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Using a realistic tight-binding Hamiltonian based on maximally localized Wannier functions, we
investigate the two-ion magnetocrystalline anisotropy energy (MAE) in L10 transition metal com-
pounds. MAE contributions from throughout the Brillouin zone are obtained using magnetic force
theorem calculations with and without perturbation theory. The results from either method agree
with one another, and both reflect features of the Fermi surface. The intra-sublattice and inter-
sublattice contributions to MAE are evaluated using a Greens function method. We find that the
sign of the inter-sublattice contribution varies among compounds, and that its amplitude may be
significant, suggesting MAE can not be resolved accurately in a single-ion manner. The results are
further validated by scaling spin-orbit-coupling strength in density functional theory. Overall, this
realistic tight-binding method provide an effective approach to evaluate and analyze MAE while
retaining the accuracy of corresponding first-principles methods.

I. INTRODUCTION

Magnetocrystalline anisotropy (MA) arises from the
interplay between spin-orbit coupling (SOC) and crys-
tal field effects and is one of the most fundamental in-
trinsic magnetic properties1. Materials with high MA
have been used in many applications including perma-
nent magnets2 and magnetic recording media. One of
the latest examples is the recently realized magnetic 2D
van der Waals (vdW) class of materials, in which MA
is required to stabilize the long-range magnetic order-
ing down to atomically thin dimensions. These materials
can be exploited as platforms for true 2D magnetism and
for innovative applications such as energy-efficient, ultra-
compact, spin-based electronics. In general, it is of great
interest to evaluate and resolve MA, and to unravel the
underlying mechanisms in a given system. Ultimately,
such understanding will guide the control and tuning of
MA, accelerating the development of new materials and
their applications3.

Density functional theory (DFT) has proven to be
a valuable tool to investigate and predict MA energy
(MAE) in various systems. The relativistic effects of va-
lence electrons are often treated using various approxima-
tions to reduce computational complexity and cost. In-
stead of directly solving the four-component Dirac equa-
tion self-consistently, one usually treats SOC as pertur-
bation and starts first with the two-component scalar-
relativistic (SR) Hamiltonian4, omitting SOC but includ-
ing all other relativistic effects such as mass-velocity and
Darwin terms. SOC can be added directly into the SR
Hamiltonian or included in a subsequent step using the
basis (often a subset of it) of SR wavefunctions (second
variation)5,6. Because the charge- and spin-density vari-
ations caused by SOC vanish to first order in the SOC
strength7, the magnetic force theorem (MFT)8–10 is often
applied on top of the second-variation method to calcu-
late MAE as the difference of one-electron band ener-
gies. Finally, perturbation theory (PT)11–18 is also often
used with the MFT to compute and analyze the change

of band energies due to SOC. Overall, depending on the
system size and approximations used, MAE computation
can be quite demanding, because of the enlarged dimen-
sion of Hamiltonian and the reduced symmetry due to
SOC, and the denser k-mesh needed for high accuracy.

Empirical or semi-realistic tight-binding (TB) meth-
ods14 were widely used to study MAE long before MAE
became accessible to more sophisticated DFT methods10.
Pioneering work14,15 using TB provided a fundamental
understanding of MAE in various systems. However,
empirical TB Hamiltonians are generally hard to param-
eterize and often have insufficient accuracy to describe
bandstructure, usually limiting TB to obtaining quali-
tative results in systems with large MAE. The recently
developed maximally localized Wannier functions (ML-
WFs) method19–21 has been widely used to effectively
construct TB Hamiltonians to compute many properties
such as Fermi surfaces, Berry curvature, and transport.
With a smaller basis, it can describe an isolated set of
bands and/or entangled bands in a given energy window.
Indeed, this method is also very suitable for MAE cal-
culations, considering that MAE is, after all, a ground
state quantity, determined by the occupied states. How-
ever, due to the minuteness of MAE, it is not clear how
accurately the realistic TB can describe MAE in sys-
tems such as transition metal bulk compounds. Here we
demonstrate that the realistic TB framework based on
the MLWFs method can produce accurate MAE in com-
parison to DFT, thereby providing an efficient framework
to compute and analyze MAE.

Various decomposition schemes have been used to re-
solve MAE into k-space, atomic sites, orbital, and spin
channels, providing insight and guidance on tuning MAE.
The MFT enables resolution of MAE into individual
bands on each k point in reciprocal space, allowing
a bandstructure-origin analysis of MAE. Site-resolved
MAE is often calculated using methods such as eval-
uation of the on-site SOC energy22, second-order PT,
scaling the SOC strength, or others23,24. For exam-
ple, R2Co17 (with R =Y or Ce) compounds have very
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small MAE and ab initio analysis found that one par-
ticular Co sublattice—the so-called dumbbell sites—has
a large negative contribution to uniaxial anisotropy25.
Thus, proper substituents that preferentially occupy the
dumbbell sites and eliminate the negative contributions
will significantly improve the uniaxial anisotropy, as ob-
served in experiments. Another interesting example is
the oscillating MAE behavior in diluted nitridometa-
lates Li2[(Li1−xTx)N], with T=Mn, Fe, Co, or Ni. The
MAE can be solely attributed to individual T atoms and
the band-filling effect on MAE can be quantitatively de-
scribed in a single-ion MAE model17,18.

