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The asymmetric responses of the system between the external force of right and left directions are
called ”nonreciprocal”. There are many examples of nonreciprocal responses such as the rectification
by p-n junction. However, the quantum mechanical wave does not distinguish between the right
and left directions as long as the time-reversal symmetry is intact, and it is a highly nontrivial
issue how the nonreciprocal nature originates in quantum systems. Here we demonstrate by the
quantum ratchet model, i.e., a quantum particle in an asymmetric periodic potential, that the
dissipation characterized by a dimensionless coupling constant α plays an essential role for nonlinear
nonreciprocal response. The temperature (T ) dependence of the second order nonlinear mobility µ2

is found to be µ2 ∼ T 6/α−4 for α < 1, and µ2 ∼ T 2(α−1) for α > 1, respectively, where αc = 1 is
the critical point of the localization-delocalization transition, i.e., Schmid transition. On the other
hand, µ2 shows the behavior µ2 ∼ T−11/4 in the high temperature limit. Therefore, µ2 shows the
nonmonotonous temperature dependence corresponding to the classical-quantum crossover. The
generic scaling form of the velocity v as a function of the external field F and temperature T is also
discussed. These findings are relevant to the heavy atoms in metals, resistive superconductors with
vortices and Josephson junction system, and will pave a way to control the nonreciprocal responses.

Chirality is one of the most basic subjects in whole
sciences including physics, chemistry, and biology [1, 2].
Most of the focus is on the symmetry of the static struc-
tures of molecules and organs etc. However, once the
motion or flow of particles is considered, the distinction
between right and left directions of the quantum dynam-
ics is a highly nontrivial issue even when the system lacks
the inversion and mirror symmetries, i.e., chiral. Classi-
cal dynamics of particle under asymmetric potential has
been a deeply studied topic in wide fields of science since
Feynman conceived the idea of Brownian ratchet [3]. Re-
searches range from molecular motor [4, 5], colloid dy-
namics [6], optically trapped molecule [7] to drop of mer-
cury [8].

Quantum effects on the particle dynamics under the
nonreciprocal periodic potential V (x) is one of the
most fundamental problems in condensed matter physics.
Without the dissipation, the engenstates of this prob-
lem is given by the Bloch wavefunctions characterized
by the crystal momentum k and the engenenergy εn(k)
with n being the band index. Neglecting the spin degrees
of freedom, εn(k) is symmetric between k and −k, i.e.,
εn(k) = εn(−k) as far as V (x) is real, i.e., Hermitian.
Therefore, the transport phenomena are symmetric be-
tween right and left directions as long as the many-body
interaction is neglected [9]. This is in sharp contrast to
the daily experience, which is governed by classical me-
chanics, that it is more difficult to climb up the steeper
slope compared with the gentle one. Especially, the role
of friction is important; even at the classical dynamics,
the time-reversal symmetry and energy conservation law
prohibit the difference between the motions to the right
and left directions. Therefore, an important question is
how the dissipation brings about the nonreciprocal trans-
port of a quantum particle.

Dynamics of a quantum Brownian particle in the pe-
riodic potential with dissipation has been the subject of
intensive studies for a long term [10]. The formulation
of the quantum dissipation in terms of the coupling to
harmonic bath by Caldeira-Leggett gives a way to han-
dle this problem in the path integral formalism [11, 12],
and the real-time formalism to calculate the influence in-
tegral is often used to calculated the mobility [13]. Using
these methods combined with the renormalization group
analysis, the quantum phase transition is discovered at
the critical value of the dimensionless friction α, which
separates the extended ground state at α < αc = 1 and
the localized one at α > αc = 1 [14–21]. As for the linear
mobility µ1 is concerned, it approaches to a finite value
µ1 ∝ 1/α when α < 1, while µ1 vanishes as µ1 ∼ T 2(α−1)

when α > 1 in the limit T → 0. This transition can be
regarded as that from quantum to classical dynamics as
the friction α increases. Therefore, it is interesting to see
how this transition affects the nonreciprocal dynamics of
the quantum particle in the asymmetric potential.

Experimentally, the quantum ratchet effects in semi-
conductor heterostructure with artificial asymmetric gat-
ing [22], Josephson junction array [23], and ϕ Josephson
junction [24] are reported.

