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The projection of time-dependent variational principle (TDVP) for matrix product states enables
us to perform long-time simulations of one-dimensional quantum systems with the conservation of
the total energy and the norm of wave functions. We compare long-time dynamics after a quantum
quench simulated by TDVP with those by the exact diagonalization method in order to evaluate
the performance of TDVP. We show that in a nonintegrable model the projection of TDVP clearly
improves the long-time behaviors of global observables included in the Hamiltonian, such as the
kinetic and interaction energies. In contrast, this projection can lead to larger error for other
observables than that caused by the truncation of states.



I. INTRODUCTION

Despite exponential increase of the dimension of the Hilbert space with system size, there are a few quantum
many-body systems whose numerical simulations are feasible by classical computers. A one-dimensional (1D) system
is one of such numerically tractable quantum systems. According to the area law, the entanglement entropy of
energetically low-lying states of a gapped 1D system has an upper bound independent of the size of the system™2.
These low entangled states can be efficiently described by matrix product states (MPSs) with not so large matrix
dimensions, or bond dimensions®%. With numerical energy optimization methods based on MPS, namely density
matrix renormalization group (DMRG), one can access static properties of these states efficiently EHY

In contrast, it is in general intractable to simulate long time evolution of quantum many-body systems even at
1D. For instance, in quench dynamics triggered by a sudden and substantial change of global parameters in the
Hamiltonian, the creation of a number of excitations causes significant growth of the entanglement entropy. In
clean systems, it grows linearly with timé? 9 and thus bond dimensions grow exponentially with time3. If one uses
standard techniques of time evolution of MPS, such as time-evolving block decimation (TEBD)M™ the Krylov
subspace method™12 and some methods based on the matrix product operator description?®2L such exponential
growth forces one to truncate relevant states in MPS. This truncation results in artificial changes of the total energy
and the norm of wave function under unitary evolution by a time-independent Hamiltonian. Though a recently
proposed truncation scheme based on density matrix representation does not change the norm and the total energy of
short-range Hamiltonians, there remains a problem that the truncated density matrix does not necessarily represent a
pure state even if an initial density matrix represents a pure staté?. For another approach based on the expansion of
the time-evolution operator by Chebyshev polynomials, the finite-order truncation of the expansion limits reachable
simulation time23.

Recent development of time-dependent variational principle (TDVP) for MPS2426 hag opened up new possibilities
for long-time simulations of quantum many-body systems. Since the truncation of relevant states is not necessary
in TDVP, it allows for the time evolution with the conservation of the total energy and the wave-function norm.
Thanks to this property, TDVP is expected to describe long-time behaviors of physical quantities better than the
other methods mentioned above. In recent studies, it has been examined whether TDVP can capture thermalizing
dynamics starting with states at infinite temperaturé?®28 or a single product state in disordered systems??. These
studies have reported both positive and negative results: TDVP captures the long-time behaviors of nonintegrable
spin chains while it fails in describing those of integrable chains or nonintegrable ladders.

In this paper, we investigate the capability of the TDVP in quench dynamics starting with a single pure state in
clean systems, taking nonintegrable Bose-Hubbard and integrable Fermi-Hubbard Hamiltonians as specific examples.
We choose these models because they are regarded as fundamental models for interacting quantum many-body systems
and their quench dynamics can be realized experimentally with ultracold gases in optical lattices2? 34, Unlike previous
studies?@ 29 the samplings of initial states or disordered potentials are absent in the present study. This difference is
important since samplings can help low entangled states to describe the expectation value of a highly entangled state.
For instance, in the algorithm called minimally entangled typical thermal states2338, expectation values of observables
at finite temperatures can be accurately computed by sampling many low entangled states. If one wants to compute
such expectation values with a single pure state, the pure state typically has to hold large entanglement obeying the
volume law2. The present study focuses on the performance of the TDVP without the helps of such samplings.