Site-resolved MAE values, together with exchange
parameters, can also be used as inputs for subse-
quent large-scale atomic spin simulations to calculate
temperature-dependent magnetic properties. When in-
terfacing ab initio results with atomic spin simulation,
MAE is usually treated in the single-ion model in the
atomic spin Hamiltonian. However, it has been found
that a two-ion anisotropy model is needed to properly
describe properties such as temperature-dependent MAE
in some systems26. Thus, it is of great interest to resolve
MAE into sites, and in particular, beyond the single-ion
model.

In this work, we investigate two-ion MAE in vari-
ous L10 compounds—one of the most widely studied
systems—with MAE values ranging from several tens of
µeV to a couple of meV per formula unit27–29. Our ap-
proach is based on second-order PT using a Green’s func-
tion method implemented within the realistic TB frame-
work. We demonstrate that this approach achieves accu-
racy similar to DFT and provides a highly efficient means
to compute and analyze the two-ion anisotropy in tran-
sition metal systems.

II. COMPUTATIONAL DETAILS

We first construct the real-space scalar-relativistic TB
Hamiltonian using the MLWFs method. The correspond-
ing Green’s function is also constructed for use in the PT
approach. MAE is calculated using the MFT in TB, with
and without PT, refereed to hereafter as PT and MFT,
respectively, for simplicity. DFT methods, including
both vasp30,31 and an all-electron full-potential LMTO
(FP-LMTO) method32, are used to calculate MAE and
compare with TB. To compare with the two-ion MAE
values obtained using PT in TB, we also calculate inter-
sublattice MAE contribution by scaling the SOC strength
in vasp. All DFT calculations are carried out within
the generalized gradient approximation (GGA) using the
functional of Perdew, Becke, and Ernzerhof (PBE)33 un-
less local density approximation (LDA)34 is specified.

A. TB Hamiltonian and SOC

The MLWFs are constructed through a postprocess-
ing procedure19–21 using the output of a self-consistent
scalar-relativistic vasp calculation. For each L10 com-
pound, 18 MLWFs corresponding to s-, p-, and d-type
orbitals for each of the two atoms in the unit cell were
generated using wannier9035. The spread functional for
entangled energy bands is minimized by a two-step proce-
dure21. An outside energy window with a larger number
of bands was selected to ensure good description of the
bandstructure of the ’frozen’ inner energy window, span-
ning from the bottom of the valence band to a few eV
above the Fermi level. A real-space Hamiltonian H(R)
with dimensions 18×18 is constructed to accurately rep-
resent the bandstructures in this specified ’frozen’ energy
window. Then H(k) is obtained by Fourier transforma-
tion. The energy bands are recalculated within TB to
ensure that DFT bands can be accurately reproduced
before further MAE calculations.

The TB Hamiltonian is represented in a basis of or-
thonormalized atomic functions |i, l,m, σ〉, where i labels
atomic sites, l,m subbands (in cubic harmonics), and σ
the spin. The SOC part of the Hamiltonian, which can
be directly added into H or included using PT, can be
written as

Vso = ξ L·S =
~2

2M2c2
1

r

dV

dr
L · S, (1)

where L · S depends explicitly on the direction of spin
quantization axis (details can be found in Appendix A).

The radial part of Vso—the SOC constants ξσσ
′

i,l —are cal-
culated using FP-LMTO. For simplicity, we ignore the
energy- and spin-dependence of ξ. Furthermore, the
occupation numbers of the Pt-p orbitals, which have a
large SOC constant, are overestimated in TB in compar-
ison to DFT. We renormalize the Pt-p occupation num-
bers based on the DFT value when adding SOC into the
Hamiltonian.

B. MAE

Turning on SOC lowers the system energy. Here we re-
fer to this energy change as the SOC energy Eso, which
depends on the spin direction. For uniaxial geometry,
MAE can be defined as K=Eso

110 − Eso
001, with Eso

110 and
Eso

001 indicating the SOC energies along the spin direc-
tions [110] and [001], respectively. We use [110] as the
reference direction for the basal plane. A positive K
value indicates the system has uniaxial anisotropy with
the easiest spin direction being out of plane.
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1. Magnetic force theorem

After SOC is added into the TB Hamiltonian, tetra-
hedron integration with Blöchl correction36 is used to
determine the Fermi level εF, band weights, and band
sums. MAE is calculated as

K =
∑
k,b

(
ε110k,b f

110
k,b − ε001k,b f

001
k,b

)
, (2)

where, b is the band index, k refers to the wavevector in
the first Brillouin zone (BZ) and fk,b is the corresponding
band occupancy. In order to resolve the MAE into k-
space, Eq. (2) needs to be modified. A grand-canonical
ensemble version37 is used:

K =
∑
k,b

(
(ε110k,b − ε0F)f110k,b − (ε001k,b − ε0F)f001k,b

)
, (3)

where ε0F is the Fermi level calculated without SOC. The
total MAE value does not depend on the reference energy
because the total number of valence electrons

∑
fk,b is

conserved when spin is along different directions; how-
ever, the k-resolved MAE does depend on the choice of
reference energy24,38. We use Eq. (3) to properly decom-
pose MAE because k-resolution of MAE based on Eq. (2)
will only reflect the change of band occupancy ∆fk,i. The
Eq. (2) result will be dominated by the relaxation effect
of the Fermi surface due to turning on SOC with magne-
tization along various directions, and MAE contributions
will only appear near the Fermi surface.

2. Perturbation theory

Using second-order PT, we can express orbital mo-
ment, SOC energy, and their anisotropies in terms of the
susceptibility17 calculated using the unperturbed band
structure. The SOC energy Eso due to the spin-orbit
interaction Vso can be written as

Eso = − 1

2π
=
∫ εF

−∞
dεTr

[
G̃(ε)Vso

]
, (4)

where G̃(ε), the full Green’s function, includes SOC and
can be constructed from the non-perturbed Green’s func-
tion G(ε). Using second-order PT (here we consider only
systems with a uniaxial geometry), the SOC energy can
be written as

Eso = − 1

2π
=
∫ εF

−∞
dεTr [G(ε)V G(ε)V ], (5)

where the Green’s function is constructed using

G(ε) = (ε−H)
−1
. (6)

A complex contour integration on an elliptical path39

is used for the integration. By exploiting the fact that G
is spin-diagonal and V is (i, l)-diagonal, the SOC energy
can be written as

Eso(n̂) =
∑

il;jl′,σσ′

Eσ,σ
′

il,jl′(n̂), (7)

where Eσ,σ
′

il,jl′(n̂) is the contribution from the sublattice-

orbital-spin pair (ilσ, jl′σ′). We have

Eσσ
′

il,jl′(n̂) = − 1

2π
=
∫ εF

−∞
dε

∫
dkTrEσσ

′

il,jl′(k, ε; n̂), (8)

and

Eσσ
′

il,jl′(k, ε; n̂) = Gσil,jl′(k, ε)V
σσ′

jl′ (n̂)Gσ
′

jl′,il(k, ε)V
σ′σ
il (n̂).

(9)

V = ξσσ
′

i,l (ε)L·S(n̂) couples states within the same l-
channel at the same site. Here, for simplicity, we treat
SOC strength as a constant ξil for each l channel at site
i, ignoring its energy and spin dependence. L·S can be
written as a function of magnetization direction n̂. The
MAE can be written as

K =
∑
ij,σσ′

Kσσ′

ij =
∑
ij,σσ′

Eσσ
′

ij (n̂110)− Eσσ
′

ij (n̂001). (10)

We define the isotropic and anisotropic parts of V (n̂)
as U and A, respectively:

U = V (n̂110) + V (n̂001)

A = V (n̂110)− V (n̂001).
(11)

Then Eq. (10) can also be written as

K =
∑
ij,σσ′

K̃σσ′

ij (12)

with

K̃σσ′

ij =− 1

2π
=
∫ εF

−∞
dε

∫
dk

Tr
[
Gσij(k, ε)U

σσ′

j Gσ
′

ji (k, ε)A
σ′σ
i

]
.

(13)

Here, we have K̃σσ′

ij = Kσσ′

ij when σ = σ′. Unlike

K↑↓ij = K↓↑ij , we have K̃↑↓ij 6= K̃↓↑ij , however

K̃↑↓ij + K̃↓↑ij = K↑↓ij +K↓↑ij . (14)

According to Eq. (13), the strength of the inter-
sublattice MAE contribution Kij depends on the SOC
strength of both sublattices ξi and ξj (contained in Vso
or U and A) and on the inter-sublattice Green’s func-
tion Gij . The element types of the sublattices determine
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the SOC strength ξ while Gij is relevant to the hopping
or hybridization between two sublattices and depends on
the detail of electronic structure. If there is no hybridiza-
tion between the two sublattices or they are coupled only
through s-orbitals (i.e. the angular parts of U and A
vanish) elements, the corresponding inter-sublattice con-
tribution becomes negligible.

3. Scaling SOC strength

Instead of using Eq. (13), the intra- and inter-
sublattice MAE contributions can also be obtained by
scaling the SOC strength ξi on each site i by a factor λi,
and by fitting the MAE as a function of scaling vector
λ = [λ1, λ2, ..., λn].

Vso(λ) =
∑
i

λiξi L·S, (15)

K(λ) =
∑
ij

αijλiλj +O(λ4). (16)

Comparing Eq. (16) to Eqns.(10, 12, and 13), the co-
efficients αij are nothing but the corresponding terms
containing ξiξj in K. Thus, we have

αij = Kij =
∑
σσ′

Kσσ′

ij =
∑
σσ′

K̃σσ′

ij . (17)

The SOC-scaling procedure is often used in DFT, prob-
ably due to its rather straightforward implementation.
Obviously, the scaling procedure can be generalized from
sites to orbitals to obtain contributions from individual
orbitals.

