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We develop a theoretical framework based on the electron-phonon coupled 

Boltzmann transport equations (BTEs) for the interpretation of nondiffusive 

thermal conductivity measurements in metals made via frequency domain 

thermoreflectance (FDTR). The thermal conductivity of a bulk gold crystal 

was measured over a temperature range of 23 K to 304 K as a function of 

FDTR’s laser spot size. Our interpretation of these measurements by a two-

temperature heat diffusion model finds that the thermal conductivity is 

suppressed when the laser spot size is comparable to electron mean free 

paths. Using a simplified spherical geometry that enables analytical 

solutions, we compare the two-temperature diffusion model with the coupled 

BTEs, to identify a thermal conductivity suppression function. We also 

conclude that over the timescales of our experiment electron-phonon 

nonequilibrium is negligible, but that the length scale of heat deposition by 

hot electrons critically influences our interpretation.   
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I. INTRODUCTION 
 

Thermal transport in materials is commonly described by diffusive laws that assume 

that the energy carrier mean free paths (MFPs) are much smaller than the length scales of 

interest. As the length scales of interest decrease and become commensurate to the 

material’s thermal energy carrier MFPs, diffusive laws break down. Novel, laser-based 

thermal conductivity (k) measurement techniques, such as broadband frequency domain 

thermoreflectance (BB-FDTR) [1,2], transient thermal grating (TTG) [3], and time 

domain thermoreflectance (TDTR) [4-6], have demonstrated this phenomenon, known as 

nondiffusive thermal transport, in dielectric materials, where phonons are the lone 

carriers of heat. In these studies, as the experimental length scales (laser spot size radius 

(r0) and thermal penetration depth (LP) in BB-FDTR and TDTR, length of the grating 

period (LG) in TTG) become comparable to the MFPs of select phonons, the application 

of the heat diffusion equation results in apparent values of k that are suppressed from the 

bulk value. 

Two fundamental energy carriers exist in a metal; electrons and phonons. Electrons 

dominate k in metals, while phonons are primarily responsible for the volumetric heat 

capacity (C) [7]. Thermal nonequilibrium between electrons and phonons results in the 

exchange of energy between the two energy carriers in a process known as electron-

phonon coupling [8-11]. The length scales associated with electron-phonon coupling 

differ from the MFPs of electrons and phonons in a metal. Therefore, unlike in 

dielectrics, where a single material length scale can be compared to the experimental 

length scales (r0, LP, or LG), multiple material length scales must be considered in a metal.  
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The thermal conductivity of electrons in a metal is described by the equation 

  
ke = kΛe

dΛe = 1
3

CeveΛe0

∞

∫ , where ke is the bulk electronic thermal conductivity in a 

metal, kΛ is the electron contribution to thermal conductivity per unit MFP, Ce is the 

volumetric heat capacity of the electron, ve is the Fermi velocity, and Λe is the electron 

MFP in a metal. In metals, a gray electron MFP is an appropriate approximation [7]. 

Therefore, the thermal conductivity accumulation function [12], kaccum, for electrons in a 

metal can be written as a step function with the form 

 kaccum Λe
*( ) =

ke ,Λe
* ≥ Λe

0,Λe
* < Λe

⎧
⎨
⎪

⎩⎪
. (1) 

The relationship between an energy carrier’s MFP and its contribution to the measured 

value of thermal conductivity, kexp, in a FDTR experiment is defined as [13] 

 kexp r0 , LP( ) = S Λ,r0 , LP( )
0

∞

∫ kΛdΛ ,  (2) 

where S is the thermal conductivity suppression function. Using the kaccum for electrons in 

Equation (1), kexp in a metal can be written as 

 kexp r0 , LP( ) = S Λe ,r0, LP( )ke . (3) 

 To date, S has been theoretically derived based on comparisons to the diffusive thermal 

transport equation and the Boltzmann transport equation (BTE) for dielectric materials 

measured via BB-FDTR [14], TDTR [6], and TTG [15,16]. 

In this study, we derive S for a metal measured via FDTR based on an analytical 

solution to the two-temperature BTE in spherical coordinates. The timescales of electron-

phonon coupling are less than 1 ps for temperatures between 10 K and 300 K [17], while 

the timescales of FDTR range from 0.2 μs and 10 μs for the modulation frequencies used 
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here (5 MHz to 100 kHz).   Hence, FDTR is not typically sensitive to non-equilibria of 

the energy carriers under these conditions.  We herein consider how electron-phonon 

coupling length scales and Λ of electrons and phonons relative to the r0, influence this 

assumption. To resolve these effects the BTE solution is compared with the solution to 

the two-temperature diffusive model to explain how nondiffusive electron transport can 

be interpreted as a suppressed value of k. We show that FDTR measurements of a bulk 

gold (Au) crystal, interpreted via the coupled heat diffusion equations with the ability to 

exponentially deposit heat within the Au, deviate from the bulk values of k when r0 is 

comparable to Λe. Au was chosen for our experiments because of its weak electron-

phonon coupling [18,19] and long Λe that enable nondiffusive behavior at experimentally 

attainable temperatures. By examining the BTE and diffusive equation’s predicted 

thermal resistances at the surface of Au as a function of r0 we also demonstrate that 

nondiffusive and nonequilibrium thermal transport processes can be separated and their 

onsets identified. 