Recently, the vortex flow resistance in a noncentrosym-
metric superconductor is shown to express a large di-
rectional dichroism at the low temperature [25]. The
classical dissipative dynamics of a point particle in the
presence the asymmetric pinning potential is investigated
as a candidate model [26], however the low temperature
behavior is not addressed where the quantum tunneling
plays a vital role.

In this paper, we study the quantum dynamics of
the particle in an asymmetric periodic potential with
Ohmic dissipation. The form of the potential is for exam-
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FIG. 1. Schematic picture of the present system. The
particle wave packet under the ratchet potential is driven
by the external force F resulting in a nonreciprocal velocity;
|v(−F )| 6= |v(F )|.

ple taken as V (x) = V1 cos
(

2π x
a

)

+ V2 sin
(

4π x
a

)

, which
breaks the inversion symmetry x → −x. This model de-
scribes the quantum ratchet, and several earlier works
addressed this problem [27–32, 34, 35]. The instanton
approach in the strong coupling limit has been employed
in [28–30], where the non-monotonous temperature de-
pendence of the nonlinear mobility µ2 has been obtained
due to the crossover from temperature assisted transition
to quantum tunneling. Here, the coherence between the
tunneling events has been neglected, which eventually be-
comes important in the low temperature limit. Scheidl-
Vinokur [32] and Peguiron-Grifoni [34, 35] employed the
weak coupling perturbation theory with respect to the
potential V (x) and obtained the lowest order expression
for the second order mobility µ2 ∝ V 2

1 V2, and the rec-
tified velocity v(F ) + v(−F ) ∝ V 2

1 V2, respectively, in
terms of the integral over the two time variables t1 and t2.
However they have not carefully examined the detailed
temperature dependence especially at low temperature.

Here, we rederive the general expression of the steady
state velocity as a function of external force F in the pres-
ence of the dissipation and the general form of asymmet-
ric corrugation V (x) in a perturbative way. This pertur-
bation theory is justified for α < 1, where the potential
is irrelevant. We will discuss the other case α > 1 later.
The general formula for steady velocity v(F ) enable us to
investigate the detailed temperature scaling for arbitrary
order mobility µn. The dissipation is handled in terms
of the Feynman-Vernon’s influence functional technique
[13] where the infinite set of harmonic oscillators with
Ohmic spectral density J(ω) = ηω are coupled bilinearly
to the quantum mechanical point particle and integrated
out. The lowest order perturbative expansion with re-
spect to V (x) allows us to compute the velocity and the
mobility in the long time limit in the real time expression
for the general strength of the dissipation, temperature
T , and the external force F . Since the derivation is te-
dious and just a straightforward generalization of earlier
works [17, 32–35], the detail is given in the Supplemen-
tal Material (SM) [36] and we here show only the final
expression. Another approach to derive the same expres-

sion is also given in SM [36]. Throughout this paper, we
set ~ = kB = 1.
The zeroth order in V gives v(0) = F/η and the first

order correction is zero. In the order of V 2, the modifi-
cation to velocity is [17, 32–35]

v(2) = −
2

η

∫

∞

0

dt
∑

k

k |Vk|
2
sin

[

F

η
kt

]

× sin

[

1

πη
k2Q1(t)

]

exp

[

−
1

πη
k2Q2(t)

]

. (1)

Here Vk is the Fourier component of the periodic poten-
tial V (x) with k being the integer multiple of 2π/a. Q1

and Q2 are [12]

Q1(t) =

∫

∞

0

dω
J(ω)

ηω2
sin(ωt)f(ω/γ) (2)

Q2(t) =

∫

∞

0

dω
J(ω)

ηω2
(1− cos(ωt)) coth

( ω

2T

)

f(ω/γ).

(3)

γ, being η divided by the particle mass M , is the charac-
teristic frequency scale in the present system. f is appro-
priate soft cutoff function. Here we take f(ω/γ) = e−ω/γ .
This result is the same as Peguiron-Grifoni’s one [34, 35]
and reduces to the Scheidl-Vinokur’s result [32] in the
small F limit and to Fisher-Zwerger’s result [17] if we
take only k = ± 2π

a . Note here that as the effect of the
asymmetry of the potential V (x) is missing in this for-
mula, this result in nothing to do with the ratchet effect
therefore v(2) is the odd function of F . To clarify the low
temperature behavior of v(2), the asymptotic forms of Q1

and Q2 for t, T−1 ≫ γ−1 are important;

