In the
AF/CE case, the three Goldstone modes are Φ0 and Ψ±1.
Their three-fold splitting away from H = 0 is plotted in
the inset to Fig.3(c) and can also be seen in Fig.2(c).
Goldstone modes Ψ±1 are associated with rotations out
of the classical-spin plane, assuming that the easy-plane
anisotropy K vanishes. Of course, this rotation costs en-
ergy in the AF/DM case.

For FM interactions, we obtain only one class of modes
labeled Θ±n (doubly degenerate for n > 0). In the
FM/DM case, the single Goldstone mode Θ0 again cor-
responds to a uniform spin rotation about u. In the
FM/CE case, the three Goldstone modes are Θ0 and
Θ±1 with the three-fold splitting plotted in the inset to
Fig.3(d). As in the AF/CE, the extra Goldstone modes
are associated with rotations of the spin state out of
the classical-spin plane. In all four cases, the Goldstone
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FIG. 3: (Color online) The SW frequencies versus H/δ for
(a, b) DM and (c, d) CE cycloids or helices with either (a, c)
AF or (b, d) FM exchange |J1| = 1 meV. In all four cases,
δ = 1/40 (M = 40 with p = 2 for AF interactions and p = 1
for FM interactions). Closed circles are the normal modes
discussed in the text.

modes are “massless,” meaning that the dispersion is lin-
ear near H = 0. A linear dispersion along the helical axis
was also found by Maleyev18 in his study of itinerant cu-
bic magnets.

IV. CONTINUUM LIMIT

The CL takes δ � 1 or M � 1 so that a period of
the cycloid or helix contains many sites. Consequently,
the spin deviation from one site to the next (neglecting
possible AF oscillations) is small.

Previously, de Sousa and Moore19 found that the CL
mode frequencies in the AF/DM case are:

~ω(Φ±n) = 2S|Dn|, (11)

~ω(Ψ±n) = 2S|D|
√

1 + n2, (12)

where H = nδ = n/M . As seen in Fig.4(a), the numeri-
cal mode spectrum for ~ω/S|D| is close to the predicted

spectrum ~ω/S|D| = 2|n| or 2
√

1 + n2 and the devia-
tions between the numerical and CL results disappear as
M →∞. The CL results imply that ω(Φ±1) = ω(Ψ0) =
2S|D|. For any finite M , we find that ω(Φ±1) < ω(Ψ0)
but the difference ω(Ψ0)− ω(Φ±1) vanishes as M →∞.

Why do the SW modes for M = 20 in Fig.4(a) bend
towards lower frequencies? For any finite M , the SW
frequencies have zero slope when H = 1/4 or H/δ = M/4
(see Fig.2(a)). So for M = 20, the slope of the SW
frequencies approaches zero as H/δ → 5.

We now briefly sketch the CL calculation for the
FM/DM case. Details of this derivation are provided
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in the Appendix. The CL is taken for the d-dimensional
hypercubic Hamiltonian

H = −J1
∑
〈i,j〉

Si · Sj −
∑
〈i,j〉

Dij ·
(
Sj × Si

)
, (13)

where nearest-neighbor sites i and j are connected by
the vectors v = Rj − Ri. In the presence of lattice
translation symmetry, the DM vector Dij = Dv must be
on odd function of v so that Dv = −D−v. This suggests
a simple model with

Dv = D1v +D2 (e× v) . (14)

where v = v/|v| is a unit vector. While D1 can be
nonzero only if the lattice breaks inversion symmetry15,
D2 can be nonzero even when the lattice has an inversion
center. In that case, the unit vector e would be parallel
to an external or internal electric field, like the ferroelec-
tric moment P. Comparing Eqs. (13) and (14) to Eq. (5),
our earlier one-dimensional cycloidal model follows when
v = x, e = z, and D2 = −D. Our one-dimensional
helical model follows when v = x and D1 = D.