 
II. GEOMETRY AND BOUNDARY CONDITIONS FOR THE BTE AND HEAT 
DIFFUSION EQUATIONS 
 

Thermal transport in metals is often described by a two-temperature model that 

separates the electrons and phonons into two effective temperatures; Te r( )  for electrons 

and Tp r( ) for phonons [20]. Here, the effective temperatures are functions of position in 

the metal, r. The electrons and phonons exchange energy at a rate per unit volume, 

qe− p
''' r( ) , that is proportional to the difference in effective temperatures, such that 

qe− p
''' r( ) = g Te r( ) − Tp r( )⎡⎣ ⎤⎦, where g is a proportionality constant known as the electron-

phonon coupling parameter. No heating frequency dependence on kexp was observed over 
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the range of heating frequencies used in the FDTR experiment presented later (100 kHz 

to 5 MHz). At low temperatures, where nondiffusive behavior was observed, LP varied 

between ~93 μm and ~13 μm, which are greater than the values of r0 used in the FDTR 

experiment. Therefore, to simplify our analysis time-independent solutions to the BTE 

and heat diffusion equations are presented. 

To accurately model the FDTR geometry for the purposes of fitting our experimental 

data a solution to the heat diffusion model in the two-dimensional cylindrical coordinate 

system is used in Section VI.  An analytical solution to the BTE in this geometry is, 

however, impossible so we consider simple analytical solutions in the one-dimensional 

spherical geometry. By using spherical symmetry, rather than a planar Cartesian system, 

we introduce a spatial dimension−sphere radius (r0)−that can be likened to spot size 

radius, as shown in Figure 1. Regner et al [14] demonstrated that a spherical geometry 

can estimate the effects of a finite 1/e2 laser spot size in FDTR and found that the 

analytical results compared favorably with experimental data, yet it has not been 

rigorously proven to approximate the true geometry. 

In a FDTR measurement photons from the pump laser are absorbed volumetrically 

with exponential temperature decay from the surface. The absorbed heat flux excites the 

metal’s electrons, producing a temperature rise in Te. Previous studies have shown that 

the excited electrons diffuse and thermalize with the phonons with exponential decay 

over the length scale Lth =
keCp

g Cp + Ce( ) ≈
ke

g
, where Lth is the thermalization length 

and Cp is the phonon volumetric heat capacity (in metals Ce << Cp) [8,21]. A realistic 

depiction of exponential spatial absorption makes an analytical solution to the BTE and 
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heat diffusion equation intractable. Instead, we model an isothermal region of thickness 

Lth, where Te and Tp are distinct and spatially homogenous. Notably, the S determined in 

Section V is independent of the value of Lth chosen because identical treatment is used in 

both the BTE and heat diffusion equation. The rise in Te produces a temperature 

difference between the electrons and phonons in the isothermal region (r0 - Lth < r < r0), 

inducing a heat flux from the electrons to the phonons. The net heat flux from the 

electrons to the phonons within the isothermal region is quantified by qe− p
'''  integrated over 

the thickness Lth, which equals gLth Te − Tp( ) .  

Our solution domain extends from r = r0 to r → ∞. The exchange of thermal energy 

from the electrons to the phonons within r0 - Lth < r < r0 results in heating of the solution 

domain. The magnitude of the electron and phonon heat fluxes at r = r0  are 

 qe r=r0
= q0 − gLth Te − Tp( ) ,  (4) 

 qp r=r0

= gLth Te − Tp( ) , (5) 

where q0 is the magnitude of the absorbed laser heat flux. Notably, Te and Tp do not 

represent absolute temperatures, but rather perturbations from the ambient temperature, 

which is assumed to equal zero for convenience, causing 

 Te r→∞
= 0, (6) 

 Tp r→∞
= 0 . (7) 

 
III. ELECTRON AND PHONON TEMPERATURES 
 
A.   Two-temperature spherical heat diffusion equations 
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The coupled time-independent two-temperature heat diffusion equations in spherical 

coordinates, where temperature gradients occur only in the radial direction, are 

 0 = 1
r2

d
dr

ker
2 dTdiff ,e

dr
⎛
⎝⎜

⎞
⎠⎟

− g Tdiff ,e − Tdiff ,p( ), (8) 

 0 = 1
r2

d
dr

kpr
2 dTdiff ,p

∂r
⎛
⎝⎜

⎞
⎠⎟

+ g Tdiff ,e − Tdiff ,p( ) , (9) 

where kp is the phonon thermal conductivity in a metal. Here, Tdiff,e and Tdiff,p are the 

effective electron and phonon temperatures of the material that result from our solution to 

the coupled heat diffusion equations. Substituting the relations Tdiff ,e =
θdiff ,e

r
 and 

Tdiff ,p =
θdiff ,p

r
 into Equations (8) and (9) leads to 

 
d 2θdiff ,e

dr2 = g
ke

θdiff ,e − g
ke

θdiff ,p , (10) 

 
d 2θdiff ,p

dr2 = − g
kp

θdiff ,e + g
kp

θdiff ,p . (11) 

The boundary conditions outlined in Equations (4) and (5) lead to 

 
qe r=r0

= −ke

dTdiff ,e

dr r=r0

= q0 − gLth Tdiff ,e r0( ) − Tdiff ,p r0( )⎡⎣ ⎤⎦ , (12) 

 qp r=r0
= −kp

dTdiff ,p

dr r=r0

= gLth Tdiff ,e r0( ) − Tdiff ,p r0( )⎡⎣ ⎤⎦. (13) 

Figure 1(a) shows the spherical approximation of a metal in a FDTR experiment based on 

the heat diffusion equations and the corresponding boundary conditions. Solving 

Equations (10) and (11), the effective temperatures can be expressed as 
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 Tdiff ,e r( ) = q0

r AF + BD( ) B + A γ − Le( )e r0 −r( )/Le⎡⎣ ⎤⎦ , (14) 

 Tdiff ,p r( ) = q0

r AF + BD( ) B − ALee
r0 −r( )/Le⎡⎣ ⎤⎦ , (15) 

where γ =
kekp + kp

2

gke

, Le = 1
g
ke

+ g
kp

, A =
kp

r0
2 , D = ke

r0
2 , B = 1

r0

gLthγ + kp

Le

r0

+1
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ , 

and
  
F = 1

r0

gLthγ + ke

γ − Le

r0

+ γ
Le

−1
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ . 