C. Crystal structure of L10 compounds

FIG. 1. Schematic representation of the CuAu-type L10

structure.

We chose to focus on L10 magnetic compounds because
they are one of the most widely studied systems27–29.
Their simple CuAu-type crystal structure is shown in
Fig. 1. The primitive cell is body-center-tetragonal (bct)
and contains one formula unit (f.u.) while the conven-
tional cell is face-center-tetragonal (fct) and contains two
f.u. For all L10 magnetic compounds that we study
in this work, experimental lattice parameters have been
used. The c/a ratio values (with respect to the bct primi-
tive cell) are in the range of 1.28–1.414. Considering that
hypothetical bct-FeCo structures with different c/a ratios
have received significant attention in the past few years,
we also investigated a hypothetical bct-FeCo structure
with a c/a ratio of 1.1.

III. RESULTS

A. Electronic structure and magnetic moment

For all compounds we investigated in this work, the
scalar-relativistic bandstructures recalculated in TB are
essentially in perfect agreement with those obtained from
DFT, within the specified energy window. In both TB
and DFT, the tetrahedron integration with Blöchl cor-
rection method36 is used to determine the Fermi level.
Here we use FePt as an example to illustrate our imple-
mentation of SOC in the realistic TB framework. The
new Fermi level obtained in TB with charge neutrality
deviates from the original DFT Fermi level by less than
0.01 eV. As shown in Fig. 2, without SOC, the bandstrc-
tures are nearly identical between TB bands and the all-
electron full potential bands calculated using FP-LMTO.
The vasp bands (not shown) are essentially the same
also. The SOC constants ξil calculated using FP-LMTO
are used as input parameters to construct relativistic TB
bands.
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FIG. 2. (a) Scalar-relativistic band structure of FePt using a tight-binding Hamiltonian and FP-LMTO (black dotted). The
tight-binding bands are in color, with blue identifying the s states, red the (Fe-p, Pt-p) states, and green everything else. The
band structure with spin-orbit coupling is calculated with spin along the [001] (b) and [110] (c) directions.

Directly using the SOC constants calculated in FP-
LMTO, the resulting bandstructure’s SOC splitting is
overestimated just above and below the Fermi level at R
and M points, respectively. By investigating the eigen-
vectors of the non-SOC band in FP-LMTO and TB, we
found that TB overestimates the eigenvector component
of the Pt-p states, which have a very large SOC constant
of about 2.6 eV. (The site-and-orbital-resolved charges
and moments are listed in Appendix B.) This is because
p-orbitals are much more extended than d-orbitals and
we do not include the interstitial sites into the projec-
tion, and as a result, the interstitial components also
fold into the atomic sites. Thus we simply renormal-
ize the occupation numbers (or equivalently, renormalize
the SOC constants) of the Pt-p channel using the ratio of
atomic p-charge between vasp and TB. This adjustment
improves agreement between DFT bands and TB bands.
Correspondingly, the MAE also improves as we discuss
later. In comparison to a previously reported empirical
TB method40 that used Slater-Koster parametrization,
our TB method shows significantly better agreement with
DFT.

SOC parameters ξ↑↓il calculated in FP-LMTO in vari-
ous compounds are summarized in Table I. Generally, ξ
integration is only significant near a nucleus where elec-
trons move fast. As a result, for a given element in var-
ious compounds, ξl barely changes, especially for the d-
channel, enabling transferability. The d-orbitals of 3d
elements are more spin-polarized than those of 5d ele-

ments, and the ratio of ξ↑↑i /ξ
↑↓
i ≈ ξ

↑↓
i /ξ

↓↓
i of 3d-elements

varies between 1.07 and 1.13 in various L10 compounds.

For simplicity, we use the value of ξ↑↓il for all spin chan-
nels.

The SOC energy Eso is proportional to ξ2 within
second-order PT. Among the L10 compounds we stud-
ied, CoPt has the largest ξ values as well as the largest
Eso. The Eso values are much larger than MAE, indi-
cating that the isotropic part of Eso is much larger than

TABLE I. Spin-orbit coupling constants ξ↑↓i (meV) in various
compounds calculated in FP-LMTO. On the 3d sites (Mn, Fe,

and Co), ξ↑↑i /ξ↑↓i ≈ ξ↑↓i /ξ↓↓i varies between 1.07 and 1.13 for
the d channel. SOC energies (isotropic) Eso (meV) calculated
in TB are also listed.