With the CL magnetization defined as

M(r) = −gµB
∑
i

Si δ(r−Ri), (15)

the DM Hamiltonian is given by

HDM = −1

2

∑
i,j,v

Dv · [Sj × Si] δRj ,Ri+v

= − Vc
2(gµB)2

∫
ddr

∫
ddr′

∑
v

Dv

· [M(r)×M(r′)] δ(r′ − r− v), (16)

where Vc = ad is the unit cell volume and the Kronecker
delta δRj ,Ri+v is replaced by Vc δ(Rj − Ri − v) in the
limit Vc → 0. The DM Hamiltonian can be written as
the volume integral HDM =

∫
ddr hDM with density

hDM = − Vc
2(gµB)2

∑
v

Dv · [M(r + v)×M(r)]

≈ − Vc
2(gµB)2

M(r) ·
{∑

v

Dv(v ·∇)

× M(r)

}
. (17)

Using Eq. (14) to write∑
v

Dv(v ·∇) = 2aD1∇ + 2aD2(e×∇), (18)

we then obtain

hDM = −D′1 M · (∇×M)−D′2 M ·
{

(e×∇)×M
}

= −D′1 M · (∇×M) +D′2 e ·
{
M (∇ ·M)

+ M× (∇×M)
}

(19)

ℏw
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D
 ta

n-1
(D

/J
1)
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|D
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40
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CL

Y0

F±1

FIG. 4: (Color online) A comparison of the scaled SW fre-
quencies (a) ~ω/S|D| (AF/DM) or (b) ~ω/SD tan−1(D/J1)
(FM/DM) versus H/δ with M = 20 (blue) and 40 (green),
and in the CL (dashed). For the CL, normal modes at integer
n = H/δ are denoted by closed circles.

with D′i = ad+1Di/(gµB)2.
Performing the same procedure for the exchange inter-

action carried out to second order in v, we find HEX =∫
ddr hEX with

hEX = − v0J1
2(gµB)2

∑
v

{
|M|2 + M · (v ·∇)M

+
1

2

∑
α

[
v ·∇Mα v ·∇Mα − |v ·∇Mα|2

]}
= −A

′

2
|M|2

+
J ′

2

{∑
α

|∇Mα|2 −∇2|M|2
}
. (20)

The CL parameters are A′ = adJ1/(gµB)2 and J ′ =
ad+2J1/(gµB)2. For an infinite system, the ∇2|M|2 term
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can be integrated out.
In the Appendix, these CL expressions are used to

derive the ground-state helical (D′1 6= 0, D′2 = 0) and
cycloidal (D′1 = 0, D′2 6= 0) states. Those states are
identical to those found in Section II. The excitations of
the cycloidal or helical state propagate according to the
Landau-Lifshitz equation of motion,

∂M

∂t
= γM× δh

δM
(21)

with gyromagnetic ratio γ = −gµB/~ < 0. We consider
small deviations ∆M = M −M0 from the ground state
by dropping contributions that are quadratic or higher
order in ∆M. Because δh/δM|M=M0

= 0, δh/δ(∆M) is
linear in ∆M and

∂∆M

∂t
= γM0 ×

δh

δ(∆M)
. (22)

Consequently, M0 ·∆M is a constant of the motion and
the time dependence of ∆M must be perpendicular to
M0.

As expected from our numerical results, the SW fre-
quencies are identical for the helical and cycloidal states.
More remarkably, the mode frequencies are independent
of dimension d and given by

~ω(Θ±n) =
SD1

2

J1
|n|
√

1 + n2. (23)

The CL result ~ωJ1/SD1
2 = |n|

√
1 + n2 is com-

pared with numerical results for ~ω/SD tan−1(D/J1) in
Fig.4(b). The difference between the analytic and nu-
merical results disappears as M →∞.

Generally, the CL results for the SW dispersions ωn(q)
depend on the orientation of q and agree with numerical
results only when q is along x. In other directions, the
SWs are softer. This effect was also found in the AF/DM
case19.

