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ABSTRACT  

In order to develop force fields (FF) for molecular dynamics simulations that retain the accuracy 

of ab initio density functional theory (DFT), we developed a machine learning (ML) protocol 

based on an energy decomposition scheme that extracts atomic energies from DFT calculations. 

Our DFT to FF (DFT2FF) approach provides almost hundreds of times more data for the DFT 

energies, which dramatically improves accuracy with less DFT calculations. In addition, we use 

piecewise cosine basis functions to systematically construct symmetry invariant features into the 

neural network model. We illustrate this DFT2FF approach for amorphous silicon where only 

800 DFT configurations are sufficient to achieve an accuracy of 1meV/atom for energy and 

0.1eV/A for forces. We then use the resulting FF model to calculate the thermal conductivity of 

amorphous Si based on long molecular dynamics simulations. The dramatic speedup in training 
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in our DFT2FF protocol allows the adoption of a new simulation paradigm where an accurate 

and problem specific FF for a given physics phenomenon is trained on-the-spot through a quick 

DFT pre-calculation and FF training. 

1.	Introduction	
 

Machine learning methods have been rapidly developed to solve scientific problems in 

biology, chemistry, physics and engineering [1-6] in recent years. In the field of atomic and 

molecular studies, one of the major applications of machine learning is to obtain the quantitative 

structure-activity relationships (QSAR) [7-9]. In molecular simulations, the relationship between 

the total energy of a system and its atomic or molecular structure is one of the most important 

properties because derivatives of the total energy with respect to atomic positions give rise to 

forces, which can be used to perform molecular dynamic simulations [10, 11]. Such a 

relationship is described by the potential energy surface (PES) of the system. The PES is difficult 

to obtain in experiment; rather, it is typically sampled by solving the Schrodinger equation. In 

practice, density functional theory (DFT) approximation to the Schrodinger Hamiltonian is used.  

Once the information about the system is calculated using DFT, machine learning models can be 

applied to fit the PES.  

 

Many PES machine learning models have been developed over the last decade, including the 

high dimensional neural network potential (HDNNP) model [12], Bag of Bonds (BoB) model 

[13], Gaussian Approximation potentials (GAP) [14], deep tensor neural networks (DTNN) [15]. 

In particular, two types of machine learning models have been widely used. One is based on 

neural network, like the HDNNP, another is based on Gaussian process regression, like the GAP, 
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which is a direct high dimensional interpolation scheme. Both models use features calculated 

from atomic structures as their inputs. Various types of atom-centered symmetry functions [16] 

have been used to collectively map the chemical environment of individual atoms to a set of 

descriptors (also known as features). These features are typically translationally, rotationally and 

permutationally invariant. In the current study, we will use the neural network model. In such a 

model, the generated features are fed into a multilayer neural network to yield the total energy of 

the system. However, the mapping of the atomic environment to descriptors is not unique, and 

many choices of symmetry functions have been reported in the literature. [16-20] 

  

Compared with the conventional classical molecular force fields, the neural network force field 

(NNFF) can be more accurate in the atomic configuration space where it is fully trained, but it 

can fail catastrophically in regions where it is not exposed [21]. One way to make a proper use of 

this feature of NNFF is to train the NNFF, if not on-the-flight, but at least on-the-spot. For each 

target physical phenomenon, one can first carry out an ab initio DFT simulation on a smaller 

system for a shorter time, while at the same time ensuring that the DFT simulation covers all the 

possible local atomic configurations essential to the physical phenomena to be studied. This will 

be followed by a standard and quick NNFF training, and the resulting NNFF can then be used to 

simulate a much larger system for a much longer time. To make this procedure practical, one has 

to satisfy the following requirements: (1) a quick generation of large amount of DFT data; (2) a 

universal NNFF model; (3) a corresponding quick training procedure of this model; (4) finally, 

the ability to yield accurate NNFF results compared to DFT data within the desired 

configurational region.  
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In this work, we present a new model to fit NNFF which satisfies the above requirements by 

using atomic energies decomposed from a DFT calculation and piecewise cosines for systematic 

symmetry features. The model is implemented in TensorFlow® to utilize directed acyclic graph 

(DAG) to accelerate computation. The resulting NNFF for a test amorphous silicon system has 

an accuracy of 1.0 meV/atom in energy and 0.1eV/A for the forces. We also show how the 

resulting NNFF can be used to calculate material properties which could be too expensive to 

calculate directly using DFT.  