Q1(t) = tan−1(γt) → const. (4)

Q2(t) = log





[

1 + (γt)2
]1/2

∣

∣

∣

∣

∣

Γ(1 + T
γ )

Γ(1 + T
γ + iT t)

∣

∣

∣

∣

∣

2




→ log(γt) + log

(

sinh(πT t)

πT t

)

(5)

with Γ(·) being the Gamma function. From these asymp-
totic behaviors, when expanded in F , the n-th order term
of v(2) scales in the leading order as

v(2) ∼ T
2

α
−1−nFn (6)

in the order of Fn with n being odd integers. Here widely
used dimensionless dissipation strength is

α =
ηa2

2π
. (7)

In the third order of V ’s, where the quantum ratchet
effect appears, we similarly have [17, 32–35]
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v(3) =
4

η

∫

∞

0

dt1

∫

∞

0

dt2
∑

k1,k2,k3

k1+k2+k3=0

k1

×

(

Re [Vk1
Vk2

Vk3
] sin

[

F

η
(k1t1 − k3t2)

]

+ Im [Vk1
Vk2

Vk3
]

(

cos

[

F

η
(k1t1 − k3t2)

]

− 1

))

× exp

[

1

πη
(k1k2Q2(t1) + k2k3Q2(t2) + k3k1Q2(t1 + t2))

]

sin

[

1

πη
k1k2Q1(t1)

]

sin

[

1

πη
(k2k3Q1(t2) + k3k1Q1(t1 + t2))

]

.

(8)

This result reduces to the Scheidl-Vinokur’s result
[32] in the order of F 2 and reproduces the Peguiron-
Grifoni’s result for the rectified velocity v(F ) + v(−F )
in the presence of up to the second harmonic potential;
k = ± 2π

a ,± 4π
a [34, 35]. Although the expression is rather

complex, we can see the behavior in the low temperature
limit by the power-counting of the integrand using the
asymptotic forms as follows. We see from Eq.(5) that
the exponential of −Q2(t) function gives us a power of
t and the large t cutoff of the form exp[−πT t] at finite
temperature. Thus we are allowed to count the power at
zero temperature and cutoff the integral domain [0, T−1]
to see the T dependence at low temperature.

The dominant contribution to the integral originates
from (k1, k2, k3) = ± 2π

a (1, 1,−2) and its permutations.
By means of the polar coordinate (r, θ), the integral is

Fn
∫

rdr rn−
6

α ∼ T
6

α
−2−nFn. On the other hand, if we

fix one of the variables, say t1, the integral behaves as

Fn
∫

dt2 t
n− 2

α

2 ∼ T
2

α
−1−nFn. Although the latter con-

tribution seems to dominate the former one at low tem-
perature for α < 4, the closer inspection shows that the
summation over k1, k2, k3 causes an exact cancellation of
these leading order contributions. The proof of this can-
cellation is given in SM [36] and numerical calculations
support this cancellation up to 12 digits in double pre-

FIG. 2. Asymptotic behavior of the integrand. Asymp-
totic behavior of the integrand of n-th order expansion with
respect to F of Eq.(8) in each region in the t1-t2 plane. As the
leading order contributions from the orange regions cancel out
among the terms, the blue region determines the temperature
behaviors.

cision calculations. Thus, the low temperature exponent
is governed by the sub leading contributions;

v(3) ∼ T
6

α
−2−nFn (9)

in the order of Fn with n being a positive integer.

The numerical evaluation of second order mobility µ
(3)
2

which is given by the expansion of Eq.(8) with respect to
F depicted in Figs.3(a) and (b) clearly show tempera-
ture dependence as described by Eq.(9) at low tempera-
ture. For 0 < α < 3/2, µ2 turn to decrease as decreasing
temperature around T = T ∗ ∼ γ. This is a peculiar
behavior of the present system which can be captured
in real experiments. For α > 1, the potential is a rele-
vant operator, and therefore the pertubative expansion
with respect to the potential diverges towards the low
temperature. In this case, the system is in the localized

phase, and therefore µ
(3)
2 must vanish at the zero temper-

ature. This indicates the existence of another crossover
temperature T ∗∗, which can be lower than T ∗ when the
potential is weak enough. In the view point of renormal-
ization group (RG) analysis, the potential V scales as
V (Λ) = V (Λ0)(Λ/Λ0)

1/α−1 for the high energy cutoff Λ
[17]. The cutoff is truncated at Λ ∼ T at finite tempera-
ture therefore we can estimate the crossover temperature
as V (Λ0)(T

∗∗/Λ0)
1/α−1 ∼ T ∗∗.