The CL results for the SW amplitudes in the AF/DM
and FM/DM cases are described in the next section. We
shall see that the numerical results for a cycloid or helix
of finite length approach those results as δ → 0 or M →
∞. For the AF/CE and FM/CE cases, CL calculations
would require keeping the second-order derivatives of the
magnetization density and have not been performed.

V. SW AMPLITUDES FOR FINITE LENGTH

The spin oscillation ∆S
(n)
r (q, t) at site r produced by

SW mode n with wavevector q is generally given by17,20

∆S(n)
r (q, t) = 2

√
N Re

{
e−iωntδSr(n,q)

}
, (24)

δSr(n,q) = 〈0|Sr|n,q〉, (25)

where |0〉 is the ground state, |n,q〉 is an excited state
containing a single SW with energy ωn(q) at wavevector

q, and Sr is the quantum spin operator at site r. Like the
SW frequency ωn(q), the SW amplitude δSr(n,q) is the
same at wavevectors q = mQ for any integer multiple m
(including 0) of Q.

A close examination of the SW amplitudes for DM and
CE cycloids or helices with AF or FM interactions reveals
that

δSr(Φ±n) =
{
ξ
(n)
1 tr(−1)r − iξ(n)2 u

}
e±2πinδr (AF), (26)

δSr(Ψ±n) =
{
ρ
(n)
1 u(−1)r + iρ

(n)
2 tr

}
e±2πinδr (AF), (27)

δSr(Θ±n) =
{
γ
(n)
1 tr − iγ(n)2 u

}
e±2πinδr (FM), (28)

for either q = 0 or q = Q. As discussed above, the
transverse direction u is y for a cycloid and −x for a
helix. In each case, the real and positive coefficients are
the same for the degenerate ±n modes and are normal-

ized by taking ξ
(n)2
1 + ξ

(n)2
2 = 1, ρ

(n)2
1 + ρ

(n)2
2 = 1, and

γ
(n)2
1 + γ

(n)2
2 = 1. The complex factors in the brackets

imply that the tangential and transverse spin oscillations
are out of phase.

As seen below, the SW amplitudes for the Gold-
stone modes are purely transverse (out of the classical-
spin plane) or tangential (in the classical-spin plane).
For AF interactions, δSr(Φ0) = tr(−1)r in both the
DM and CE cases. In the AF/CE case, δSr(Ψ±1) =
exp(±2πiδr)(−1)r u. For FM interactions, δSr(Θ0) = tr
in both the DM and CE cases. In the FM/CE case,
δSr(Θ±1) = exp(±2πiδr)u. Although not a Goldstone
mode, the SW amplitude δSr(Ψ0) = (−1)r u of the
AF/CE mode Ψ0 is purely transverse but out of phase
with the cycloid or helix.

While even and odd M were handled differently for AF
interactions, physical results only depend on the wavevec-
tor parameter δ. The amplitude coefficients are plotted
versus δ in Fig.5. In either the AF/DM or AF/CE case,

ξ
(n)
1 and ρ

(n)
1 approach 1 for all n in the CL δ → 0. For

the AF/DM case, the CL results ξ
(n)
1 = 1 and ρ

(n)
1 = 1

were obtained by de Sousa and Moore19. Although the
SW amplitudes become purely tangential or transverse
as δ → 0, the coefficients with larger n converge much
more slowly than for smaller n. Figures 5(a) and (c) plot

ξ
(n)
1 and ρ

(n)
1 as closed and open circles, respectively. For

larger n, ξ
(n)
1 and ρ

(n)
1 are quite close, but deviations can

be seen for smaller n away from δ = 0.

For FM interactions, the behavior of the coefficients is

more complex. While γ
(n)
1 → 1/

√
2 as δ → 0 and n→∞

in both the FM/DM and FM/CE cases, γ
(n)
1 have higher

(FM/DM) or lower (FM/CE) limits for smaller n > 0.