 

Our work follows closely to the HDNNP model [12]. However, in the current HDNNP 

approach, typically, ~10,000 DFT trajectory steps will be used to fit the HDNNP models [12, 22]. 

These can take many days for the DFT calculation.  A major advance in the current study is to 

decompose the DFT total energy of a given system into atomic energies belonging to each atom. 

Importantly, such atomic energy only depends on the positions of the nearby atoms. As a result, 

a unified single atom neural network potential (SANNP) model can be used taking into account 

the data from all atoms. In comparison, in HDNNP, only the total energy of the system is used in 

the training set although the atomic energies are implicitly assumed in the model. Due to the 

increase of the data set, we found that ~1000 molecular dynamics (MD) steps is sufficient to 

train an accurate SANNP. This makes it practical to carry DFT calculation and SANNP training 

overnight, making it possible for an on-the-spot SANNP development. Another type of machine 

learning force field is based on Gaussian process aggregation [14]. Our energy decomposition 

method can be equally applicable for such approaches. 
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Combining the energy decomposition method with the piecewise cosine functions model, we 

show that the training of the SANNP using TensorFlow running on a GPU workstation only 

takes a few hours (requirement 3) and the resulting SANNP has an accuracy of ~ 1meV/atom for 

the energy (of a 256 atom system) and 0.1eV/A for the forces (requirement 4). As an example, 

we have performed MD simulations to calculate the thermal conductivity of amorphous Si (a-Si), 

which is difficult to obtain using direct DFT calculations [23]. Although we have calculated Si in 

different temperatures, from low to melt liquid temperature, and found the procedure equally 

applicable, in the current study, we will focus on the results of the amorphous Si (a-Si) structure. 

The a-Si structures can be generated from the random bond switching model [24], followed by 

DFT MD simulations at different temperatures. It is also worth to note that the current SANNP 

can be easily extended to systems with 𝑀" type of atoms. In such cases, each type of center 

atoms will have its own SANNP model, and for a given SANNP model, the number of atom pair 

features increases by a factor of 𝑀", while the number of three atom feature increases by a factor 

of 𝑀"
#. The extension of SANNP to such systems (an ongoing project) further exemplifies the 

importance of more DFT data, which can be provided by our energy decomposition scheme.   

2.	Method	

2.1	High	Dimensional	Neural	Network	Potential	(HDNNP)	
 

The HDNNP is a machine learning model developed by Behler et al. [12] In this model, the 

total energy of a given system is assumed to be the simple sum of the atomic energies 𝐸%&% =

∑ 𝐸)) . However, the DFT values of 𝐸) are not known, and only 𝐸%&%  is obtained for a given 

system. Nevertheless, such an assumption allows the construction of a HDNNP model as shown 

in Fig.1(a), where each horizontal bar is a small multilayer (typically 2 hidden layer) neural 
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network, and the edge weights on the last step connecting 𝐸) to 𝐸%&%  are fixed at 1. More 

importantly, the neural network parameters for each small network (horizon bar) are the same, 

such that the whole network consists N identical smaller networks (for single specie systems), 

where N is the number of atoms in the system.  

 

 

 

Figure 1. Schematics of the neural network models. (a) High dimensional neural network 

potential (HDNNP), (b) single atom neural network potential (SANNP). The leftmost box is the 

simulation system, the second column represents the atomic descriptors including interatomic 

distances, and three-body angles, the third column represents the symmetry functions, the fourth 
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column represents the neural network for the model, and the fifth column represents the energy 

term(s) to be trained for.  

Mathematically, let {𝒑)+ j, 𝒒)+-} be a set of structural descriptors including the interatomic 

distances (𝑅)+) and angles (𝜃)+-) between atom j and atom k about atom i, ∅1
(#) and ∅4

(5) be the 

𝛼78 2-body symmetry function and 𝛽78 3-body symmetry function, and 𝐸::({𝐺)1}; 𝒘, 𝒃) be the 

multilayer neural network model with descriptors {𝐺)1
(#),	𝐺)4

(5)} as its input, and weight 

parameters w and bias parameters b being its fitted model parameters.  Then the general 

mathematical form of the original HDNNP is: 

 

𝐺)1
(#) = ∑ 𝜙1

(#)D𝒑)+E+ ;  𝐺)4
(5) = ∑ 𝜙4

(5)D𝒑)+, 𝒒)+-	E+-     (1) 

 

𝐸) = 𝐸:: FG𝐺)1
(#), 𝐺)4

(5)H ;𝒘, 𝒃I       (2) 

 

𝐸7J7 = ∑ 𝐸))           (3) 

 

As shown in Equation (1), the summation over atomic index j and j,k enforces permutation 

invariant, while the proper constructions of 𝜙1
(#) and 𝜙4

(5) ensure the translational and rotational 

invariance of the descriptors  𝐺)1
(#) and 𝐺)4

(5).   