The higher crossover temperature deduced from the
peaks of Fig.3(a) is shown in Fig.3(c) together with that

for the linear mobility µ
(2)
1 evaluated from Eq.(1). The

crossover temperature for µ
(3)
2 is always larger than that

for µ
(2)
1 but is comparable. Thus we can conclude that

the crossover observed in µ
(3)
2 is the quantum to classical

crossover as known for µ
(2)
1 . Note that the peaks in µ

(3)
2

for small α is not clear due to many sign changes in the
crossover region.
This low temperature dependence is in contrast to the

saturating behavior discussed in ref.[32] where a nontriv-
ial approximation is made in the evaluation of Q2, which

fails to capture the quantitative behavior of µ
(3)
2 . For the

higher temperature, µ
(3)
2 decreases equally irrespective of

α as µ
(3)
2 ∼ T−11/4 whose derivation is given in SM [36].

This value is slightly different from T−17/6 obtained in
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FIG. 3. Temperature dependence of the second order mobil-

ity µ
(3)
2 . (a) The second order mobility µ

(3)
2 is evaluated from

Eq.(8) for the asymmetric potential V (x) = V1 cos(2πx/a) +
V2 sin(4πx/a) with V2 = V1/4 for each value of α. There are
two power law regions with different exponents; 6/α−4 for low
temperature region and −11/4 for high temperature region.
The quantum-to-classical crossover region with sigh changes
(cusps) in between is also seen. For α > 1, as the pertubative
expansion with respect to the potential fails and the system

goes to the localized phase, µ
(3)
2 vanishes at zero temperature.

Therefore there must be another crossover point T ∗∗ at low
temperature where the perturbative treatment breaks down.

(b) The low temperature power low exponent of µ
(3)
2 which

clearly follows the asymptotic form µ
(3)
2 ∝ T 6/α−4. (c) The

crossover temperature T ∗ defined by peak positions in (a).

The green line is that for µ
(2)
1 evaluated from Eq.(1).

ref.[32]. This discrepancy is due to the difference of the
choice of cutoff function f(ω/γ) as discussed in SM. In
the intermediate temperature, the crossover-like behav-
ior and some sign changes are observed as pointed out by
ref.[32].
For α < 1, the perturbative treatment of the potential

V ’s is appropriate. And the leading order terms leads to
the scaling form in the low temperature limit as

v =
F

η
− F 2/α−1f<

o (F/T )− F 6/α−2f<
e (F/T )

=
F

η
− T 2/α−1g<o (F/T )− T 6/α−2g<e (F/T ) (10)

where f<
o , g<o are odd functions while f<

e , g<e are even.
The basis of this scaling is that the velocity vanished
in the limit F → 0, which is given by the integral re-
gion of large time variable t & 1/F . Note that only the

asymptotic behavior of the integrand at large time vari-
able determines the scaling behavior for the velocity v
itself, while the expression for the coefficient of Fn for
the velocity v does not appear so. Therefore, the di-
vergence of the nonlinear mobility as T → 0 does not
mean the divergence of v, but the functional form be-
comes non-analytic at the zero temperature T = 0. In
Eq.(10), the functions g<o , g

<
e are an analytic functions

of their argument F/T since the perturbative expansion
is always possible when F ≪ T , while f<

o , f<
e are not.

Trivially, they are related by f<
i (η) = η1−2/αg<i (η) with

i ∈ {e, o}. The role of the nonreciprocal potential, i.e.,
V2, is to introduce the even component g<e . One can eas-
ily see that the second order nonlinear mobility µ2 scales
as µ2 ∼ T 6/α−4. Furthermore, the generic odd (even)
nonlinear mobility of n-th order scales as µn ∼ T 2/α−n−1

(µn ∼ T 6/α−2−n) for α < 1, and it diverges when
2/(n+ 1) < α < 1 (6/(n+ 2) < α < 1) while it vanished
otherwise in the limit T → 0. Note here that the I-V
relation of the Tomonaga-Luttinger liquid (TLL) system
under weak asymmetric potential I ∼ V 6g−2 with g be-
ing the Tomonaga-Luttinger’s interaction parameter, is
shown in ref. [37] which is analogous to the f<

e term in
eq.(10). There are many well-known similarities between
the present system and the TLL system [19, 20] and some
of them are exemplified in SM [36].