Examining Equations (14) and (15), the onset of nonequilibrium between the 

electrons and phonons in a FDTR experiment can be identified. In a FDTR experiment, 

the temperature to heat flux is probed at the surface of the material. Assuming ke >> kp, 

the difference in the electron and phonon temperatures predicted by the heat diffusion 

equations at the surface of the sphere, r = r0, is 

 Tdiff ,e r0( ) − Tdiff , p r0( ) ≈
q0 / ke

Lth

Le
2 + 1

r0

≈
q0 / ke

keg
kp

+ 1
r0

. (16) 

When 
  
r0 >>

kp

gke

 the difference between Tdiff,e and Tdiff,p is independent of r0 and small 

at the surface. When r0 ≈
kp

gke

 Tdiff,e and Tdiff,p diverge and electron-phonon 

nonequilibrium increases. Therefore, the onset of electron-phonon nonequilibrium in a 

metal measured via FDTR under low heating frequency conditions occurs when r0 ≈ 
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Lnoneq, where 
 
Lnoneq =

kp

gke

. In materials where only one energy carrier exists, such as 

dielectrics, g → ∞  causing Lnoneq = 0. 

 

FIG. 1. Spherical approximation of a metal in a FDTR experiment. (a) 

Boundary conditions based on the two-temperature heat diffusion equations. 

(b) Boundary conditions based on the two-temperature BTEs, where the 
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energy carriers moving in the negative r-direction either become fully 

thermalized upon entering the isothermal region (ε ≈ 0), r0 – Lth < r < r0, or 

scatter elastically at the physical boundary (ε ≈ 1). 

B.  Two-temperature spherical Boltzmann transport equations 

 A solution to the two-temperature spherical BTE is now derived assuming the 

relaxation time approximation, gray approximations for electron and phonon relaxation 

times, and the P1 approximation to eliminate the angular dependence of energy carriers.   

The 1-D time-independent BTE under the relaxation time approximation in spherical 

coordinates for a single gray thermal energy carrier system is [14] 

 μ ∂w
∂r

+ 1− μ2

r
∂w
∂μ

=
weq − w

τv
+ Q , (17) 

where w is the energy density per unit solid angle, also known as the distribution 

function, weq is the equilibrium distribution function, v is the velocity of the energy 

carrier, μ  is the directional cosine that accounts for the velocity of energy carriers 

traveling at different angles from the r-direction, τ  is the energy carrier lifetime, and Q 

is a source term. The distribution functions for electrons (f) and phonons (n) are defined 

as [22] 

 f r,μ( ) = 1
4π

E − EF( ) De E( ) fpop r,μ( )dE∫ , (18) 

 , (19) 

where fpop and npop  are the electron and phonon occupation functions, E is the energy of 

an electron, EF is the Fermi energy of the metal, ω  is the frequency of a phonon, De is 

the electron density of states per unit energy, Dp is the phonon density of states per unit 
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frequency, and  is the reduced Planck constant. In an electron-phonon coupled system 

the source term is Q = ∓
g

4πv
Te − Tp( ) . Here, Q represents the energy density per unit 

length per unit solid angle exchanged between the electrons and phonons. Regner et al 

[14] recently solved the BTE in Equation (17) on a per mode level, where Q = 0, while 

our definitions of f and n in Equations (18) and (19) are integrated over all modes. This is 

because the electron-phonon coupling constant is not experimentally known on a per 

mode basis, while the total electron-phonon coupling constant integrated over all modes, 

g, is well known in select metals [23,24]. Using Equations (19) and (20), and assuming 

no external electric field is applied to the metal, the time-independent, electron-phonon 

coupled, gray, spherical BTEs under the relaxation time approximation are [22] 

 μ ∂ f
∂r

+ 1− μ2

r
∂ f
∂μ

=
feq − f
τ eve

− g
4πve

TBTE ,e − TBTE ,p( ), (20) 

 μ ∂n
∂r

+ 1− μ 2

r
∂n
∂μ

=
neq − n
τ pvp

+ g
4πvp

TBTE,e − TBTE, p( ) , (21) 

where feq and neq are the equilibrium electron and phonon distribution functions, τ e
and 

τ p are the electron and phonon relaxation times, and TBTE,e and TBTE,p are the effective 

electron and phonon temperatures that result from our solution to the two-temperature 

BTEs. The equilibrium distributions, feq and neq, are defined by Equations (18) and (19), 

where fpop and npop are the Fermi-Dirac (fFD) and Bose-Einstein (nBE) distributions. For 

small perturbations from the ambient temperature, fFD = dfFD

dTBTE ,e

TBTE ,e

 
and 

nBE = dnBE

dTBTE ,p

TBTE ,p , such that [15] 
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 TBTE ,e =
4π feq

Ce

, (22) 

 TBTE ,p =
4πneq

Cp

. (23) 