Compound
1st element 2nd element

Eso

ξp ξd ξp ξd
FePt 197.2 55.0 2626.4 574.9 193.8

CoPt 190.5 72.1 2793.1 580.8 210.6

FePd 168.9 54.7 898.0 200.8 22.4

FeNi 232.9 55.9 218.2 91.6 11.7

MnGa 193.1 41.0 209.6 84.1 5.3

MnAl 203.0 41.3 31.3 0.4 2.7

the anisotropic part. In comparison to other compounds,
MnGa and MnAl have a rather high anisotropic/isotropic
ratio, suggesting that they have a more “efficient” band-
structure, in the sense that the Fermi level is close to the
bandfilling position that gives the largest MAE value,
as we show in subsection III B. On the other hand, it
is challenging to analyze the relationship between MAE
and bandstructure for FePt and CoPt as each MAE value
is only a small fraction of Eso.

B. MAE and Band-filling effect

As shown in Table II, the MAE values calculated using
TB agree well with DFT, especially with those obtained
by the all-electron FP-LMTO method. They are also
comparable to previous DFT calculations using various
methods22,29. We found that MAE values calculated us-
ing PT generally agree very well with the MFT results.
The largest difference in MAE is in CoPt, in which PT
gives a MAE 20% larger than the MFT result. Inter-
estingly, the MAE of CoPt also strongly depends on the
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TABLE II. MAE (µeV/f.u.) in L10 systems calculated in our
tight-binding framework with (denoted as TB-PT) and with-
out (denoted as TB) perturbation approach. MAE values
calculated using FP-LMTO with both PBE (denoted as FP)
and BH (denoted as FP-LDA) exchange-correlation function-
als, and using vasp with PBE functional, are also listed for
comparison. The SOC constants used in TB were obtained
from FP using PBE functionals.

Compound TB FP TB-PT VASP FP-LDA

FePt 2495 2556 2692 2656 2746

CoPt 836 788 1098 858 1156

FePd 175 164 186 194 173

FeNi 66 68 65 80 68

MnGa 399 381 415 431 421

exchange-correlation functionals used. LDA increases the
MAE values by 30%. Likely, this is because CoPt has a
large SOC and its MAE depends on the detailed, subtle
band features near the Fermi level. We will study CoPt
in more detail in a later section.

Figure 3 shows the band-filling dependence of MAE in
FePt, CoPt, FePd, and FeNi. The oscillation41 of MAE
can be associated with the local susceptibility17,42. For
the entire bandfilling range, MAE values calculated using
DFT and TB agree well. On the other hand, although
PT gives a good description of MAE at the actual elec-
tron filling for each compound, it disagrees with the MFT
result in certain bandfilling ranges in FePt and CoPt.
Specifically, the disagreement is pronounced from four to
eight electrons in FePt and from four to ten in CoPt.
A similar finding was reported by a previous LMTO-
ASA study29. In comparing results for 3d, 4d, and 5d
compounds, second-order PT is best suited for the lower
SOC strength found in the lighter compounds, and that’s
where we obtained the best agreement between MFT
and PT. In general, we found that we could not improve
agreement by using a denser k-mesh.

Although MnGa does not contain heavier 4d and 5d
elements, its MAE is larger than FePd. As shown in
Fig. 4, the Fermi level is located close to the filling with
maximum MAE. PT generally agrees well with MFT.
We also consider the renormalization of the p (for both
Ga and Mn) charge when including SOC, and it slightly
decreases the MAE. All TB results are within ±10% of
the FP-LMTO results. While MnGa MAE is about 10 %
of the SOC energy, the ratio is much higher than in FePt
and CoPt.

C. Reciprocal-space resolved MAE and its
correlation with Fermi surface

As shown in Table II, MAE values calculated using
second-order TB with either MFT or PT generally agree
well with each other and with the corresponding DFT cal-
culations. To further validate the applicability of PT, we
compare the k-resolved MAE using both methods for a
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FIG. 3. MAE in FePt, CoPt, FePd, and FeNi as a function of
bandfilling. The solid and dashed lines are the results calcu-
lated using the magnetic force theorem and the second-order
perturbation theory, respectively. The blue dots are from
FP-LMTO. The vertical dashed-and-dotted lines indicate the
actual number of valence electrons in each compound.

more stringent test. Remarkably, for all L10 compounds
we study, the two methods produce very similar results,
further suggesting that the overall effect of Fermi sur-
face relaxation is non-significant and that second-order
PT is valid. CoPt has the largest difference of MAE
values between MFT and PT among the compounds we
study. Figure 5 shows the kz-dependence of MAE con-
tributions calculated in FePd and CoPt. Although the
kz-resolved MAE in CoPt shows a larger difference, the
two methods still generally agree with each other. The
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larger difference is likely due to its rather large SOC for
the Pt atom and more complex Fermi surface, which re-
sults a larger Fermi surface relaxation effect. Similar to
FePd, the kz-resolved MAE calculated using MFT and
PT in other L10 compounds (not shown) are also nearly
identical. And, the Z-R-A (kz=0.5) plane has the largest
positive contribution to MAE.