2.2	Atomic	Energies	
 

As an improvement to energy fitting using the total energy, we propose a way to actually 

calculate Ei from the DFT calculations. As a result, our network is simplified and consists with 
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only one small network (one bar in Fig.1), thus the dataset is increased by N fold, where N is the 

number of atoms in the DFT system, which is typically around 100-200.  

 

To expand the dataset for training, the DFT total energy is partitioned into atomic energies 

outlined in Kang and Wang [23]. The critical point is to rewrite the DFT energy terms (kinetic, 

electrostatic) as the spatial integration of their respective energy densities [25], such that a 

Hirshfeld style spatial decomposition can be used to decompose the energy into atomic 

contributions. More specifically we have:  

 

𝑈LMN = ∑ O𝑈)LMN + 𝐸)
(:Q) − 𝐸STUVW + ∑ 𝑉YD|𝑹)+|E)\+)      

With 

𝑈)LMN = ∫ 𝑑𝑟[𝑡b(𝒓) + 𝑒ef(𝒓) + 𝑒gg(𝒓)]
ij(|𝒓k𝑹j|)

∑ ij(l𝒓k𝑹ml)m
     (4) 

 

Where wi(r) is the radial charge density function [26] of the neutral atom at site i, 𝑡b(𝒓) is the 

electronic kinetic energy density, 𝑒ef(𝒓) is the exchange-correction energy density, 𝑒gg(𝒓) is the 

Hartree energy density, 𝐸)
(:Q)

 is the nonlocal contribution from the pseudopotential for atom i, 

𝐸STUV is an onsite energy integral constant,  and 𝑉YD|𝑹)+|E is the Coulomb interaction between ion 

pairs. Summarizing, individual atomic energy 𝐸) has the following expression: 

 

𝐸)LMN = 𝑈)LMN + 𝐸)
(:Q) − 𝐸STUV + 1/2∑ 𝑉YD|𝑹)+|E+\) 	     (5) 

 

It is noted that the above energy decomposition is not unique. But for our SANNP 

development, this is not critical, as long as the sum of 𝐸) agrees with the whole system total 
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energy, and  𝐸) is a local property that only depends on the atomic configuration near atom i. It is 

known that there are remaining challenges for NNFF when long range Coulomb interaction is 

strong. In such cases, atomic charges might need to be fitted [27] and the corresponding energy 

contribution needs to be subtracted before applying the above decomposition scheme. As shown 

in S1 of Supplemental Materials [39], for non-polarized systems like amorphous Si, the atomic 

energy 𝐸) is indeed a local property of its atomic configuration. For our current test system of 

amorphous silicon, there are not many obvious dramatically different choices (we have used the 

Hirshfeld partitioning scheme). This is particularly true since we have only one atom type (Si), 

so any reasonable partitioning will yield similar results. If there are two different atom types (say 

Ga and As), then there could be more room to tune the partitioning parameter. 

2.3	Piecewise	cosine	symmetry	functions	
 

In order to use an artificial neural network to fit the atomic or total energies, the surrounding 

chemical environment of each atom has to be mapped to a set of descriptors using symmetry 

functions. To capture the complicated correlation within such an environment, permutation, 

translation and rotation invariant functions involving two body pairs and three atom triplets are 

typically used, as in Equation (1). In addition to the Gaussian-like symmetry functions, other 

approaches have been developed, including Zernike [18], Bispectrum[19] and Chebyshev radial 

distributions [20] and smooth overlap of atomic position (SOAP)[17]. Different descriptors might 

have different meaning, some in real space, some in spectrum space. Since artificial neural 

network is capable of learning the complicated relationships between the input and the target 

property, we feel it is straightforward to map the structural descriptors using simple local 

descriptions and allow the neural network to find the best fitting. 
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One example of local representations in numerical calculation is the piecewise linear functions 

in finite element analysis. These piecewise linear functions are defined on a set of nodes, such 

that any continuous function defined on this domain can be approximated as linear combinations 

of these local functions.  For our purpose, in order to calculate the force, the derivative of the 

piecewise function with respect to the atomic position is needed. As a result, the piecewise linear 

shape functions are modified to differentiable piecewise cosine functions for our neural network 

model. The shapes of these piecewise cosine functions are shown in Figure 2 (a).  