From the viewpoint of the RG, V1 is irrelevant for
α < 1 while becomes relevant for α > 1. Similarly V2

is irrelevant for α < 4, and becomes relevant for α > 4.
Naively, this might lead to the critical α being 4 for
the nonreciprocal mobility. However, the RG procedure
generates the composite operator V1V2, which includes
sin

(

2π x
a

)

, which has the same scaling dimension as V1.
This fact is reflected in each term of the double time in-
tegral where the dominant contribution comes from the
region where one of t1 and t2 is finite, and the asymptotic
behavior is basically given by the one-dimensional inte-
gral over time. However, the combination of cos(2πx/a)
and sin(2πx/a) simply shifts the potential leaving the in-
version symmetry intact. This is the reason why the can-
cellation occurs for the leading order terms ∝ T 2/α−1−n

in v(3)

Now we turn to the case of α > 1, where V ’s are rel-
evant and scale to larger values [14]. In this case, the
tunneling t between the potential barrier is the irrelevant
operator, and the perturbation theory in t should be em-
ployed [19, 20]. The question is how the asymmetry of
the potential enters the problem. For this purpose, let
us consider the tilting of the potential under the exter-
nal field F . Due to the asymmetry of the potential, the
change in the potential barrier linear in F exists, which
results in the F -dependence of t, i.e., t(F ) = t + γF .
This t(F ) is used for the calculation of v in the lowest
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perturbation, which results in

v = t(F )2F 2α−1f>
o (F/T )

= t(F )2T 2α−1g>o (F/T ), (11)

where g>o (F/T ) is the odd function of its argument, i.e., it
contains only the odd order term in the Tailor expansion.
Therefore, the second order nonlinear mobility µ2 scales
with T 2(α−1) similarly to the linear mobility µ1, and goes
to 0 as T → 0.
For the check of the scaling form Eq.(11) also in the

strong coupling regime where potential terms are relevant
operators, we calculated a temperature dependence of the
linear and the third order mobility in the perturbation
in t. As shown in detail in SM [36], by the perturbation
with respect to the tunneling amplitude, they precisely
follow the expected power law as Eq.(11).
Lastly, we comment on the array of resistively shunted

josephson juntion model, which is a direct generalization
of the present system to higher dimensions. This model,
composed of the superconducting islands connected by
Josephson couplings with symmetric cosine potential and
the shunting Ohmic dissipation, is a promising candidate
to explain the low temperature behavior of the thin film
of granular superconductors [38, 39]. It is shown that the
model shows a quantum phase transition between coher-
ent (superconducting) and disordered (normal) states at
α = h/(4e2R) = 1/z0 where R is the shunting resis-
tance and z0 is the half of the coordination number of
the lattice of islands [38]. If we introduce a asymmetric
potential to the Josephson phase, the nonlinear trans-
port coefficients of the system should follow the present
scaling form. One difference is that the current in the
Josephson array acts as a tilting to the potential while
the resulting time derivative of the Josephson phase is
the voltage drop, therefore nonlinear resistivity, instead
of mobility, follows the scaling given in the present paper.
Another difference is the absence of the voltage drop for
z0α > 1 due to the superconductivity. Thus we can con-
clude that n-th order resistivity with odd (even) n scales
as Rn ∼ T 2/(z0α)−n−1 (Rn ∼ T 6/(z0α)−n−2) and diverges
when 2/(n+ 1) < z0α < 1 (6/(n+ 2) < z0α < 1) at zero
temperature.
In summary, we have studied the role of dissipation

in the nonreciprocal transport of quantum particle in
the asymmetric periodic potential, i.e., quantum Ratchet
model. We have derived the general expression of the
steady state velocity v for the general value of the dissi-
pation α, force F , temperature T , and shape of the peri-
odic potential V (x) and found different scalings behavior
at low temperature depending on the even and odd pow-
ers of F . This results can be applied to various situations
such as asymmetric Josephson junction array, motion of
heavy atoms in noncentrosymmetric crystal, and vortex
motion in noncentrosymmetric superconductors.
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