An analytical solution to the spherical BTE for a single energy carrier system in a 

gray medium was outlined by Regner et al [14] using the method of spherical harmonics 

under the P1 approximation [25], which eliminates the μ -dependence from Equation 

(17). Using a similar approach to Regner et al [14], Equations (20) and (21) under the P1 

approximation [25] lead to a system of four first-order differential equations 

 
df1

dr
+ 2

r
f1 + g

veCe

f0 − g
veCp

n0 = 0 , (24) 

 
df0

dr
+ 3

τ eve

f1 = 0, (25) 

 
dn1

dr
+ 2

r
n1 + g

vpCp

n0 − g
vpCe

f0 = 0, (26) 

 
dn0

dr
+ 3

τ pvp

n1 = 0 , (27) 

where f1 and f0  represent the 1st and 0th electron distribution moments and n1 and n0  

represent the 1st and 0th phonon distribution moments. The effective temperatures of the 

electrons and phonons within the metal are proportional to the 0th distribution moments, 

defined as a linear combination of energy carriers moving in the positive (+) and negative 

(-) directions, such that f0 = 2π f + + f −( )  and n0 = 2π n+ + n−( )  
[25]. The heat flux of 

the electrons and phonons are proportional to the 1st distribution moments, where 

f1 = π f + − f −( )  and n1 = π n+ − n−( )  [25]. The distribution functions, f + , f − , n+ , and 
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n−  are hemispherically isotropic, as shown in Figure 1(b), where f + r( ) = f r,0 < μ ≤ 1( ), 

f − r( ) = f r,−1 ≤ μ ≤ 0( ),  n+ r( ) = n r,0 < μ ≤ 1( ),  and n− r( ) = n r,−1 ≤ μ ≤ 0( )  [25]. The 

equilibrium distribution functions are defined as the average of energy carriers moving in 

the positive and negative directions and are therefore related to the 0th distribution 

moments as feq =
f + + f −( )

2
= f0

4π
 and neq =

n+ + n−( )
2

= n0

4π
. 

At r = r0 , which is one Lth from the surface, we assume that there is a black surface 

that emits and absorbs electrons and phonons that emerge into the bulk of the Au at the 

temperature of the isothermal region, r0 - Lth < r < r0 [26]. Since no physical or thermal 

boundary exists for the electrons and phonons at r = r0 , the emissivity of the electrons 

and phonons depend on whether they scatter and equilibrate within the isothermal region. 

This is related to the temperature dependent ratio of Lth to Λe. 

Figure 2 shows previously reported temperature dependent values of Lth, Λe (gray), Λp 

(gray), and Lnoneq based on k measurements of Au. The electron MFP based on electrical 

resistivity measurements of Au, Λe,elec =
mve

ηq2ρ
, is also included in Figure 2 (m is the mass 

of an electron, η is the free electron density, q is the electronic charge, and ρ is the 

electrical resistivity). The temperature dependent k data was found in Ref. [27]. To 

determine Λp, the values of kp found in Ref. [28] were used, but were not shown for 

temperatures below 60 K. Therefore, for temperatures below 60 K, the values of kp were 

extrapolated using the Born-von-Karman Slack (BvKS) model [29]. Although the BvKS 

model does not account for electron-phonon scattering, the spherical BTE and diffusive 

models are not highly sensitive to increases or decreases in kp by a factor of 3. The 
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temperature-dependent values of g and Cp were found in Refs. [18] and [30], 

respectively, while Ce = χT , where χ  = 67.6 J m-3 K-2 (Ref. [23]). The velocities of the 

electrons and phonons were assumed to be temperature-independent, where ve = 1400 km 

s-1 and vp = 3240 m s-1 [31,32]. The electrical resistivity of Au was determined using Data 

Set 15 in Ref. [33]. 

It is shown in Figure 2, that for temperatures above 90 K Λe > Lth. In this temperature 

range the electrons scatter multiple times before they reach thermal equilibrium with the 

phonons. Here, thermal transport in the metal can be described by conventional parabolic 

heat conduction. At temperatures below 90 K, Λe > Lth. Qiu and Tien [34] also observed 

this for temperatures below 50 K when comparing electron relaxation times and electron-

phonon thermalization times in Au, copper, and silver and explained this phenomenon as 

hyperbolic heat conduction. Prior data clearly indicates that under certain conditions 

electrons can have mean free paths longer than the length scales associated with thermal 

equilibration. 

To simplify our analysis we make the approximation that when Lth > Λ, the energy 

carrier moving in the negative direction enters the isothermal region, scatters before or 

after striking the physical surface of the metal and thermalizes within the isothermal 

region. In this case, the effective emissivity of the artificial boundary at r0 is equivalent to 

one. On the other hand, when Lth < Λ (temperatures below 90 K in Au, as shown in 

Figure 2) the energy carrier moving in the negative direction enters and traverses the 

entire length of the isothermal region, scatters elastically at the surface of the material, 

and travels unimpeded across the isothermal layer back into the bulk region. In this case, 

most of the energy carriers will not thermalize within the isothermal region and exit the 
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region with the same energy that they entered with. This is equivalent to an energy carrier 

reflecting at the r = r0 boundary. Therefore, the emissivity of the artificial boundary at r = 

r0 is roughly equal to zero. Under this approximation, the equilibrium electron and 

phonon temperatures in the isothermal region (Tsurf,e and Tsurf,p) are defined as [26] 

 f + r0( ) = εe

CeTsurf ,e

4π
+ 1− εe( ) f − r0( ), εe ≈ 1,T > 90K

εe ≈ 0,T < 90K
⎧
⎨
⎩

, (28) 

 n+ r0( ) = ε p

CpTsurf ,p

4π
+ 1− ε p( )n− r0( ),ε p ≈ 1, (29) 

where εe and εp are the electron and phonon emissivities at r = r0 and Tsurf,e and Tsurf,p are 

the surface temperatures relevant to FDTR. The surface temperatures can be written in 

terms of f1, f0 , n1, and n0  as 

 Tsurf ,e =
f0 r0( )
Ce

+
4 − 2εe( ) f1 r0( )