 

Using the piecewise cosine functions, the symmetry functions can be constructed in simple 

forms as follows: 

𝑅1- = 𝑅)qq"r + (𝛼 − 1)ℎ-  where a = 1, 2, …,Mk  

𝜑1
(-)(𝑅uv) = w

x
#
cos F|}~k|��

��
𝜋I + x

#
, |𝑅uv − 𝑅1-| < ℎ-

0																																				, Otherwise
      (6)  

 

𝐺1,v	
(#) = ∑ 𝜑1

(#)(𝑅uv)u         (7)  

 

𝐺14�,v
(5) = ∑ 𝜑1

(5)(𝑅uv)𝜑4
(5)(𝑅qv)𝜑�

(5)(𝑅uq)u,q       (8) 

where:  

• k=2,3 specifies the 2-body and 3-body terms respectively,   

• ℎ- = (𝑅J�7T� − 𝑅���T�)/𝑀-  is the width of the piecewise cosine function, with 𝑀# 

being the number of piecewise cosine basis functions for the 2-body term, and 𝑀5 

being the number of basis functions for each side of the 3-body term, 

• 𝑅uv = |𝑅v − 𝑅u| are the interatomic distance between atom l and atom m, and  
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• Σu and Σu,qare sums over all atoms within the 𝑅J�7T� cutoff of atom l.  

 

Once the inner and outer cutoff radii are determined, the two-body symmetry functions are 

completely determined by a single number 𝑀#. However, it is not practical to set 𝑀5=𝑀# for the 

number of three-body cosine basis functions because the number of three body symmetry 

functions will scale as O(𝑀5
5). Therefore, we have used a balanced set of symmetry functions 

characterized by a single number M, where 𝑀# = 𝑀#and 𝑀5= M.  

 

Our symmetry functions have similar forms as the Gaussian symmetry functions used in 

HDNNP [12] for the 2-body term, but with important simplifications. First, we no longer need to 

multiply the symmetry function by an arbitrary decay function to ensure that the symmetry 

function goes to 0 smoothly at 𝑅J�7T� (and also at 𝑅���T� if it is not 0 already), because these 

symmetry functions are local and the rightmost function is already decaying to 0 at 𝑅J�7T�. In a 

way these functions are more local than the Gaussian functions since they go to zero outside their 

perspective ranges.  Moreover, in the three-body term, all three sides of each atomic triplet are 

treated equally and an arbitrary cosine term is no longer needed to describe the angle 

dependence.  These piecewise cosine functions are shown in Figure 2(a).  Physically, the values 

of the 𝐺1,v
(#) simply represent the pair correlation function for the atom l with α being the distance 

from the center atom l. This is shown in Fig.2(b). Note, if we have infinitely large number of 𝑀# 

and 𝑀5 (infinitely localized functions), one can show that, if all the  𝐺1,v
(#) and 𝐺14�,v

(5)  are 

determined, the local atomic positions within 𝑅J�7T� will be completely determined (up to the 

translation, rotation and permutation degree of freedoms). Thus  𝐺1,v
(#) and 𝐺14�,v

(5)  can uniquely 
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determine the atomic structures (upon translation, rotation, and permutation invariance) when the 

number of α, β, and γ approaches infinity. Should there be different atom types, the α, β, γ index 

should also include the information of atom types, besides the distance ℎ(�,�,�)	.  

 

(a)        (b) 

Figure 2. Piecewise cosine functions as basis functions to construct the symmetry functions. (a) 

graphical representation of the piecewise cosine functions when M=12 basis functions are used. 

(b) comparison of the radial distribution and the normalized values of the two-body piecewise 

cosine features with their respective nodes with M=100.  

 

In summary, the original HDNNP formulation is modified in two major ways. First, since the 

total energy is decomposed to atomic energies, the neural network will be trained against the 

individual atomic energies directly. Second, the piecewise cosine functions are used as basis 

functions constructing symmetry functions to obtain the descriptors of the chemical environment.  

2.4	Training	procedure	
 



 13 

In traditional classical force fields, although the functional form of the energy contributions or 

forces are known, the number of corresponding parameters is small and they are difficult to train 

because different force fields are based on different functional forms. Thus, classical force fields 

are usually trained with chemical and physical intuition on carefully selected quantum 

mechanical trajectories. On the other hand, neural network based machine learning models have 

many more parameters to flexibly fit any configurations, and the fitting is made possible by the 

back-propagation procedure [28].  