By comparing results obtained by TDVP with those by the exact diagonalization (ED)'E, we show that the conser-
vation of the total energy and the wave-function norm by TDVP does not simply lead to more accurate time evolution
of quantum states. For quench dynamics of nonintegrable models, we find that the TDVP correctly captures the long-
time behavior of global observables included in the Hamiltonian, such as total kinetic energy and total interaction
energy, with small bond dimensions. However, TDVP fails to describe other observables, which are not included in
the Hamiltonian, and can give even worse description than the other time-evolution methods with the truncation of
states. These results mean that the time-evolved states obtained by TDVP are biased in favor of optimizing the total
energy and lucks the capability to describe arbitrary observables. On the other hand, for integrable models, we show
that TDVP fails even in describing the global observables included in the Hamiltonian. This observation is consistent
with previous studies on other models at infinite temperaturé®® and can be attributed to the fact that TDVP does
not respect nonlocal conserved quantities resulting from the integrability.

The rest of the paper is organized as follows: In Sec. [, we briefly explain TDVP algorithm and its variants.
Time-evolution scheme of MPS used in this paper is also introduced in this section. In Sec. [[TI} results obtained by
TDVP and ED are shown. Comparing these results, we show that the energy conservation character of TDVP leads
to some biases to time-evolved state. Summaries are given in Sec. [V}



II. TIME DEPENDENT VARIATIONAL PRINCIPLE: TWO VARIANTS AND THEIR PROPERTIES

Any wave function |¢) on a L-site lattice system has a MPS representation ©
W) =) AT AZ* - AT* |o), (1)
o

where o; is the state of the local Hilbert space at i-th site, |o) = |01,02,...,0r), and > _ means the summation over
all possible configurations of ¢;. The matrix dimensions of matrices AJ* are called bond dimensions. When a system
is parted into subsystems A and B, the entanglement entropy of subsystem A is given by

Sa=-Tr[palnpa], (2)

where p4 is a reduced density matrix defined as

pa=Trp [¥) (Y. 3)

Here, Trp means a partial trace over subsystem B 8. If we divide the system at the link between sites ¢ and 7 + 1,
the bond dimension of AJ* should be larger than exp S4 in order to represent the state faithfully®.

In the TDVP scheme, the Schrédinger equation for the system described by the Hamiltonian H,

0 A
iho: 16(8) = H (1) @)

is projected to the manifold of a MPS representing [t(¢))?*25. In other words, instead of Eq. (4), we solve a projected
Schrodinger equation

ih (1)) = Pacl [9(0)) 6

Here, Py is a projector to the manifold of a MPS.

Recently, Haegeman et al. have introduced a very useful projection scheme and shown that TDVP can be imple-
mented by replacing the diagonalization part of the DMRG procedure with the matrix exponential action of projected
effective Hamiltonian (and some additional procedures for gauging a MPS)2% likewise a time-step targeting method==.,
The DMRG algorithms consist of successive optimizations of local MPS matrices A7 to minimize the energy of a
system, and thus one can devise some variants of the DMRG by changing the number of sites to be optimized at
one update. The traditional DMRG algorithm®® adopts the two-site update scheme. Since updating only one site
is more numerically efficient than updating two sites, some DMRG algorithms based on one-site update have been
invented®?4UY In these one-site update schemes, however, there is a drawback from one-site nature: the basis of
matrices A7* cannot be changed and the energy is easily stacked at a local minimum. In order to overcome this
drawback, these one-site DMRG algorithms include procedures to expand the basis of A7 with utilizing noisy effects.