Recall that γ
(1)
1 = 0 for the FM/CE case while γ

(0)
1 = 1

for both FM cases. In the CL of the FM/DM case, the
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FIG. 5: (Color online) Coefficients ξ
(n)
1 and ρ

(n)
1 (AF) or γ

(n)
1

(FM) versus δ for the same four cases as in Fig.2. In (a) and

(c), closed circles give ξ
(n)
1 and open circles give ρ

(n)
1 . Points

at δ = 0 are exact results in the CL for the FM/DM case
and extrapolations for the FM/CE case. Goldstone modes
not shown.

method discussed in the previous section reveals that

γ
(n)
1 →

√
1 + n2

1 + 2n2
, (29)

γ
(n)
2 → |n|√

1 + 2n2
. (30)

Although not a rigorous proof, we numerically find that

γ
(n)
1 → |n2 − 1|√

2n4 + 2n2 + 1
, (31)

γ
(n)
2 → |n|

√
n2 + 4

2n4 + 2n2 + 1
(32)

in the CL of the FM/CE case. So non-Goldstone modes
always mix tangential and transverse components for FM
interactions.

Another way to look at these results is by plotting the
coefficients versus n for a fixed δ = 1/M in Fig.6. For
AF interactions, the coefficients quickly fall off from their

asymptotic δ → 0 limits of ξ
(n)
1 = 1 and ρ

(n)
1 = 1 with

increasing n. As in Fig.5, the results for ξ
(n)
1 (closed

circles) and ρ
(n)
1 (open circles) are very close. Figures 5

and 6 suggest that for the maximum n = M/4, ξ
(n)
1 and

ρ
(n)
1 approach 1/

√
2 as M increases. In the FM/DM case,

γ
(n)
1 falls off monotonically with n for all M and analytic

results in the CL are indistinguishable from numerical

results for M = 80. In the FM/CE case, γ
(n)
1 increases

with n starting with γ
(1)
1 = 0. In both FM cases, γ

(n)
1

remains fairly constant as a function of n beyond n = 10
or so and approaches 1/

√
2 for large M .

(d) FM/CE(c) AF/CE

(b) FM/DM(a) AF/DM
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)

FIG. 6: (Color online) Coefficients ξ
(n)
1 and ρ

(n)
1 (AF) or γ

(n)
1

(FM) versus mode index n for δ = 1/M (p = 2 for AF interac-
tions and p = 1 for FM interactions) and the same four cases

as in Fig.2. In (a) and (c), closed circles give ξ
(n)
1 and open

circles give ρ
(n)
1 . The maximum n is M/4 for AF interactions

and M/2 for FM interactions.

VI. OBSERVING THE NORMAL MODES

What do these results imply about the observability
of the SW modes? The contribution of mode n to the
spectral weight Sαβ(Q,ωn) is proportional to17

M∑
r,s=1

e−iQ(r−s)aδSrα(n) δSsβ(n)?. (33)

Using Eqs. (26-28) with Q > 0, it is straightforward
to show that the three modes Φ0 (α and β tangen-
tial), Ψ1 (α and β transverse), and Φ2 (α and β tan-
gential) contribute for AF interactions while the three
modes Θ0 (α and β tangential), Θ1 (α and β trans-
verse), and Θ2 (α and β tangential) contribute for FM
interactions. These modes are responsible for the INS
intensity21 S(q, ω) = Syy(q, ω) + Szz(q, ω) plotted in
Fig.1.