 

First, we define a loss function that includes both atomic energies and atomic forces as L = 

MSE({𝐸)}) + a × MSE({𝑭)}), where the SANNP forces on each atom is obtained by analytical 

differentiation of the total neural network energy with respect to the atomic coordinates, and 

MSE() is the mean squared error. The training using L with respect to the neural network 

parameters w and b can be carried out using the TensorFlow® library. For this study, a two 

hidden layer neural network model with 500 nodes in each layer is used. The Adam optimizer 

[29] with a learning rate of 0.0001 is used to minimize the MSE loss function. To perform MD 

simulations at a certain temperature 𝑇&, the neural network training must be supplemented with a 

higher temperature simulation data to cover a larger area of the configurational space. Thus, after 

training the neural network with DFT trajectories from the target temperature, higher 

temperature DFT trajectories are included to train for another 100 iterations for the combined 

training set.  

 

The above model is implemented in our publicly accessible custom code, S2 of the 

Supplemental Materials [39]. Similar to quantum mechanical calculations in which near 
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complete basis sets are used when comparing different methods, a large two-layer neural 

network with 500 nodes each is used here to avoid the finite size effects of the neural network on 

the SANNP method. As shown in S3 of the Supplemental Materials [39], the neural network 

potential is well converged using 500 nodes, and the error is comparable to the case with only 40 

nodes. The training set has 800 DFT configurations, each with 256 silicon atoms. The piecewise 

cosine functions with M=10, or equivalently 550 features in which 𝑀# = 𝑀# and 𝑀5 = 𝑀, is 

used. The calculations are performed on an NVIDIA Titan X GPU. Each training iteration 

through the whole training set takes about 4.5 minutes when both atomic energies and forces are 

used. The forces converge to 0.1eV/A in the validation set after 150 training iterations, which 

takes about 11.4 GPU hours. When M=5, or equivalently 100 features, is used, it takes 2.4 

minutes per training iteration. The forces converge to 0.13 eV/A in 200 iterations, which 

corresponds to about 8.1 hours.  

 

To compare the accuracy and training speed between the SANNP and the HDNNP approaches, 

we construct an HDNNP model with the same set of features as our SANNP model and train 

them with the same data, but with HDNNP training on the total energies, 𝐸7J7, and with SANNP 

training on atomic energies, 𝐸�. After training for 250 iterations using forces, the HDNNP results 

in an error of 0.168 eV/A, and the SANNP results in an error of 0.094 eV/A. As shown in Figure 

3, the errors in SANNP decrease much faster than HDNNP with respect to training iterations. 

Other has reported similar slow convergence using HDNNP where a 30-atom system with about 

1500 geometries in the training set slowly converges to 0.182eV/A after 2000 iterations [38].  
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It is not trivial to identify the reason for the improved performance in training from HDNNP to 

SANNP when both force and energies are sed. One possible reason is that, the force is a 

derivative of the local energy, and it is the atomic energy, not the force, that explicitly appears in 

both SANNP and HDNNP. Having this atomic energy itself should be thus more straightforward 

and more reliable than having its derivative (and only infer the energy from the derivative). One 

can also analyze this problem based on the dependence of the atomic energy and atomic force to 

the environment as represented by the model. The forces of atom i involve the summation of 

neural network energies Ej of atom j in the neighborhood of atom i, as shown in the following 

equation: 

𝑭��⃑ ) = −
𝑑𝐸%&%
𝑑𝑹��⃑ )

= − �
𝜕𝐸+
𝜕𝐺+1+∈��()),1

𝑑𝐺+1
𝑑𝑹��⃑ )

 

Where atom j is in the neighborhood of atom i, and α is the descriptor index. Because the 

maximum distance between i and j is Rcutoff and Ej depends on all the atoms within Rcutoff of j, the 

effective cutoff radius for the force Fi is 2Rcutoff[21]. At least according to the HDNNP and the 

SANNP models, the atomic force dependence is much wider than the atomic energy dependence. 

This will make the force-only fitting (with the total energy) much more difficult.  
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Figure 3. Training curves for SANNP and HDNNP. The errors reported are calculated from the 

test set. Similar results are obtained for the validation set. After 250 iterations, the errors for 

SANNP and HDNNP are 0.094eV/A and 0.168eV/A, respectively.    