Ceεe

, (30) 

 Tsurf , p =
n0 r0( )

Cp

+
4 − 2ε p( )n1 r0( )

Cpε p

. (31) 

Using Equations (30) and (31) to define the electron and phonon temperatures at the 

surface of the material, the boundary conditions in Equations (4) and (5) become 

 qe r=r0
= ve f1 r0( ) = q0 − gLth Tsurf ,e − Tsurf ,p( ) , (32) 

 qp r=r0
= vpn1 r0( ) = gLth Tsurf ,e − Tsurf ,p( ), (33) 

where the electron and phonon heat fluxes are equal to their respective 1st distribution 

moments multiplied by group velocity. Applying the boundary conditions in Equations 

(6), (7), (32), and (33) and solving Equations (24)-(27), the electron and phonon 0th and 

1st distribution moments are 
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 f0 r( ) =

q0

r H −U( ) J + Z( ) + M + Y( ) K + W( )( )
Ce K + W( )

Cp

+ H −U( )βψ
⎛

⎝⎜
⎞

⎠⎟
,r = r0

q0

r HJ + MK( )
CeK
Cp

+ Hβψ e r0 −r( )/αψ⎛

⎝⎜
⎞

⎠⎟
,r > r0

⎧

⎨

⎪
⎪

⎩

⎪
⎪

, (34) 

 n0 r( ) =

q0

r H −U( ) J + Z( ) + M +Y( ) K + W( )( ) K + W( ) − H −U( )αψ( ),r = r0

q0

r HJ + MK( ) K − Hαψ e r0 −r( )/αψ( ),r > r0

⎧

⎨
⎪⎪

⎩
⎪
⎪

, (35)  

 f1 r( ) =

qoτ eve

3r2 H −U( ) J + Z( ) + M + Y( ) K + W( )( )
Ce K + W( )

Cp

+ H −U( )β ψ + r
α

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
,r = r0

qoτ eve

3r2 HJ + KM( )
CeK
Cp

+ Hβ ψ + r
α

⎛
⎝⎜

⎞
⎠⎟

e r0 −r( )/αψ⎛

⎝⎜
⎞

⎠⎟
,r > r0

⎧

⎨

⎪
⎪

⎩

⎪
⎪

, (36) 

 n1 r( ) =

q0τ pvp

3r2 H −U( ) J + Z( ) + M + Y( ) K + W( )( ) K + W( ) − H −U( ) αψ + r( )( ), r = r0

q0τ pvp

3r2 HJ + KM( ) K − H αψ + r( )e r0 −r( )/αψ( ), r > r0

⎧

⎨
⎪
⎪

⎩
⎪
⎪

, (37) 

where ψ = 1
3g Ceτ eve

2 + Cpτ pvp
2( ) , β =

CeCpτ p
3vp

6

τ eve
2 , α = CeCpτ eτ pve

2vp
2 ,  

λe =
τ eve 4 − 2εe( )

εe

, λp =
τ pvp 4 − 2ε p( )

ε p

, H =
τ pvp

2

3r0
2 ,U =

gLth

3r0
2Cp

λe − λp( ),
 
 

K = 1
3r0

2 τ pvp
2 αψ + r0( ) + 3gLthψ r0

β
Ce

+ α
Cp

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ , W = gLth

3r0
2

λeβ
Ce

ψ + r0

α
⎛
⎝⎜

⎞
⎠⎟

+
λp

Cp

αψ + r0( )⎛

⎝⎜
⎞

⎠⎟
,
 
 

 M = τ eve
2Ce
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Under the gray approximation, where ke = 1
3

Cev
2

eτ e  and kp = 1
3

Cpv
2
pτ p , the spatial 

decay length in the BTE is αψ = Le
. Therefore, both the diffusive and BTE temperatures 

exponentially decay over the same length, Le, in the time-independent, gray solution. 

 

 
FIG. 2. Lth, Λe (gray), Λp (gray), Lnoneq, and Λe,elec in a bulk Au crystal plotted 

over a temperature range of 20 K to 300 K. The values of Λe and Λe,elec are 

approximately the same over the entire temperature range. For temperatures 

below 90 K Lth is shorter than Λe, suggesting hyperbolic heat conduction. 