On the basis of the close similarity in implementation between TDVP and DMRG, two variants of the TDVP scheme
have been developed, namely one-site and two-site integration schemes2%. The one-site integration scheme does not
change the basis of matrices A" and thus the bond dimensions do not increase during an integration. Thanks to
this fixed bond dimensions, the truncation of states is not required so that the time evolution does not violate the
conservation of the total energy and the wave-function norm. A compensation for the fixed bond dimensions is an
error coming from the projection Pys to the manifold of MPS. On the other hand, in the two-site integration scheme,
the basis of A7 changes during an integration and the bond dimensions generally increase. This means that one has
to truncate states during the time evolution, which violates the conservation, in order to avoid the exponential growth
of the bond dimensions with time. A main advantage of increasing bond dimensions is the absence of the projection
error for 1D nearest-neighbor Hamiltonians2®.

In this work, in order to take the advantages of the two schemes and diminish their shortcomings, we use TDVP
with a simple hybrid scheme. In quench dynamics, an initial state is a low-energy eigenstate of a certain Hamiltonian.
In a 1D system, this initial state can be represented by MPS with small bond dimensions thanks to the area law. At
an early stage of the time evolution, while the required size of the bond dimensions grows gradually with time, it is
still modest so that simulations with classical computer can track the exact dynamics. For such early-stage dynamics,
we use the two-site integration scheme. When the largest bond dimension reaches a certain threshold My, we switch
from the two-site scheme to the one-site scheme. After this switching, the bond dimensions do not increase any more
and the total energy of the system is conserved. Besides, since a MPS used in the projection Py, has relatively large
bond dimensions determined by Mjy,, the projection error due to the one-site scheme is expected to be smaller than
the case in which the one-site scheme is used solely.



The implementation of the TDVP is based on Ref. 26| and the Krylov subspace method is used for calculating
the matrix exponential actions of local effective Hamiltonians*43, We also use the Krylov method in the ED based
method to calculate the exponential actionst®*#. The entanglement entropy is calculated from the singular value
decomposition of a wave function obtained by MPS based® or ED based®® simulations. In the two-site integration
scheme, we set the bond dimensions in such a way that the truncation error is smaller than 107'° or set them to be
M,;, when the truncation error exceeds 10710,

Using the procedure described above, we evaluate the performance of the TDVP schemes via simulations of long-time
quench dynamics of the 1D extended Bose-Hubbard model,

HE =faf + AB

int»

AP = 7S (blbis + Hee),
A U
i2, = LS aP a8~ 1)+ VAPl

which is nonintegrable, and the Fermi-Hubbard model with a staggered magnetic field,

HY = + AF, + AF

1 stagg’

Y = =7 (el éi110 + He),

int

Y =UY afinl) (7)
HE e =1 (—1)'(R - af)).
7

which is integrable in the absence of the staggered field. Here, J is the hopping amplitude, U is the on-site Hubbard
interaction, V' is the nearest-neighbor interaction, b; (b]) annihilates (creates) a boson at site i, 22 = bib;, &y (¢])
annihilates (creates) a fermion with spin o at site i, and nf = él—tgéw. The staggered field h is added for preparing
the Néel state as a simple initial state and the time evolution shown in the next section is performed at the integrable
point, A = 0. The time-step size during time evolution is dynamically changed up to 0.05AJ ! in order to efficiently
obtain data on a logarithmic time scale. For the Bose-Hubbard model, we set the maximum occupation number of
bosons per site to be ten throughout the paper. Notice that the ground-state phase diagrams of the two models have
been previously revealed in a broad parameter region by means of analytical and accurate numerical methods*®5%,

III. COMPARISON WITH EXACT NUMERICAL DATA

Firstly, we investigate time evolution for the Bose-Hubbard model HZ with U /J =3.01 and V/J = 0. The system
size L and the total particle number IV are set to L = N = 14, at which quench dynamics can be computed with the
ED based method. As an initial state of time evolution, we choose either of the following two states. The first one
is a Mott insulating state at unit filling in the atomic limit represented by a classical product state |¢)) =[], bj |0},
where |0) is the vacuum state. The choice of this initial state corresponds to the sudden change of the parameter
U/J from oo to 3.01. The second one is the ground state of the noninteracting Hamiltonian f[ég at unit filling. The
parameter U/J = 3.01, at which the ground state is in a superfluid phase near the quantum critical point, is chosen
so that the total energy of the state quenched from U/J = o is close to that of the state from U/J = 0.