3.	Results	

3.1	Comparison	between	DFT	and	neural	network	potential	
 

To validate our SANNP model using energy decomposition, piecewise cosine symmetry 

functions, and the proposed training procedure, we train the corresponding neural network for a 

periodic system of amorphous silicon, which is initially generated with a random covalent band 

switching model [24].  As shown in S4 of the Supplemental Materials, a set of 1000 DFT 

configuration is obtained from an ab initio molecular dynamics simulation of a periodic box with 

256 silicon atoms, such that 800 points are used for training, 100 points are used for validation, 

and 100 points are used for testing. By decomposing the total energy into individual energies, the 

training set contains 204,800 atomic energies and 614,400 atomic forces. After training with the 

procedure described above, the test set errors in atomic energies, total energies, and forces are 

shown in Figure 4.  

 

(a)      (b)  
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                                  (c) 

Figure 4. Comparison between the fitted SANNP model and DFT for the test set with 100 

configurations. (a) comparison of SANNP atomic energies and DFT atomic energies in the test 

set. (b) comparison of the SANNP total energies and DFT total energies in the test set. (c) 

comparison of the SANNP forces and DFT forces in the test set. Note, none of the test set data is 

used in training the SANNP model.  

Overall, the neural network potential is in good agreement with the DFT results, with the 

RMSE’s in {𝐸)}, 𝐸7J7 and {𝑭)} being around 50meV, 1.0meV/atom, and 0.10eV/A respectively 

in the test set. Although the neural network was not trained directly against 𝐸7J7, an extremely 

small 𝐸7J7 RMSE of 1.0meV/atom is recovered. The reason is that the square of the error in the 

total energy is related to the error in atomic energies by ∆Etot2 =  Σ∆Ei2 (assuming atomic 

energies for i and j are not correlated). Then the RMSE of the total energy is sqrt(<∆Etot2>)/N = 

sqrt(N<∆Ei2>)/N ~ sqrt(<∆Ei2>)/sqrt(N). As the result, the RMSE of the total energy per atom is 

a factor of 1/sqrt(N) smaller than the average RMSE of each individual atom. For our system, we 

have N=256, thus it is 16 times smaller, which leads to 1-3 meV/atom RMSE total energy error 

per atom. Note that, this is the error most papers cited for their NNP models. The reported 
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accuracies in {𝐸)}, 𝐸7J7 and {𝑭)} indicate that our new approach using atomic energies 𝐸� can 

achieve high accuracy with a small number of DFT trajectories.  

3.2	Application	of	the	cosine-based	symmetry	functions		
 

To evaluate the effectiveness of the piecewise cosine localization model, we have compared 

our model with the Gaussian-like symmetry functions used in the original HDNNP model. 

Except the change from the cosine like function to Gaussian function, all the other procedures 

are the same (however, only 𝐸� are used in the training, atomic force 𝐹� is not used in this test). 

As shown in Table 1, when training against the atomic energies, the piecewise functions with 

M=4 (or a total of 56 feature functions 𝑀# = 𝑀# and 𝑀5 = 𝑀) achieve a similar accuracy as the 

case with more than 100 Gaussian-like symmetry functions. When more piecewise cosine 

functions with M=5 or a total of 100 functions are used, the energies can be fitted even better.   

Basis sets 

(Total number of functions) 

RMSE of 𝐸� on the test set MAE of 𝐸� on the test set 

Gaussian (110) 54.8 meV 43.5 meV 

M=4 cosine (56) 57.7 meV 45.7 meV 

M=5 cosine (100) 45.9 meV 36.1 meV 

Table 1. Comparison of the symmetry functions for the training atomic energy 𝐸�.  

In fact, the quality of the piecewise cosine functions can be systematically improved by 

adjusting one parameter, M, with the number of two-body symmetry functions is 𝑀# = 𝑀#, and 

the number of three-body symmetry functions is (𝑀#+𝑀5)/2. As shown in Figure 5, both the 

energies and forces are converging towards certain limits as M increases. In addition, the quality 

of the basis set can also be adjusted by changing the inner cutoff distance. In the case of 



 19 

amorphous silicon, the interatomic distance between any two Si atoms is rarely less than 1.9A. 

By increasing this inner cutoff, the piecewise cosine functions are more concentrated in the 

region of interest, thus allowing a better description and resulting in a more accurate model. As 

shown in Figure 5, the neural network potential with an inner cutoff of 1.9A is consistently better 

than inner cutoff of 0A. In summary, the piecewise cosine functions can be adjusted by tuning 

the number of functions (M) and the range of interatomic distances, which are both intuitive 

parameters to be adjusted in practice.  