 

IV. ELECTRON AND PHONON SURFACE THERMAL RESISTANCES AS A 

FUNCTION OF r0 
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In a FDTR experiment kexp is a function of the measured thermal resistance at the 

surface of a material and the predicted thermal resistance is typically based on a diffusive 

model. For the nondiffusive regime the measured thermal resistances at the surface of a 

metal more aptly are based on the BTE temperatures, where 

 RBTE ,e =
Tsurf ,e

q0

, (38) 

 RBTE ,p =
Tsurf ,p

q0

,  (39) 

while the two-temperature diffusive thermal resistances are 

 Rdiff ,e =
Tdiff ,e r0( )

q0

,  (40) 

 Rdiff ,p =
Tdiff ,p r0( )

q0

.  (41) 

In Figures 3(a) and 3(b) RBTE,e, RBTE,p, Rdiff,e, and Rdiff,p for a bulk Au crystal are 

plotted as a function of r0. The ambient temperatures are 300 K and 25 K in Figures 3(a) 

and 3(b), respectively. At 300 K, both Λe and Λp are much less than Lth. Therefore, εe = 1 

and ε p = 1 since the two energy carriers enter the isothermal layer unimpeded from the 

bulk region and thermalize within the layer. At 25 K, Λe > Lth and Λp < Lth, which implies 

that εe = 0 and ε p = 1. Since an emissivity of zero cannot be used in Equations (30) and 

(31), a value of εe = 0.01 was used instead. Notably, the BTE thermal resistances were 

unchanged when εe = 10−2 , εe = 10−7 , and εe = 10−15. 
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FIG. 3. Electron and phonon thermal resistances at the surface of a bulk Au 

crystal based on the two-temperature, spherical BTE and the two-temperature, 

spherical diffusive equations plotted as a function of r0. The material length 

scales, Λe, Λp, and Lnoneq, are indicated with black vertical lines to highlight 

the behavior of the thermal resistance profiles as r0 becomes commensurate to 

them. (a) The ambient temperature is 300 K, where εe = 1 and ε p = 1. (b) The 

ambient temperature is 25 K, where εe = 0.01 and ε p = 1. 
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When r0 >> Λe and Λp in Figure 3, RBTE and Rdiff are equivalent. Here, electrons and 

phonons are in thermal equilibrium and the transport processes are purely diffusive. In 

this regime the thermal resistances of the electrons and phonons can be accurately 

described by the heat diffusion equations. As r0 becomes commensurate to Λe (the longer 

of the two MFPs) RBTE,e and RBTE,p diverge from Rdiff,e and Rdiff,p. This is because the 

electrons transport nondiffusively through the characteristic length scale, r0. The coupled 

heat diffusion equations assume that the energy carrier MFPs are much smaller than r0 

and cannot accurately describe the thermal transport processes in this regime. 

Interestingly, even though r0 >> Λp the phonons exhibit nondiffusive transport in this 

regime due to the coupled behavior of the energy carriers. As the laser spot size decreases 

and r0 ≈ Λp (the shorter of the two MFPs), the difference between the two BTE thermal 

resistances remains constant with decreasing r0. Based on Figures 3(a) and 3(b), we can 

identify the onset of nondiffusive thermal transport to occur when the experimental 

length scale, r0, becomes comparable to Λe in a metal. 

The characteristic length scale that defines the onset of electron-phonon 

nonequilibrium in a metal is Lnoneq. When r0 > Lnoneq in Figures 3(a) and 3(b), the electron 

and phonon thermal resistances are equivalent in both the BTE and diffusive models. As 

r0 becomes commensurate to Lnoneq the electron and phonon thermal resistances separate. 

Therefore, when r0 >> Lnoneq under low heat frequency conditions, kexp in a FDTR 

measurement will not be dependent on whether a two-temperature diffusive model or a 

single thermal energy carrier diffusive model is used to interpret the FDTR data. The 

parameters used to generate the thermal resistances as a function of r0 in Figure 3 are 

shown in Table I. 
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Table I: Parameters used in the two-temperature diffusive and BTE models at 300 K 

and 25 K.  
 300 K 25 K 

ke (W m-1 K-1) 307 [27] 977 [27] 

kp (W m-1 K-1) 3.3 [28] 23 

Ce (MJ m-3 K-1) 0.021 [23] 0.0017 [23] 

Cp (MJ m-3 K-1) 2.50 [30] 0.51 [30] 

g (×1016 W m-3 K-1) 3.0 [18] 0.5 [18] 

ve (×106 m s-1) 1.4 [31] 1.4 [31] 

vp (m s-1) 3240 [32] 3240 [32] 

Lth (nm) 101 442 
 
 
V. THERMAL CONDUCTIVITY SUPPRESSION FUNCTION 
 

The thermal conductivity suppression function, S, predicts the apparent kexp in a 

FDTR experiment under nondiffusive thermal transport conditions [13]. When RBTE = 

Rdiff, the heat diffusion equation accurately predicts the thermal resistance at the surface 

and kexp = kbulk. Under nondiffusive conditions, RBTE > Rdiff and kexp < kbulk. 

The measured thermal resistance at the surface of the metal is a linear combination of 

RBTE,e and RBTE,p [35,36]. The thermal resistance probed at the surface can be expressed 

as aRBTE,e + bRBTE,p, where a + b = 1. Choi et al [19] found that a/b = 0.02 for Au at a 

laser beam wavelength of 785 nm. FDTR’s probe laser beam has a wavelength of 532 

nm, which is close to Au’s interband transition threshold of 2.4 eV [37]. Fortunately, S 

varied by less than 1% between the extremes of a and b. Therefore, a = 0 and b = 1 was 

used to calculate S. To demonstrate that the chosen values of a and b do not change the 

conclusions of our work, Figure S1 in the Supplemental Materials [38] reproduces Figure 

6 assuming a = b = 0.5. 
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 To determine S for a metal, an effective electronic thermal conductivity, ke,eff, was 

found for each r0 under the condition that RBTE,p = Rdiff,p. Only ke was varied, while kp 

remained constant, because electrons are the dominant source of k in metals. The values 

of ke,eff were determined numerically because ke,eff could not be isolated analytically. The 

model presented here produces a S that is identical to Regner et al’s [14] for highly 

coupled materials (g → ∞). 