The purely magnetic contribution of mode n to the
optical absorption α(ω) is proportional to17

ωn
(gµB)2

∣∣∣〈0|h ·M|n, q = 0〉
∣∣∣2 = ωn

∣∣∣∣∣
M∑
r=1

h · δSr(n)

∣∣∣∣∣
2

, (34)

where h is the magnetic polarization of light and M =

−gµB

∑M
r=1 Sr is the magnetization per unit cell. This

is nonzero for Ψ±1 in the AF/DM case and for Θ±1 in
the FM/DM case, both when h is in the classical-spin
plane of the cycloid or helix. So for nonzero δ, optical
spectroscopy will detect two modes (Ψ±1) in the AF/DM
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TABLE I: Observable modes with INS or THz spectroscopy

AF/DM FM/DM AF/CE FM/CE
S(Q,ω) Φ0, Ψ1, Φ2 Θ0, Θ1, Θ2 Φ0, Ψ1, Φ2 Θ0, Θ1, Θ2

αmag(ω) (δ > 0) Ψ±1 Θ±1 — —
αmag(ω) (CL) — Θ±1 — —

Examples: BiFeO3 [22], MnSi [23–25] MnWO4 [26], Sr3Fe2O7 [27]
Ba2CuGe2O7 [28] Ni3V2O8 [29]

case, two (Θ±1) in the FM/DM case, and none in the CE
cases. Only the FM/DM Θ±1 modes remain optically
active as δ → 0.

Modes that are observable by INS or THz spectroscopy
are summarized in Table I. Notice that different parts of
δSr(n) contribute to the INS intensity and to the opti-
cal absorption. For the AF/DM Ψ±1 and FM/DM Θ±1
modes, the tangential parts of δSr(n) contribute to the
optical absorption while the transverse parts contribute
to the INS intensity.

It is tempting to argue that modes with no spectral
S(Q,ω) or magnetic optical αmag(ω) weight are not phys-
ically significant but rather artifacts of our numerical so-
lutions for HDM and HCE. However, those modes are
eigenstates of the Hamiltonian with nonzero eigenvectors
and well-defined SW amplitudes. Rather than a trivial
consequence of zone folding, all M modes are required
by the M degrees of freedom in the magnetic unit cell of
the cycloid or helix.

Up to some maximum value30 for the mode number n,
all predicted modes appear in the spectral weight S(q, ω)
at some multiple of H = qa/2π = δ. Consider, for ex-
ample, the spectra in Fig.2 with δ = 0.1. For AF inter-
actions, Φ1 has no spectral weight at H = 0 or 0.4 but
gains spectral weight at H = 0.1 in Figs.2(a) and (c).
For FM interactions, Θ3 appears in the spectral weight
of Figs.2(b) and (c) at H = 0.3.

Although only a handful of modes contribute to the
magnetic optical absorption αmag(ω), the optical weight
of the “hidden” modes can be switched on by several
physical perturbations31 that do not significantly alter
their frequencies. For the AF/DM compound BiFeO3,

easy-axis anisotropy22 makes ξ
(0)
2 nonzero so that Φ0 (no

longer a Goldstone mode) becomes optically active for
h = y. Hybridization with Φ0 then activates32 Φ±2,
also for h = y. The alternating tilt of the cycloid33 on
neighboring hexagonal planes mixes transverse and tan-
gential components, thereby activating34 Ψ0 and Φ±1.
Consequently, eight modes (four accounting for their de-
generacies and excluding the low-frequency mode Φ0) ap-
pear in the THz35 spectra of BiFeO3 in zero field. Due
to hybridization, a magnetic field activates the complete
mode spectrum36 with frequencies that nicely extrapo-
late to the frequencies of the zero-field “hidden” modes.
While the selection rules for the Raman spectra are more
complex than for the THz spectra, all of the predicted
spectroscopic modes Φn and Ψn seem to appear in the
Raman37 spectra of BiFeO3.

VII. CONCLUSION

How do other well-known materials with cycloidal or
helical states fall into the four cases considered here?
Along with BiFeO3, the multiferroic Ba2CuGe2O7 is also
a member of the AF/DM class28. With helical AF2
and cycloidal AF5 states created by long-range compet-
ing AF interactions26, Co-doped38 MnWO4 falls into the
AF/CE class. So do the cross-tie spins of Ni3V2O8 in
its low-temperature C′ phase29,39. Although itinerant6,
MnSi is a member of the FM/DM family23,25 and its
inelastic neutron-scattering spectra24 agrees well with
Fig.2(b). Of the three observed modes in MnSi, only the
central Θ1 mode is predicted to be optically active. A
rare member of the FM/CE class, Sr3Fe2O7 has a helical
state produced by the competition between FM nearest-
neighbor double exchange and AF next-nearest neigh-
bor exchange27. However, A-type AF materials with
FM nearest-neighbor interactions and CE within a plane
might also be described by our FM/CE results.