The top panel of Fig. shows the time evolution of the interaction energy (FI{EQ after the global quench of the onsite
interaction from U/J = oo to 3.01 with different integration schemes. Notice that the interaction energy of Hubbard-
type models can be measured in ultracold atoms in optical lattices by means of the high-resolution spectroscopy of
the local-atom-number distribution®!. For the same value of the threshold bond dimension, M, = 100, the hybrid
scheme gives more accurate results than those given by the two-site scheme. From the entanglement entropy shown in
the middle panel of Fig.[l] we see that the state evolved by the hybrid scheme is slightly more entangled than that by
the two-site scheme. In the viewpoint of the entanglement, the hybrid scheme also gives more accurate time-evolved
states.

By comparing the results obtained by the hybrid scheme with M, = 100 and 800, we clearly see that increasing
My, reduces the projection error of the one-site integration scheme (See the bottom panel of Fig. [1)). The energy
conservation property of the one-site integration scheme is confirmed from Fig. [2| which depicts the time evolution
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FIG. 1. (Color online) Time evolution of the three quantities for the Bose-Hubbard model after the global quench from U/J = oo
to 3.01 with different integration schemes, where L = N = 14 and V/J = 0. Top panel: Interaction energy (HZ,). Middle
panel: Entanglement entropy Sa, where subsystem A is the left half of the system. Bottom panel: Largest bond dimension.
The blue solid and green dotted lines represent the results by the hybrid TDVP scheme with My, = 100 and 800. The orange
dash-dotted line represents the result by the TDVP with two-site integration scheme with M, = 100. The red dashed line

represents the ED scheme.
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FIG. 2. (Color online) Time evolution of the total energy for the Bose-Hubbard model <I;[ B ) after the global quench from
U/J = oo to 3.01 with different integration schemes, where L = N = 14 and V/J = 0.
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FIG. 3. (Color online) Time evolution of the two quantities for the Bose-Hubbard model after the global quench from U/J = 0

to 3.01, where L = N = 14 and V/J = 0. Upper panel: Interaction energy (HZ,). Lower panel: Entanglement entropy Sa,
where subsystem A is the left half of the system.

of the total energy. In the global quench of the Hubbard interaction from U/J = 0 to 3.01, we again observe the
superiority of the hybrid scheme in describing the interaction energy and the entanglement entropy as shown in Fig.

Next, we turn our attention to the integrable case of the Fermi-Hubbard model H¥. We take the Néel state
]_[ZL:/ 2 ng;mcgi 1 10}, which is the ground state of the staggered Fermi-Hubbard model at h = oo, as an initial state of
quench dynamics. The upper panel of Fig. |4 shows the time evolution of the interaction energy for the Fermi-Hubbard
model with U/J = 1.0, L = 14, and Ny = Ny = 7, where N,, denotes the number of particles of spin . In contrast to
the nonintegrable case, the interaction energy calculated by the hybrid scheme considerably deviates from the exact
values in a long-time region, say, 10 < tJ/h < 100. For the entanglement entropy shown in the lower panel of Fig.
the superiority of the hybrid scheme is almost absent till around tJ/h = 50.