The thermal conductivity suppression function, S = ke,eff/ke, is shown in Figure 4 for 

Au at temperatures of 300 K and 25 K. When r0 >> Λe the thermal transport is purely 

diffusive and S = ke,eff/ke = 1. As r0 decreases and becomes commensurate to Λe, RBTE,p > 

Rdiff,p and S < 1. Notably, S is independent of the value of Lth used to determine the 

isothermal region thickness, except in its influence on εe. 
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FIG. 4. S for a bulk Au crystal measured via FDTR at temperatures of 300 

K and 25 K under low heating frequency conditions. When r0 >> Λe, S = 1 

because the transport is purely diffusive. As r0 becomes similar to Λe the 

electrons transport nondiffusively and S < 1. S results a broad distribution 

of ke,eff over a wide range of r0, despite the narrow distribution of kaccum for 

electrons in a metal.  

 
VI. EXPERIMENTAL RESULTS 

To test the theoretically derived S, kexp of a bulk Au crystal (99.999% Au, 10 mm 

radius by 1 mm thickness, (100) orientation) was measured via FDTR at 304 K, 35 K, 28 

K, and 23 K. The values of Lth, Ce , Cp, and g used for extracting kexp are listed in Table 

II.  Based on the absorbed laser powers the temperature rises due to steady state laser 
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heating have been accounted for in the reported temperatures (typically less than 5 K 

added to the base cryostat temperature).  Periodic oscillations in temperature were less 

than 2 K for all measurements.   

Table II: Values of Lth, Ce , Cp, and g used in the diffusive model to extract kexp.  

 304 K 35 K 28 K 23 K 
Lth (nm) 101 239 343 526 

Ce (MJ m-3 K-1) 0.021 [23] 0.0024 [23] 0.0019 [23] 0.0016 [23] 
Cp (MJ m-3 K-1) 2.45 [30] 0.92 [30] 0.64 [30] 0.43 [30] 

g (×1016 W m-3 K-

1)
3.0 [19] 1.0 [18] 0.68 [18] 0.41 [18] 

 

The FDTR phase-lag vs. heating frequency data was fit to the electron-phonon 

coupled heat diffusion equations in cylindrical coordinates, as outlined by Wilson et al 

[39], with the additional ability for non-surface heat deposition [40]. This two-

temperature model was chosen for thoroughness, but we note that a one-temperature 

model with the same non-surface heat deposition length scale [41], results in identical 

values of kexp.   This result is consistent with the disparity in timescales between the 

electron-phonon coupling timescales (< 1ps [17]) and the timescales (0.2 μs and 10 μs) of 

the chosen FDTR frequencies, as well as the length scales driving nonequilibrium Lnoneq 

(Fig. 3), which are far smaller than the chosen values of r0.   

In the two-temperature model, electrons absorb heat from the pump laser beam and 

exponentially deposit heat into the lattice over the length scale Lth [21,42]. To mimic 

exponential heat deposition in our diffusive model, the bulk Au sample was divided into 

14 different layers. The first 13 layers (from the surface of the Au to a depth of 3Lth) each 

had a thickness of 
3Lth

13
 and the 14th unheated layer had a thickness of 1 mm, where no 
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thermal resistance existed between each layer. In the middle of the first 13 layers 

different percentages of the absorbed laser heat flux were deposited, as shown in Figure 

5(a). The heat was deposited over 3Lth to ensure that roughly all of the heat was deposited 

in an exponential manner. 

 

FIG. 5. (a) Percentage of the total absorbed laser heat flux deposited into 

the first 13 surface layers of the bulk Au crystal over the length 3Lth in the 

diffusive model used to fit the FDTR phase-lag vs. heating frequency data. 

(b)-(e) FDTR phase-lag vs. heating frequency data for a bulk Au crystal 

measured at (b) 304 K, (c) 35 K, (d) 28 K, and (e) 23 K. No heating 

frequency dependence on kexp was observed at all four temperatures and 

no r0-dependence on kexp was observed at 304 K. 

 

The phonon temperature at one optical penetration depth from the surface of the Au 

(18 nm based on the probe laser beam’s wavelength [43]) was fit to the measured FDTR 
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phase-lag data. One optical penetration depth was chosen, as opposed to the surface 

temperature, because Au’s thermoreflectance signal is a result of probe laser photons that 

are reflected volumetrically over the optical penetration depth. The values of kexp are 

however insensitive to the depth at which the temperature was fit between the surface and 

two optical penetration depths. The fitted kexp represents the total thermal conductivity of 

the electrons and the phonons.  

The FDTR phase-lag vs. heating frequency data for a bulk Au crystal measured at 

304 K is shown in Figure 5(b). Using the diffusive model described above, no heating 

frequency or r0-dependence on kexp was observed at 304 K. The laser spot size radii were 

r0 = 1.2 μm, 2.9 μm, and 5.6 μm, measured using the knife-edge technique. The bulk 

value of thermal conductivity at 304 K (310 W m-1 K-1 [27]) fit the phase-lag vs. heating 

frequency data across all three r0’s. The bulk value of k was measured at 304 K because 

r0 and LP were much greater than the MFPs of the electrons and phonons.  