To summarize, we have evaluated the normal modes
of a spin cycloid or helix produced by either DM or CE
interactions and for either AF or FM nearest-neighbor
exchange coupling. In the CL for AF exchange, the SW
amplitudes for all modes are either purely tangential or
transverse. But for FM exchange, the SW amplitudes
for all modes except the Goldstone modes contain both
tangential and transverse components, even in the CL.
Whereas the mode spectrum for DM interactions con-
tains only one Goldstone mode, the mode spectrum for
CE interactions contains three Goldstone modes. Our
results explain why only a subset of these modes are ob-
served using neutron scattering or optical absorption.

Research by RF sponsored by the U.S. Department of
Energy, Office of Basic Energy Sciences, Materials Sci-
ences and Engineering Division. TR would like to ac-
knowledge support from the Estonian Ministry of Edu-
cation and Research with institutional research funding
IUT23-3, and the European Regional Development Fund
Project No. TK134. RdS acknowledges financial support
from NSERC (Canada) through its Discovery program
(RGPIN-2015-03938).

Appendix A: CL and generalization to higher
dimensions for the FM/DM case

In this appendix, we compute the ground state and ex-
citation spectra of a spiral magnet using continuum field
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theory. Results are valid when Qa, qa� 1, where Q and
q are the ground state spiral wavevector and excitation
(SW) wavevector, respectively, and a is the lattice pa-
rameter. In this regime, the discrete lattice calculations
approach the CL results.

1. Ground state in the continuum limit

The CL of the Hamiltonian was derived in Section IV
above. Combining the results from that section, we get
the total Hamiltonian density

h = −A
′

2
|M|2 +

J ′

2

∑
α

|∇Mα|2 +
V ′

4
|M|4

− D′1 M · (∇×M) +D′2 z ·
{
M (∇ ·M)

+ M× (∇×M)
}
, (A1)

with the direction e of the ferroelectric moment taken
along z. The positive contribution V ′M4/4 imposes
a smooth bound on M and allows us to determine a
ground-state function M0(r) that satisfies the station-
arity condition,

δh

δM

∣∣∣∣
M=M0

= 0. (A2)

Of course, all final results must be independent of V ′.
The functional derivative is given by

δh

δM
=

∂h

∂M
−∇ · ∂h

∂∇M

=
(
−A′ + V ′M2

)
M− J ′∇2M

− 2D′1 (∇×M)− 2D′2 (z×∇)×M. (A3)

We focus on the family of harmonic spiral states:

M0(r) =
1

2

{
m∗ eiQ·r + m e−iQ·r

}
= cos(Q · r)mR + sin(Q · r)mI, (A4)

where m = mR + imI and mR,I are real vectors. These
states satisfy ∇2M0 = −Q2 M0. To connect with the
numerical results for D > 0, we take D′1 > 0 and D′2 < 0.

a. Helix: D′1 > 0, D′2 = 0

Based on Eq. (A3), the functional derivative vanishes
provided that ∇×M0 equals a constant times M0. Since

∇×M0 = −Q×
{
mR sin(Q · r)−mI cos(Q · r)

}
, (A5)

choosing Q, mI, and mR to be a set of mutually orthogo-
nal vectors does the job. Such a state is called a circular
helix because Q is perpendicular to M0 at all points in

space. Since the orientation of Q is arbitrary, we can
pick Q = Qx without loss of generality. In this case,

M0(r) = M0

(
0, sin (Qx), cos (Qx)

)
. (A6)