This deviation can be attributed to the fact that the time evolution by TDVP does not respect the nonlocal
conserved quantities regarding the integrability. Due to the presence of such nonlocal conserved quantities, local
observables in integrable models at the long-time relaxation obey the generalized Gibbs ensemblé?254,

oxp(— 304 Aelr)
Trexp(— Zk )\kjk) '

The GGE is characterized by the expectation values of the integrals of motion Ij, which are generally given by nonlocal
operators?2 54, Coefficients A are determined so that statistical values Tr[I; pjaqr] give initial expectation values (I}).
Although these expectation values have to be conserved, the local update character of the TDVP does not respect the
conservation of the integrals, except the total energy whose corresponding operator is H Ij and quantities protected
by symmetries installed in the structure of a MPST8, i.e., the total number of particles N = Yio Af in this study.
With only the two integrals and setting fl = fIF, AL =0, fg = N and Ao = —fBu , the GGE reduces to an ordinary
grand canonical ensemble 55

(8)

ﬁGGE =

e = _PLEAEHT —pN)] )

Trexpl—B(HT — V)
As shown in Fig. [4] the interaction energy computed by the one-site TDVP scheme indeed tends to relax towards
the equilibrium value of the grand canonical ensemble, which is represented as the horizontal line. Notice that for
calculating the statistical expectation value Tlr[lflilflt pac), we use the purification algorithm?I¥56 with setting an inverse
temperature 3 to 0.2613J ! and a chemical potential z to U/2. With these parameters, the internal energy Tr[I:IFﬁGC]

is 4.9 x 104J ((HF) = 0 for the Néel state) and the particle-hole symmetry assures Tr[Npac] = L.
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FIG. 4. (Color online) Time evolution of two quantities for the Fermi-Hubbard model with U/J = 1.0 when we take the Néel

state as an initial state, where L = 14 and N+ = N = 7. Upper panel: Interaction energy (Hiﬁt). The horizontal purple
line represents the statistical expectation value given by a grand canonical ensemble. Lower panel: Entanglement entropy Sa,

where subsystem A is the left half of the system.

In order to check how the choice of initial states affects the above explanation, we simulate another quench dynamics
in the Fermi-Hubbard model. As another initial state, we take the ground state of the Fermi-Hubbard model with
U/J =00, L =14 and Ny = N| =7, i.e., the entangled ground state of the Heisenberg model,

A 4.2 Lra . a4 .
ch = 7 |:2 (Ci’rcilcz+1¢ci+1? + H.C.)
1, . . .
+ g (it = fiy) (Ragrr = iray)| - (10)

The total energy given by this ground state at U/J = oo is also (H’ Fy = 0 which is identical to the previous Néel state
case. The upper panel of Fig. [5] represents the time-evolution of the interaction energy for the Fermi-Hubbard model
after the global quench from U/J = oo to 1.0. Since the Fermi-Hubbard model is integrable, the interaction energy
given by the ED relaxes to a different value from the relaxed value of the previous Néel-state case even though the
total energy is the same. In contrast, the relaxed value given by the hybrid scheme is very close to the value estimated
from the ground canonical ensemble likewise the Néel-state case. Furthermore, as shown in Fig.[f] this value seems
to converge for the threshold bond dimension M;y,. It should be noted that the entanglement entropy of the largest
My, case, say M, = 1600, is comparable to that given by the ED as shown in the lower panel of Fig. |5} These facts
strongly support our explanation about the failure in the integrable model: The breaking of the nonlocal integrables
of motion by the projection of the TDVP leads to a wrong thermalized value.

One may naively expect that the above discussion also gives the explanation for the success of the hybrid scheme in
the nonintegrable model shown in Figs.[[Jand[3] In other words, the one-site TDVP scheme can capture the relaxation
towards the equilibrium value of the grand canonical ensemble, which local observables of nonintegrable models obey
in general, because it respects the conservation of the total energy and the total number.