For CoPt, the (kx, ky)-resolved MAE at kz=0 in CoPt
calculated using both MFT and PT are shown in Fig. 6,
which also includes the corresponding non-SOC Fermi
contour. Figure 6(a) shows the resolved MAE calculated
using MFT. Obviously, the four-fold symmetry is broken
due to SOC. The 2-fold or mirror symmetry along the
[110] direction is simply an artifact of our choice of [110]
as the reference in-plane spin direction. The Fermi con-

(a) (b)

(c) (d)

Г X

M

FIG. 6. k-resolved MAE and Fermi surface contour in CoPt
for kz=0 calculated in TB. Red (blue) color indicates pos-
itive (negative) contributions to MAE. (a) k-resolved MAE
calculated via the magnetic force theorem. (b) Fermi surface
contour plot. (c) Symmetrized k-resolved MAE. (d) Sym-
metrized k-resolved MAE calculated via perturbation theory.
The number of k points used is ∼ 108.

tour plot, as shown in Fig. 6(b), is calculated by integrat-
ing the electron density at the Fermi level with a width of
0.02 eV. To better compare with the Fermi surface and
k-resolved MAE, we also symmetrized k-space contribu-
tions with symmetry operations that are compatible with
SOC when the spin quantization axis is along the z di-
rection. The symmetrized k-resolved MAE calculated in
MFT and PT are shown in Fig. 6(c) and (d), respectively.

As shown in Fig. 6(b, d), the correlation between the
(kx, ky)-resolved MAE and the Fermi contour is appar-
ent and two features stand out. First, positive and neg-
ative regions are partitioned by Fermi contours. This
is because MAE is obtained by integrating Eq. (3) up
to EF and band occupancy, whereupon the correspond-
ing MAE contribution changes when the k path crosses
the Fermi contour. Second, from the point of view of
PT, the strongest contributions to MAE are from those
virtual transitions between the unoccupied and occupied
states near the Fermi level that are coupled by SOC17,43.
As a result, the largest contributions are located at and
near the degenerate states across the Fermi contour, as
expected from PT, and as shown in Fig. 6(d).

As shown in Fig. 6(c, d), the overall (kx, ky)-resolved
MAE calculated using the two methods share great sim-
ilarity. The largest differences exist around the Fermi
contour, where the relaxation effect is large. The large
contributions (near the degenerate states) observed in
PT disappear in MFT. Indeed, the MFT results show
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more complex features than the non-SOC Fermi contour,
which corresponds to the Fermi surfaces when SOC is
on and the magnetization direction being along in- and
out-of-plane directions. The SOC-induced lifting of band
degeneracy, especially near the EF , is often discussed to
explain MAE in various systems43–46.

Thus we demonstrate that MFT and PT give very sim-
ilar results for not only total MAE but also for k-resolved
MAE. To achieve this, it is important to use the refer-
ence energy ε0F as in Eq. (3). Otherwise, if one just re-
solves MAE using Eq. (2), a very different dependence
can be obtained, and k-resolved MAE will only manifest
the Fermi surface, near which the change of band occu-
pancy is significant. MAE has often been resolved into
k-space along certain line paths between high-symmetry
points. Not surprisingly, using Eq. (2) to resolve MAE
will result in spikes at points where bands cross the Fermi
level. Further resolution of MAE into atomic sites by
projecting eigenvectors of each k point may produce un-
physical results24,38,47.

D. Two-ion MA: Inter-sublattice contribution

Site-resolved MAE values, together with exchange pa-
rameters, can be used to construct an atomic spin Hamil-
tonian for subsequent Monte Carlo or spin-dynamics
simulations to calculate the temperature dependence of
magnetic properties. Methods such as evaluating the
anisotropy of on-site SOC energy22, which is a local quan-
tity, have been used to resolve the MAE contribution
from each individual sublattice. Here, we use PT in
TB to resolve MAE into sublattices and validate the de-
composition using the SOC-strength-scaling approach in
vasp.

TABLE III. Sublattice-resolved MAE (normalized to 1) in L10

systems calculated using perturbation theory in TB. For each
compound AB, MAE is resolved into intra-sublattice contri-
butions, KA-A and KB-B , and inter-sublattice contribution
KA-B . We also define the contribution from individual sub-
lattice A as KA = (KA-A +KA-B/2). The hypothetical FeCo
structure with c/a=1.1 is also included.

AB KA-A KA-B KB-B KA KB

FePt 0.11 -0.55 1.44 -0.16 1.16

CoPt 0.17 -0.77 1.59 -0.21 1.21

FePd 1.80 -2.58 1.78 0.51 0.49

FeNi 4.51 -5.88 2.37 1.57 -0.57

MnGa 0.66 0.24 0.10 0.78 0.22

MnAl 0.98 0.02 0.00 0.99 0.01

FeCo 0.10 0.63 0.28 0.41 0.59

As discussed above, PT can well describe the MAE
in these systems. To quantify the single-ion and two-
ion contributions of MAE, we first use PT within TB to
resolve MAE into intra-sublattices and inter-sublattice
contribution. Results are summarized in Table III. In-

terestingly, all intra-sublattice contributions are positive
in all elements except for the s-like Al site in MnAl, where
it vanishes. The sign of the inter-sublattice contribution
varies and its amplitude is generally comparable to or
even larger than that of either individual intra-sublattice.
For FePt and CoPt, the major contributions are from the
Pt sites. The inter-sublattice contributions are negative
for FePt, CoPt, FePd, and FeNi. Especially in FeNi, the
amplitude of the negative inter-sublattice contribution is
larger than each individual intra-sublattice contribution.
In contrast, the inter-sublattice contribution is positive
in MnGa. An even larger positive inter-sublattice contri-
bution is found in hypothetical FeCo with c/a=1.1.