 

(a)        (b) 

Figure 5. Errors in (a) total energies and (b) forces as functions of the size M of the piecewise 

cosine functions. Inner cutoff of 𝑅���T�=0.0A (or no cutoff) and 𝑅���T�=1.9A are also compared.  

3.3	Comparison	of	DFT	and	NN	for	MD	
 

One of our main goals is to use the SANNP to perform molecular dynamic simulation. In 

addition to have small errors in energies and forces in the test set, an accurate neural network 

potential must also be able to reproduce similar quantities along its MD trajectory. In particular, 

the smoothness of the potential as well as the atomic forces are important. For this test, we have 
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performed an NVE molecular dynamics simulations on another amorphous silicon structure (not 

in the training set) using DFT for 1ps, and a random trajectory interval of 100 fs is chosen to 

compare the energies and forces between DFT and the previously trained SANNP. As shown in 

Figure 6(a), along the AIMD trajectories, the energies between DFT and SANNP match almost 

perfectly, with an RMSE of total energy of 1.1meV/atom, which is only slightly higher than that 

of the test set. Since the forces at each trajectory include all components of all atoms, to compare 

the DFT forces and the SANNP forces, we have projected the forces along the MD trajectory 

directions, as shown in Figure 6(b), and have also calculated the unit vector dot product between 

the DFT and SANNP forces, as shown in Figure 6(c). Overall, the projected forces agree well 

between DFT and SANNP with an RMSE of 0.13eV/A, and the scaled dot product indicates that 

the SANNP forces recover almost 99% of the DFT forces throughout the trajectory. Such a near 

unity dot-product means the forces for almost all atoms are in the same directions between 

SANNP and DFT.   

 

Since silicon is an important material, many empirical force fields have been developed. The 

energies for these classical force fields can also be calculated along the above AIMD trajectories. 

As shown in Figure 6(d), energies obtained for all methods have the same overall trend and local 

extrema, but the variation in energy at each trajectory is quite large for different force fields, as 

well as to the DFT energies. This indicates a much superior SANNP accuracy compared to other 

classical force fields, if the DFT energy is used as the reference.   

 

The SANNP can also be compared with DFT with different practical parameters 

(pseudopotentials and exchange-correlation functionals). As shown in Figure 6(e), the energies 
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for different DFT are calculated along the same AIMD trajectories, and they are relatively close 

to each other. By zooming in onto the first 10 time steps of the trajectories, the differences 

between different DFT runs can be shown more clearly. As shown in Figure 6(f), the SANNP 

follows the original DFT results very closely, while different levels of DFT give much bigger 

errors. This indicates that the SANNP is already within the errors between different choices of 

DFT. 

 

                                   (a)                                                                    (b) 

 

                                   (c)                                                                    (d) 
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                                   (e)                                                                    (f) 

Figure 6. Comparison of DFT, neural network potential, and empirical force fields along a 

sequence of AIMD trajectories. (a) total energies between DFT and NNP (b) projected forces 

between DFT and neural network forces (c) scaled dot product between DFT and neural network 

forces (d) total energies between DFT, NNP, and classical force fields (with constant shifts for 

force field energies); (e) total energies between the neural network potential and various levels of 

DFT over 100fs (e) total energies between the neural network potential and various levels of 

DFT over 10fs  

Although the neural network fits the DFT trajectory well, it is still necessary to compare the 

dynamics between DFT and SANNP to ensure that similar structural properties are generated. 

Starting from the same structure and initial velocities, NVE simulations are performed using 

DFT and SANNP independently. After 1ps, the radial distribution function and the normalized 

angular distribution are compared. The radial distribution is obtained from the total bond 

distribution normalized by 𝑟#, the angular distribution is normalized by sin(q). As shown in 

Figure 7, both distributions are almost indistinguishable between DFT and SANNP, confirming 

that the SANNP is capable of reproducing the DFT results through MD simulations.  
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                                   (a)                                                                    (b) 

Figure 7. Comparison of (a) radial distributions and (b) angular distributions between DFT 

(blue) and single atom neural network potential, SANNP (orange).  