Note that ∇×M0 = QM0 and ∇ ·M0 = 0. Using this
function in Eq. (A3), we obtain

M0
2 =

A′ − J ′Q2 + 2D′1Q

V ′
, (A7)

where V ′ can be adjusted to obtain the desired maximum
spin. Minimizing

h = −A
′

2
M0

2 +
J ′

2
Q2M0

2 +
V ′

4
M0

4 −D′1QM0
2, (A8)

with respect to Q gives

Qhelix =
D′1
J ′

=
D1

J1
, (A9)

which is the CL limit of Eq. (8) with D = D1 > 0.

b. Cycloid: D′1 = 0, D′2 < 0

Following the same procedure, a family of local en-
ergy minima can be found by imposing the condition
(z×∇) ×M0 ∝ M0 in Eq. (A3). From Eq. (A4) we
get

(z×∇)×M0 = − (z×Q)×
{
mR sin(Q · r)

− mI cos(Q · r)
}
. (A10)

Choose z ×Q, mI, and mR to be a set of mutually or-
thogonal vectors with Q ⊥ z. Either mR ‖ z and mI ‖ Q
or mR ‖ Q and mI ‖ z. This leads to the cycloidal state
with Q = Qx:

M0(r) = M0

(
sin(Qx), 0, cos(Qx)

)
, (A11)

which satisfies (z×∇) ×M0 = −QM0. Eq. (A3) then
implies that

M0
2 =

A′ − J ′Q2 + 2|D′2|Q
V ′

. (A12)

Minimizing

h = −A
′

2
M0

2 +
J ′

2
Q2M0

2 +
V ′

4
M0

4−|D′2|QM0
2. (A13)

with respect to Q gives

Qcycloid =
|D′2|
J ′

=
|D2|
J1

, (A14)

which is the CL limit of Eq. (8) with D = −D2 > 0.
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2. SW excitations in the CL

The excitations of the cycloidal or helical state propa-
gate according to the Landau-Lifshitz equation of motion
given by Eq. (21). We now separately consider the helical
and cycloidal SWs.

a. Helical SWs

The linear excitations of the helical state can be
parametrized as

∆M = ψ x + φ t(x), (A15)

where t(x) =
(
0,− cos(Qx), sin(Qx)

)
is the unit vec-

tor tangential to the helix. Compared to the tangent
in Eq. (4), the change in sign in t(x) is required be-
cause M0 < 0 in Eq. (A6) for M0(r). Plugging this
into Eq. (A3) with D′2 = 0 and using Eqs. (A7) and (A9)
gives

δh

δ(∆M)
= J ′x

{
Q2 −∇2

}
ψ + J ′t(x)∇2φ

+ 2D′1

{
x×∇ψ − t(x)×∇φ

}
, (A16)

with Q = D′1/J
′.

Resolving Eq. (22) into components along x and t(x)
produces the coupled differential equations

∂tψ = γM0J
′
{
∇2φ+ 2Q

[
sin(Qx) ∂yψ

+ cos(Qx) ∂zψ
]}
, (A17)

∂tφ = −γM0J
′
{[
∇2 −Q2

]
ψ − 2Q

×
[
sin(Qx) ∂yφ+ cos(Qx) ∂zφ

]}
. (A18)

Modes propagating with wavevector q = qx are plane
waves ψ = ψ0 exp{i(qx−ωt)} and φ = φ0 exp{i(qx−ωt)}
satisfying the eigenvalue equation(

−iω/γM0 J ′q2

−J ′(Q2 + q2) −iω/γM0

)(
ψ0

φ0

)
= 0 (A19)

with solutions

ω(q) = ±γM0D
′
1 q

√
1 +

(
q

Q

)2

. (A20)

For small q, the helical magnons propagate linearly with
q like light, in contrast to the q2 dispersion found in con-
ventional FMs.