To validate TB results, we also investigate the intra-
and inter-sublattice MAE contributions by scaling the
SOC strength in vasp. Figure 7 shows the normalized
MAE as a function of the SOC-scaling factors (between
0 and 1) for L10 materials using the second-variation
method in vasp. For all compounds, the sign and rel-
ative amplitude of intra- and inter-sublattice contribu-
tions agrees well with TB-PT results. Furthermore,
we fit MAE as a function of SOC-scaling factors (with
0.9 < λi < 1.1) using Eq. (16) and further confirm that
the second-order terms agree very well with TB results
listed in Table III. The fourth-order terms are generally
small especially for 4d- and 3d compounds. Owing to
stronger SOC, FePt and CoPt have larger and negative
fourth-order contributions: ∼8% of total MAE. A pre-
vious study also found a small and negative high order
contribution to MAE in FePt48. The good agreement be-
tween TB and vasp further validates the accuracy of the
PT approach for those systems. Unlike the scaling proce-
dure, the PT approach resolves all contributions in a sin-
gle calculation. Thus, for the same analysis, once the TB
Hamiltonian is constructed, the TB-PT approach is or-
ders of magnitude faster than the SOC-scaling approach
in DFT.

We further investigate FeNi, in which the inter-
sublattice MAE dominates. Along each direction, the
intra-sublattice SOC energy is large and dominated by
the λ2 term while the inter-sublattice term is rather
small. However, the majority of intra-sublattice terms
cancel out between the two directions, while the inter-
sublattice term does not. Hence the inter-sublattice
term becomes dominant in the anisotropy of SOC. In
other words, the intra-sublattice terms in SOC are large
but more isotropic, while the inter-sublattice terms are
smaller but more anisotropic with respect to the magne-
tization quantization direction.

A large inter-sublattice MAE contribution may suggest
the need to go beyond the single-ion MAE model when
interfacing ab initio methods with atomic spin simula-
tion. To simulate temperature-dependent MAE or other
magnetic properties, exchange coupling is often included
over the first one or two nearest neighbor shells while
MAE is often included using the single-ion MAE term
ki(s

z
i )

2. For systems with strong inter-sublattice contri-
bution, one may also need to include two-ion terms such
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FIG. 7. Normalized MAE K(λi, λj)/K(λi = 1, λj = 1) in
L10 compounds as a function of SOC-scaling factors λi and
λj calculated using second-variation method in vasp. The
SOC strengths are scaled between 0 and 1.

as kijs
z
i s
z
j into the atomic spin Hamiltonian.

IV. CONCLUSIONS

Using L10 systems as a test case, we demonstrate that
the ab initio TB framework, constructed using the max-
imally localized Wannier functions method, can be used
to efficiently and accurately compute and resolve MAE
in transition metal systems. With the magnetic force
theorem, TB quantitatively reproduces DFT results over
the full bandfilling range from the bottom of valence
band to a few eV above the Fermi level. When calcu-
lating k-resolved MAE in TB, the magnetic force theo-
rem and perturbation theory results agree with one an-
other, and both yield MAE contour maps that are con-
sistent with the Fermi surface. We also resolve MAE into
intra- and inter-sublattice contributions using perturba-
tion theory in TB and a scaled spin-orbit strength proce-
dure in DFT. The results using these two methods are in
excellent agreement. We found that the sign of the inter-
sublattice contribution differs among compounds, and its
amplitude may be comparable to or even larger than the
intra-sublattice contributions, suggesting the need to go
beyond the single-ion MAE model. Depending on the
system size, once the TB Hamiltonian is constructed, it
can speed up the calculation by orders of magnitude, pro-

viding an efficient, accurate, and high-resolution method
to calculate MAE. We expect that it can be applied to
more complex compounds and structures to compute and
analyze MAE. Finally, this realistic TB method can also
be interfaced with ab initio methods beyond DFT, such
as the much more expensive self-consistent GW meth-
ods49,50, to greatly accelerate the calculations and anal-
ysis of MAE or other SOC-related properties using those
methods.
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Appendix A: Spin-orbit coupling operators in real
spherical harmonics representation

L · S =
1

2
(J2 − L2 − S2) =

~2

2

(
Lz L−
L+ −Lz

)
. (A1)

In the presentation of complex spherical harmonics
Y m` , the non-vanished matrix elements of Lz, L+, and
L− are

〈l,m|Lz|l,m〉 = ~m
〈l,m− 1|L−|l,m〉 = ~

√
l(l + 1)−m(m− 1) (A2)

〈l,m+ 1|L+|l,m〉 = ~
√
l(l + 1)−m(m+ 1)

wannier90 use the real spherical harmonics Y`m, also
known as tesseral spherical harmonics, which can be writ-
ten in terms of the complex spherical Y m` as

Y`m =


i√
2

(
Y
−|m|
` − (−1)m Y

|m|
`

)
if m < 0

Y 0
` if m = 0
1√
2

(
Y
−|m|
` + (−1)m Y

|m|
`

)
if m > 0.