3.4	Application	of	the	NNP	to	thermal	conductivity	calculations	
 

As shown in the previous sections, the SANNP is capable of performing MD simulations with 

DFT level of accuracy. Since the SANNP is significantly less computationally intensive than 

DFT, long time and large scale simulations can be performed. One class of problems that is 

difficult to be calculated with DFT level of accuracy is the classical transport properties, e.g., the 

thermal conductivity of amorphous silicon. By employing the SANNP to perform molecular 

dynamics simulations over a long time scale, the heat current auto-correlation function 

(HCACF), 〈𝑱(𝑡)𝑱(0)〉, can be obtained. Using the Green-Kudo formulation, the thermal 

conductivity equals the integration of the HCACF,  

 

𝜿 = ∫ 〈𝑱(𝑡)𝑱(0)〉𝑑𝑡%          (9) 
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Although there is no unique spatial origin of 𝑹) to calculate the heat current 𝑱(𝑡) = £
£%
∑ 𝑹)𝐸)) , 

an alternative formulation [30] can be used to avoid this non-uniqueness as long as the atomic 

energies are explicitly represented as a function of the atomic coordinates, as  in the SANNP. For 

this, we have: 

 

𝑱(𝑡) = 	∑ 𝒗) F
x
#
𝑚)𝑣)# + 𝐸)I) + ∑ ∑ 𝑹)+𝛁)𝐸+ ∙ 𝒗)+\))      (10) 

 

Where 𝐸) is the atomic energy from the SANNP.  

 

To obtain the HCACF by taking ensemble average of the heat current in Equation (10), we 

first shift the temperature of the system to the target temperature using the Andersen thermostat 

such that the canonical ensemble is correctly sampled. After the system is further stabilized at the 

target temperature for another 1ps, an NVE simulation is performed to sample the dynamics and 

obtain J(t).  

 

The HCACF for amorphous silicon at 300K is shown in Figure 8(a), in which most of the 

correlation is within the first few hundred femtoseconds, and it quickly decays to zero. By 

integrating over the HCACF, the corresponding thermal conductivity κ is integrated to be 1.59 ± 

0.1 W/m·K, as shown in Figure 8(b). This can be compared with the direct DFT calculated value 

of 1.4 ± 0.3 W/m·k [23] at the same temperature, as well as the experimental range of 1 to 2 

W/m·K [31-33].  We have also calculated the temperature dependence of κ as shown in Figure 

8(c). We see that κ decreases in a power law rate as temperature increases, the same trend as 

found in crystal Si structure [34]. However, the rate of decreasing is much slower in our case, a 
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result of the randomness in the amorphous Si, where the phonon scattering is caused mostly by 

the structure randomness instead of by the temperature dependent nonharmonic scattering. As a 

result, the temperature dependence is much smaller.  

 

The accurate computation of the thermal conductivity using the SANNP implies that the heat 

current 𝑱(𝑡) = £
£%
∑ 𝑹)𝐸)) , and thus the local atomic energies, are properly obtained using our 

atomic energy decomposition scheme and accurately trained using our neural network model.  

 

                                   (a)                                                                    (b) 

 

   (c) 

Figure 8. (a) The time evolution of the heat current auto-correction function (HCACF), 

〈𝐽«(𝑡)𝐽«(0)〉, for amorphous silicon at 300K; (b) The time integration of the HCACF using 
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Equation (9) at 300K; (c) The temperature dependence of the thermal conductivity from 150K to 

600K 

4.	Conclusion	
 

In this study, we developed a Machine learned based scheme to partition the DFT total energy 

into atomic energies that depend only on the atoms nearby to a given atom. This leads to a 

unified single atom neural network potential (SANNP) model that uses the data for all atoms in 

training this SANNP. Compared to the traditional HDNNP method using only the total energy of 

the system, SANNP acquires hundreds of times more energy information from the same DFT. As 

a result, we found that only 1000 MD steps (which takes about half day to finish using GPU by 

the PWmat code [35-37]) is sufficient to train an accurate SANNP, which dramatically reduces 

the training time while dramatically increasing the accuracy.   

 

In addition, we have deployed a new universal set of symmetry invariant feature functions 

using local piecewise cosine basis. We show that using piecewise cosine functions to construct 

the symmetry features provides a systematic and mathematically efficient way to represent the 

atomic configuration of nearby atoms for a given central atom.  This provides a universal model 

applicable to any systems.  Combining the energy decomposition method with the piecewise 

cosine functions model, we show that the training of the SANNP using TensorFlow running on 

GPU workstation takes 1/10 the time of standard methods while attaining total energy accuracy 

of ~1meV/atom (of a 256 atom system) and force accuracy of 0.1eV/A. This accuracy is 

comparable, or even higher, than the uncertainties from using different pseudopotentials in DFT 

calculations. We anticipate that the dramatic reduction in the number of DFT pre-calculations 



 27 

(with smaller number of steps) with the dramatic decrease in NN training time, plus the high 

accuracy and systematics of the SANNP model will enable DFT accuracy for large scale 

simulations.   
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