With r = x/a, the fluctuation ∆Mr on site r is given
by

∆Mr(q, t) = Re
{(
ψ0 x + φ0 t(r)

)
ei(qra−ωt)

}
(A21)

where (ψ0, φ0) is the eigenvector of Eq. (A19). Including
both ω(nQ) = ±ωn solutions, we find ∆Mr(nQ, t) =

∆M
(±n)
r (t) with

∆M(±n)
r (t) = φ0

{
cos(±nQra− ωnt) t(r)

− |n|√
1 + n2

sin(±nQra− ωnt)x
}
. (A22)

The solutions of Eq. (A18) with q along the y and
z directions are not simple plane waves. Rather, they
are Bloch waves that mix integer multiples of Q, with
dispersion ω ∝ q2 when q is perpendicular to x. A similar
effect was found for itinerant cubic magnets18 and for
cycloidal AFs19.

b. Cycloidal SWs

The linear excitations of the cycloidal state can be
written as

∆M = ψ y + φ t(x), (A23)

with t(x) =
(
− cos(Qx), 0, sin(Qx)

)
as the tangential

unit vector. Compared to the tangent in Eq. (2), the
change in sign in t(x) is required because M0 < 0 in
Eq. (A11) for M0(r). Plugging this into Eq. (A3) with
D′1 = 0 and using Eqs. (A12) and (A14) gives

δh

δ(∆M)
= −J ′y

{[
∇2 −Q2

]
ψ − 2Q sin(Qx) ∂yφ

}
+ J ′t(x)

{
∇2φ− 2Q sin (Qx) ∂yψ

}
, (A24)

with Q = |D′2|/J ′.
Resolving Eq. (22) into components along y and t(x)

produces the coupled differential equations:

∂tψ = −γM0J
′
{
∇2φ− 2Q sin(Qx) ∂yψ

}
, (A25)

∂tφ = γM0J
′
{[
∇2 −Q2

]
ψ

− 2Q sin(Qx) ∂yφ
}
. (A26)

Modes propagating with q = qx are simple plane waves
ψ = ψ0 exp{i(qx− ωt)} and φ = φ0 exp{i(qx− ωt)} sat-
isfying the eigenvalue equation(

−iω/γM0 −J ′q2
J ′(Q2 + q2) −iω/γM0

)(
ψ0

φ0

)
= 0, (A27)

which leads to the same dispersion obtained for the helix,
Eq. (A20), with D′2 replacing D′1. The expression for

∆M
(±n)
r (t) is also quite similar:

∆M(±n)
r (t) = φ0

{
cos(±nQra− ωnt) t(r)

+
|n|√

1 + n2
sin(±nQra− ωnt)y.

}
. (A28)
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As for the helix, the solutions of Eq. (A26) propagating
with a component of q out of the yz plane are more
complex Bloch states that mix integer multiples of Q.

3. Connection to discrete model and role of
dimensionality

Using γ = −gµB/~, M0 = −gµBS/ad, and D′i =
ad+1Di/(gµB)2, we get the same SW dispersion for ei-
ther the helix or the cycloid,

~ω(q) = ±SDi qa

√
1 +

(
q

Q

)2

. (A29)

With ω(nQ) = ±ωn and Qa = D/J1,

~ωn =
SD2

J1
|n|
√

1 + n2. (A30)

This CL result is compared to numerical results for the
Θ±n modes with finite M in Fig.4(b). In the CL, neither

the dispersion nor the eigenvector depends on dimension-
ality d. However, the dispersion in the CL changes when
q is not along x.

Normalizing ∆M
(±n)
r (t) for the Θ±n modes with Q =

2πδ/a, we obtain

∆M(±n)
r (t) =

√
1 + n2

1 + 2n2
cos(±2πδnr − ωnt) t(x)

+
|n|√

1 + 2n2
sin(±2πδnr − ωnt)u, (A31)

where u = −x for the helix and y for the cycloid. Using
the parameters in Eq. (28), we find

γ
(n)
1 =

√
1 + n2

1 + 2n2
, (A32)

γ
(n)
2 =

|n|√
1 + 2n2

. (A33)

in agreement with our numerical results.
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