(A3)
The angular momentum matrices in the real-spherical-

harmonics representation, O(R), can be obtained by di-
rectly evaluating the angular momentum operator on real
spherical functions in Eq. (A3), or transforming O(C) —
the corresponding operator matrix from complex repre-
sentation.

O(R) = UR←CO
(C)U†R←C = UR←CO

(C)UC←R (A4)
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TABLE IV. Atomic charge and magnetic moment in L10 compounds calculated in TB and vasp. Spin-orbit is not included in
calculation.

Compound Method
1st element 2nd element

Cell
s p d Atom s p d Atom

FePt
VASP 0.41 0.45 -0.01 6.12 2.92 6.98 2.92 0.61 0.50 -0.05 7.73 0.43 8.84 0.36 15.82 3.28

TB 0.83 0.81 -0.04 6.38 2.95 8.03 2.95 0.98 0.81 -0.09 8.18 0.45 9.97 0.34 18.00 3.29

CoPt
VASP 0.41 0.44 -0.01 7.20 1.91 8.05 1.89 0.61 0.50 -0.04 7.72 0.46 8.82 0.41 16.88 2.30

TB 0.83 0.80 -0.04 7.48 1.92 9.11 1.87 0.96 0.78 -0.06 8.14 0.47 9.89 0.40 19.00 2.26

FePd
VASP 0.42 0.41 -0.01 6.09 2.97 6.92 2.96 0.37 0.31 -0.04 7.96 0.42 8.63 0.36 15.55 3.33

TB 0.81 0.67 -0.04 6.35 3.05 7.83 3.00 0.85 0.70 -0.09 8.63 0.42 10.17 0.29 18.00 3.29

FeNi
VASP 0.47 0.49 -0.02 6.17 2.69 7.12 2.67 0.51 0.51 -0.07 8.31 0.72 9.33 0.62 16.45 3.29

TB 0.80 0.70 -0.05 6.38 2.74 7.89 2.67 0.85 0.73 -0.09 8.53 0.71 10.11 0.57 18.00 3.24

MnGa
VASP 0.29 0.31 0.02 5.13 2.49 5.73 2.52 1.08 1.31 -0.11 0.16 0.02 2.56 -0.14 8.29 2.39

TB 0.55 0.47 0.02 5.45 2.60 6.46 2.64 1.36 1.89 -0.15 0.28 0.03 3.54 -0.15 10.00 2.49

MnAl
VASP 0.33 0.34 0.02 5.12 2.37 5.78 2.41 0.40 0.42 -0.04 0.00 0.00 0.82 -0.06 6.60 2.35

TB 0.56 0.47 0.03 5.49 2.49 6.52 2.55 1.21 1.87 -0.14 0.41 0.03 3.48 -0.17 10.00 2.39

From Eq. (A3), the transfer matrix UC←R can be writ-
ten as

UC←R =
1√
2



i 0 0 0 0 0 1
0 i 0 0 0 1 0
0 0 i 0 1 0 0

0 0 0
√

2 0 0 0
0 0 i 0 −1 0 0
0 −i 0 0 0 1 0
i 0 0 0 0 0 −1


. (A5)

For p- and d-orbitals, only the corresponding subblocks
of Eq. (A5) are needed.

Similarly, for quantization along other directions, the
matrix can be rotated by using Wigner matrix.

Hso(n̂) =
ξ

2
U(θ, ϕ)(L · S)U†(θ, ϕ), (A6)

and

U (θ, ϕ) =

(
ei
φ
2 cos

(
θ
2

)
e−i

φ
2 sin

(
θ
2

)
−ei

φ
2 sin

(
θ
2

)
e−i

φ
2 cos

(
θ
2

) ) , (A7)

where θ and ϕ are the angles of the direction of
magnetization when the unit vector is defined by n̂ =
(sin θ cosϕ, sin θ sinϕ, cos θ). When the spin quantization
axis is along [110] direction, the SOC Hamiltonian can be
written as

Hso(n̂110) =

ξ

2

( √
2
2 (Lx + Ly) i

√
2

2 (Lx − Ly)− Lz
− i
√
2

2 (Lx − Ly)− Lz −
√
2
2 (Lx + Ly)

)
.

(A8)

Appendix B: Charge and moment calculated in TB
and VASP

Table IV lists the site-resolved charge and magnetic
moments in L10 compounds calculated in TB and vasp.
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