To verify that the absorbed laser heat flux must be deposited exponentially over Lth, a 

sensitivity analysis of heat deposition was conducted for the FDTR data at 304 K. When 

the laser heat flux was deposited exponentially over Le, Λe, and the optical penetration 

depth (δ) of the pump laser beam, kexp was found to be r0-dependent. The kexp values 

when the heat flux was exponentially deposited over all four length scales are shown in 

Table III for the three r0. Only Lth defined analytically as ke / g  results in kexp = kbulk at 

304 K, thus supporting its choice over these alternative length scales.  Another possible 

interpretation of our experimental results would be to fit the measured phase-lag vs. 

heating frequency data assuming kexp = kbulk to identify the length scale of heat 

deposition. The results of this analysis are shown in Table IV. At 304 K, Lth is ~100 nm 
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across all three spot size radii, while Lth is r0-dependent at 35 K, 28 K, and 23 K.  Still 

another possibility is that electron transport in the radial direction would enlarge the 

effective r0 for heat deposition, but we did not explore this approach because it was 

inconsistent with our data at 304 K.  Hence, since it is unclear why Lth would depend on 

r0 the most reasonable interpretation of our data is to use an r0-dependent kexp where the 

heat deposition length scale is Lth = ke / g .   

 

Table III: Values of kexp (W m-1 K-1) at 304 K using different exponential heat 

deposition lengths.  
Heat deposition 

length r0 = 1.2 μm r0 = 2.9 μm r0 = 5.6 μm 

Lth (101 nm) 314  315  319  
Le (10 nm)  266  286  295  
Λe (31 nm) 276  292  300  
δ (21 nm) 271  289  298  

 

Table IV: Values of Lth (nm) needed to fit FDTR data to kexp = kbulk 

    

Temperature r0 = 1.2 μm r0 = 2.9 μm r0 = 5.6 μm 

304 K 100 100 101 

35 K 427 365 193 

28 K 1066 966 498 

23 K 1880 1800 1320 
 

The FDTR phase-lag vs. heating frequency data at temperatures of 35 K, 28 K, and 

23 K are shown in Figures 5(c), 5(d), and 5(e), respectively. At 35 K, kexp = kbulk for the 

two larger spot sizes, r0 = 2.9 and 5.6 μm, while kexp = 0.8kbulk at 35 K when r0 = 1.2 μm. 
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At 28 K and 23 K, kexp < kbulk because Λe ~ 0.9 μm and 1.6 μm, respectively, which are 

similar to the r0’s used in the FDTR experiment (at 23 K, Λe is greater than the smallest 

r0 = 1.2 μm). Therefore, the electrons exhibited nondiffusive thermal transport and a 

suppressed from bulk value of k was measured for all r0. Figures 5(c), 5(d), and 5(e) 

include the predicted phase-lag vs. heating frequency for kbulk to demonstrate the 

measured phase-lag deviation from kbulk. 

Figure 6 shows kaccum(Λe
*), the predicted kexp based on S, and the measured kexp. 

The predicted values of kexp are based on Equation (3), where kexp r0( ) = S Λe ,r0( )ke . 

Regner et al [14] found that predicted values of kexp, based on S, matched experimental 

values of kexp when a r0 three times greater than the experimental value was used in S. 

The authors argued that the geometric factor of three accounted for the fact that S was 

based on a spherical model that only approximately captured surface heating in a finite 

Gaussian distribution. Since a rigorously defined geometric factor that accounts for the 

difference in spherical vs. cylindrical heating is uncertain, we have plotted the predicted 

kexp as a band, where a value of 3r0 substituted into S is the left-most dashed line and a 

value of r0 substituted into S is the right-most dashed line. 
The y-axis in Figure 6 is normalized by kbulk for each temperature. The predicted kexp 

and the measured kexp agree favorably across all four temperatures. The size of the error 

bars were determined by independently varying Ce, Cp, g, Lth, and r0, shown in Table II, 

by ± 6% in the heat diffusion model used to extract kexp [44]. At 304 K, kexp = kbulk, 

because the thermal transport is purely diffusive, as predicted by S. At 35 K, the values of 

kexp as a function of r0 varied between 103% and 80% of kbulk, while the values of kexp at 

28 K and 23 K varied between 94% to 58% of kbulk and 75% to 43% of kbulk, respectively. 
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Although some phonons may have MFPs greater than r0 at 28 K and 23 K, they make 

only small contributions to thermal conductivity.  Hence, we conclude that nondiffusive 

electron transport dominates suppression in k. This demonstrates that even when a gray 

Λe exists, kexp can exhibit a broad distribution of values as a function of FDTR’s 

characteristic length scales. 
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FIG. 6. Measured kexp, predicted kexp, and kaccum(Λe
*) for a bulk Au crystal 

at 304 K, 35 K, 28 K, and 23 K. The predicted kexp are plotted as bands to 

account for the geometric uncertainty of spherical vs. cylindrical heating. 

At 304 K, the bulk value of thermal conductivity was measured with all 

three r0, while kexp was r0-dependent at 35 K, 28 K, and 23 K. The 

measured values of kexp matched the predicted values of kexp, based on S, 

favorably at all four temperatures. 

 

VII. CONCLUSION 

In this work we developed an analytical S for a coupled energy carrier system and 

demonstrated its ability to accurately predict kexp as a function of r0 in a FDTR 

experiment. This study provides the most extreme example of kexp broadening due to S 

because of the gray Λe in metals. In nondiffusive, coupled energy carrier materials, it is 

essential to separate nonequilibrium transport effects from nondiffusive effects and the 

length scales and/or time scales associated with the two transport processes. Our 

theoretical model now provides a roadmap for describing nanoscale thermal transport in 

metals and many other types of coupled systems, such as phonon-magnon [45-47] and 

low frequency ballistic-high frequency diffusive phonon systems [39], where 

nonequilibrium and nondiffusive transport may coexist. 
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