However, this expectation is not true. In order to corroborate this, we depict in Fig. [7] the time evolution of the
sum of nearest-neighbor density-density correlations ), ﬁ?ﬁg_l in the same dynamics as in Figs. (1| and There
we see that the superiority of the hybrid scheme is absent, or rather, the two-site integration scheme gives slightly
closer values to the exact ones. A more pronounced example can be observed in the dynamics of the Bose-Hubbard
model with unrealistic parameters: U/J = 0 and V/J is finite. Figure |8 shows the time evolution of the sum of
onsite density-density correlations ), nBAB after the global quench from V/J = 0 to 3.0. The system size L and
the total number of particles N are set to 20 and 10. Comparing the data obtained by the hybrid and two-site



03
~
=
= 02}
3
[<9p=
E i —— My =100
\m/ 0.1 —— My =100, 2site
........ M, = 1600
00 2
—— My =100
— = My, =100, 2site
6 .. Mg = 1600
---- ED
<
O) 4
2
102 10" 10° 10’ 10°

tJ/h
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FIG. 6. (Color online) Time evolution of interaction energy (Hf,jg for the Fermi-Hubbard model after the global quench from
U/J = oo to 1.0 with larger threshold bond dimensions M, = 800, 1200, and 1600, where L = 14 and Ny = N; = 7. The
horizontal purple line represents the statistical expectation value given by a grand canonical ensemble.
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FIG. 7. (Color online) Time evolution of the sum of nearest-neighbor density-density correlations for the Bose-Hubbard model
after the global quench from U/J = oo to 3.01, where L = N = 14 and V/J = 0.
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FIG. 8. (Color online) Time evolution of the sum of on-site density-density correlations for the Bose-Hubbard model after the
global quench from V/J =0 to 3.0, where U/J =0, L = 20, and N = 10.
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FIG. 9. (Color online) Time evolution of the two quantities for the Bose-Hubbard model after the global quench from V/J =0
to 3.0, where U/J = 0, L = 20, and N = 10. Upper panel: Interaction energy (HZ,). Lower panel: Entanglement entropy Sa,
where subsystem A is the left half of the system.

integration schemes, the error in the former scheme is noticeably larger than that in the latter. It should be stressed
here that when V/J = 0 and U is finite, this quantity gives the interaction energy, which was well described by the
hybrid scheme as shown in Figs. |1 and |3| In the upper panel of Fig. @ we depict the interaction energy <ﬁ£t> in the
U/J = 0 system, which corresponds to the sum of nearest-neighbor density-density correlations. We see that for the
interaction energy the hybrid scheme is more accurate than the two-site scheme. The lower panel of Fig. [0 shows the
time evolution of the entanglement entropy Sa, where we see that a time-evolved state given by the hybrid scheme
is more entangled than that given by the two-site integration scheme likewise V/J = 0 cases as shown in the lower
panel of Fig. [0

From these observations, we conjecture that the hybrid scheme provides more accurate results than those given by
time-evolution schemes with severe truncations, such as the two-site TDVP and TEBD, for global observables included
in the Hamiltonian and the entanglement entropy. However, this superiority does not mean that a time-evolved state
given by the hybrid scheme is more accurate because the hybrid scheme can be worse for other quantities. In other
words, the projection of the TDVP for MPS biases a time-evolved state towards better describing terms closely related
to the total energy.
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IV. SUMMARIES

We studied long-time dynamics of Hubbard-type models after a sudden quantum quench in order to evaluate the
performance of the time-dependent variational principle (TDVP) for a matrix product state (MPS) that circumvents
increasing bond dimensions of the MPS by projecting the Hamiltonian to the manifold of MPS. In the case of nonin-
tegrable models, comparison with the numerical data obtained by the exact diagonalization indicates the superiority
of the TDVP method over integration methods with the truncation of states for describing long-time behaviors of
global observables included in the Hamiltonian, such as the total interaction energy. Since the time evolution of these
observables has been measured in recent experiment with ultracold atomic gases in optical lattices? ™58 the supe-
riority is useful for analyzing or simulating such experiments. For an integrable model, this superiority is absent since
the local update nature of TDVP breaks the conservation of the integrals of motion. Even in nonintegrable models,
we showed that the projection can cause larger error than that caused by the truncation of states for observables
which are not included in the Hamiltonian. These results mean that the projection and the energy conservation of
the TDVP do not necessarily improve a time-evolved state.
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